def test_vector_1d(self, data, halo, side):
        # arrange
        field = VectorField((data, ), halo, (PeriodicBoundaryCondition(), ))
        meta_and_data, fill_halos = field.impl
        traversals = Traversals(grid=(data.shape[0] - 1, ),
                                halo=halo,
                                jit_flags={},
                                n_threads=1)
        sut = traversals._fill_halos_vector
        thread_id = 0

        # act
        sut(thread_id, *meta_and_data, *fill_halos)

        # assert
        if halo == 1:
            return
        if side == LEFT:
            np.testing.assert_array_equal(field.data[0][:(halo - 1)],
                                          data[-(halo - 1):])
        elif side == RIGHT:
            np.testing.assert_array_equal(field.data[0][-(halo - 1):],
                                          data[:(halo - 1)])
        else:
            raise ValueError()
Пример #2
0
    def test_make_upwind(self):
        # Arrange
        psi_data = np.array((0, 1, 0))
        flux_data = np.array((0, 0, 1, 0))

        options = Options()
        halo = options.n_halo
        traversals = Traversals(grid=psi_data.shape,
                                halo=halo,
                                jit_flags={},
                                n_threads=1)
        upwind = make_upwind(options=options,
                             non_unit_g_factor=False,
                             traversals=traversals)

        bc = [PeriodicBoundaryCondition()]
        psi = ScalarField(psi_data, halo, bc)
        psi_impl = psi.impl
        flux_impl = VectorField((flux_data, ), halo, bc).impl
        null_impl = ScalarField.make_null(len(psi_data.shape)).impl

        # Act
        upwind(psi_impl[0], *flux_impl, *null_impl)

        # Assert
        np.testing.assert_array_equal(psi.get(), np.roll(psi_data, 1))
Пример #3
0
def test_timing_2d(benchmark,
                   options,
                   dtype,
                   grid_static_str,
                   concurrency_str,
                   plot=False):
    if grid_static_str == "static":
        grid_static = True
    elif grid_static_str == "dynamic":
        grid_static = False
    else:
        raise ValueError()

    if concurrency_str == "serial":
        numba.set_num_threads(1)
    else:
        numba.set_num_threads(numba.config.NUMBA_NUM_THREADS)

    setup = Setup(n_rotations=6)
    _, __, z = from_pdf_2d(setup.pdf,
                           xrange=setup.xrange,
                           yrange=setup.yrange,
                           gridsize=setup.grid)

    C = (-.5, .25)
    grid = z.shape
    advector_data = [
        np.full((grid[0] + 1, grid[1]), C[0], dtype=options.dtype),
        np.full((grid[0], grid[1] + 1), C[1], dtype=options.dtype)
    ]
    advector = VectorField(advector_data,
                           halo=options.n_halo,
                           boundary_conditions=(PeriodicBoundaryCondition(),
                                                PeriodicBoundaryCondition()))
    advectee = ScalarField(data=z.astype(dtype=options.dtype),
                           halo=options.n_halo,
                           boundary_conditions=(PeriodicBoundaryCondition(),
                                                PeriodicBoundaryCondition()))
    if grid_static:
        stepper = Stepper(options=options, grid=grid)
    else:
        stepper = Stepper(options=options, n_dims=2)
    solver = Solver(stepper=stepper, advectee=advectee, advector=advector)

    def set_z():
        solver.advectee.get()[:] = z

    benchmark.pedantic(solver.advance, (setup.nt, ),
                       setup=set_z,
                       warmup_rounds=1,
                       rounds=3)

    if options.n_iters == 1 or options.flux_corrected_transport:
        np.testing.assert_almost_equal(np.amin(solver.advectee.get()), h0)
    assert np.amax(solver.advectee.get()) < 10 * h

