# load some data. Will change to batch work later dr.loadSalesData(gs._project_entry_point_ + "/../preprocess/output/Monthly_Sold_Waste/10 October_Week 3.csv","October Week 3","efficiency") dr.loadSalesData(gs._project_entry_point_ + "/../preprocess/output/Monthly_Sold_Waste/10 October_Week 4.csv","October Week 4","efficiency") # create your algorithm prototype here for i in range(1): sys.stdout.write(str(i)+' ') evolutionAlgorithmController = evolutionAlgorithmGroupItem() #evolutionAlgorithmController = evolutionAlgorithm() # get data from data loader evolutionAlgorithmController.getData(dr) resultForEvolutionAlgorithm = evolutionAlgorithmController.generateRecommendation() # calculate the objective function value objectiveFunctionObj = objectiveFunction() objectiveFunctionObj.recommendation = resultForEvolutionAlgorithm score = objectiveFunctionObj.assess() print "Final result:" for item in resultForEvolutionAlgorithm.itemList: print str(item.itemName)+"x"+str(resultForEvolutionAlgorithm.itemList[item]) # do comparison and output the best (when we have more than 1) print "Test: score = "+str(score) print('Under Construction') print dr.itemData.__dict__['idToItem'][3084].__dict__['category'][4].__dict__
def getObjectiveFunctionValue(self): objF = objectiveFunction() objF.recommendation = self.generateRecommendation() self.objectiveFunctionValue = objF.assess()