import csv 
import pandas as pd # Import datafiles

# Personal libraries
from ML_treatment import componentAnalysis, normalizeData, componentAnalysisLast

print('Libaries loaded')
# Close all open windows
plt.close()

dataset = np.loadtxt("Datasets/winequality-white.csv",delimiter=';',skiprows=1) #"Users/groenera/Desktop/file.csv"
dataName = 'wineQuality_'

# Crop for easy calcualtion
analysisDim = -1
componentAnalysisLast(dataset[1:10000,:], 'energyData_raw', analysisDim) #plot preprocessing
normalizeData(dataset)

#dataset = dataset[0:1000,:] # crop for ease of calculation

print('Data set loaded with shape: {}'.format(dataset.shape))
plt.show()


# Define Parameters
tt_ratios = np.linspace(0.1,0.9, num=2)
gammaVals = np.logspace(0.001,100,num=2)
 

# Inititialize lists
rvr_errs = []
Пример #2
0
# Personal libraries
from ML_treatment import componentAnalysis, normalizeData, componentAnalysisLast

print('libaries loaded')
# Close all open windows
plt.close()

#dataset = np.loadtxt("Datasets/housing.data") #"Users/groenera/Desktop/file.csv"
print('data set loaded')

# Preprocessing
shape = dataset.shape
print("Dataset shape is {}x{}".format(shape[0], shape[1]))

normalizeData(dataset)
componentAnalysisLast(dataset)
dataset = np.delete(dataset, 3, axis=1)  # 4th dimesion = 3rd element
dataset = dataset[:, :]  # reduce dataset, remove for large calculations

shape = dataset.shape
print("Dataset shape is {}x{}".format(shape[0], shape[1]))

# Wine dataset
dataset = np.loadtxt("Datasets/winequality-white.csv",
                     delimiter=';',
                     skiprows=1)  #"Users/groenera/Desktop/file.csv"
normalizeData(dataset)
print('Data set loaded with shape: {}'.format(dataset.shape))

# Define Parameters
tt_ratios = np.linspace(0.1, 0.9, num=2)