    if plot:
        pyplot.imshow(solver.advectee.get())
        pyplot.colorbar()
        pyplot.show()
Пример #4
0
    def test_vector_2d(self, halo, n_threads):
        # arrange
        grid = (4, 2)
        data = (np.array([
            [1, 6],
            [2, 7],
            [3, 8],
            [4, 9],
            [5, 10],
        ]), np.array([
            [1, 5, 9],
            [2, 6, 10],
            [3, 7, 11],
            [4, 8, 12],
        ]))
        bc = (PeriodicBoundaryCondition(), PolarBoundaryCondition(grid, 0, 1))
        field = VectorField(data, halo, bc)
        meta_and_data, fill_halos = field.impl
        traversals = Traversals(grid=grid,
                                halo=halo,
                                jit_flags={},
                                n_threads=n_threads)
        sut = traversals._fill_halos_vector

        # act
        for thread_id in numba.prange(n_threads):
            sut(thread_id, *meta_and_data, *fill_halos)

        # assert
        print(field.data[0].shape)
        print(field.data[0])
        print(field.data[1].shape)
        print(field.data[1])
Пример #5
0
    def test_apply_scalar(n_threads, halo, grid, loop):
        n_dims = len(grid)
        if n_dims == 1 and n_threads > 1:
            return

        # arrange
        traversals = Traversals(grid, halo, jit_flags, n_threads)
        sut = traversals.apply_scalar(loop=loop)

        scl_null_arg_impl = ScalarField.make_null(n_dims).impl
        vec_null_arg_impl = VectorField.make_null(n_dims).impl

        out = ScalarField(np.zeros(grid), halo,
                          [ConstantBoundaryCondition(np.nan)] * n_dims)

        # act
        sut(_cell_id_scalar, _cell_id_scalar, *out.impl[0],
            *vec_null_arg_impl[0], *vec_null_arg_impl[1],
            *scl_null_arg_impl[0], *scl_null_arg_impl[1],
            *scl_null_arg_impl[0], *scl_null_arg_impl[1],
            *scl_null_arg_impl[0], *scl_null_arg_impl[1])

        # assert
        data = out.get()
        assert data.shape == grid
        focus = (-halo, -halo)
        for i in range(halo, halo + grid[0]):
            for j in (-1, ) if n_dims == 1 else range(halo, halo + grid[1]):
                value = indexers[n_dims].at[0](focus, data, i, j)
                assert value == (n_dims if loop else 1) * cell_id(i, j)
        assert scl_null_arg_impl[0][0][meta_halo_valid]
        assert vec_null_arg_impl[0][0][meta_halo_valid]
        assert not out.impl[0][0][meta_halo_valid]
Пример #6
0
def test_diffusion_only_2d(
        data0=np.array([[0, 0, 0], [0, 1., 0], [0, 0, 0]]), mu=(.1, .1), nt=1):
    # Arrange
    options = Options(non_zero_mu_coeff=True)
    bc = [PeriodicBoundaryCondition()] * 2
    advectee = ScalarField(data0, options.n_halo, bc)
    advector = VectorField(data=(np.zeros(
        (data0.shape[0] + 1, data0.shape[1])),
                                 np.zeros(
                                     (data0.shape[0], data0.shape[1] + 1))),
                           halo=options.n_halo,
                           boundary_conditions=bc)
    solver = Solver(stepper=Stepper(options=options, grid=data0.shape),
                    advector=advector,
                    advectee=advectee)

    # Act
    solver.advance(nt=nt, mu_coeff=mu)

    # Assert
    data1 = solver.advectee.get()
    np.testing.assert_almost_equal(actual=np.sum(data1), desired=np.sum(data0))
    assert np.amax(data0) > np.amax(data1)
    assert np.amin(data1) >= 0
    assert np.count_nonzero(data1) == 5
Пример #7
0
    def make_condensational_growth_solver(nr, r_min, r_max, GC_max, grid_layout, psi_coord, pdf_of_r, drdt_of_r, opts: Options):
        # psi = psi(p)
        dp_dr = psi_coord.dx_dr
        dx_dr = grid_layout.dx_dr

        xh, dx = np.linspace(
            grid_layout.x(r_min),
            grid_layout.x(r_max),
            nr + 1,
            retstep=True
        )
        rh = grid_layout.r(xh)

        x = np.linspace(
            xh[0] + dx / 2,
            xh[-1] - dx / 2,
            nr
        )
        r = grid_layout.r(x)

        def pdf_of_r_over_psi(r):
            return pdf_of_r(r) / psi_coord.dx_dr(r)

        psi = discretised_analytical_solution(rh, pdf_of_r_over_psi, midpoint_value=True, r=r)

        dp_dt = drdt_of_r(rh) * dp_dr(rh)
        G = dp_dr(r) / dx_dr(r)

        # C = dr_dt * dt / dr
        # GC = dp_dr / dx_dr * dr_dt * dt / dr =
        #        \       \_____ / _..____/
        #         \_____.._____/    \_ dt/dx
        #               |
        #             dp_dt

        dt = GC_max * dx / np.amax(dp_dt)
        GCh = dp_dt * dt / dx

        # CFL condition
        np.testing.assert_array_less(np.abs(GCh), 1)

        g_factor = ScalarField(G.astype(dtype=opts.dtype), halo=opts.n_halo, boundary_conditions=(ExtrapolatedBoundaryCondition(),))
        state = ScalarField(psi.astype(dtype=opts.dtype), halo=opts.n_halo, boundary_conditions=(ConstantBoundaryCondition(0),))
        GC_field = VectorField([GCh.astype(dtype=opts.dtype)], halo=opts.n_halo, boundary_conditions=(ConstantBoundaryCondition(0),))
        stepper = Stepper(
            options=opts,
            n_dims=1,
            non_unit_g_factor=True
        )
        return (
            Solver(stepper=stepper, g_factor=g_factor, advectee=state, advector=GC_field),
            r,
            rh,
            dx,
            dt,
            g_factor
        )
Пример #8
0
    def test_apply_vector(n_threads, halo, grid):
        n_dims = len(grid)
        if n_dims == 1 and n_threads > 1:
            return

        # arrange
        traversals = Traversals(grid, halo, jit_flags, n_threads)
        sut = traversals.apply_vector()

        scl_null_arg_impl = ScalarField.make_null(n_dims).impl
        vec_null_arg_impl = VectorField.make_null(n_dims).impl

        if n_dims == 1:
            data = (np.zeros(grid[0] + 1), )
        elif n_dims == 2:
            data = (np.zeros(
                (grid[0] + 1, grid[1])), np.zeros((grid[0], grid[1] + 1)))
        else:
            raise NotImplementedError()

        out = VectorField(data, halo,
                          [ConstantBoundaryCondition(np.nan)] * n_dims)

        # act
        sut(_cell_id_vector, _cell_id_vector, *out.impl[0],
            *scl_null_arg_impl[0], *scl_null_arg_impl[1],
            *vec_null_arg_impl[0], *vec_null_arg_impl[1],
            *scl_null_arg_impl[0], *scl_null_arg_impl[1])

        # assert
        halos = ((halo - 1, halo), (halo, halo - 1))
        for d in range(n_dims):
            data = out.get_component(d)
            focus = tuple(-halos[d][i] for i in range(n_dims))
            for i in range(halos[d][0], halos[d][0] + data.shape[0]):
                for j in (-1, ) if n_dims == 1 else range(
                        halos[d][1], halos[d][1] + data.shape[1]):
                    value = indexers[n_dims].at[0](focus, data, i, j)
                    assert value == cell_id(i, j)

        assert scl_null_arg_impl[0][0][meta_halo_valid]
        assert vec_null_arg_impl[0][0][meta_halo_valid]
        assert not out.impl[0][0][meta_halo_valid]