Пример #1
0
def tabu_search(perm):
    solution = copy.deepcopy(perm)
    best_candidate = copy.deepcopy(perm)
    tabu_list = []
    distances = []
    no_of_neighbours = 10  #arbitrary starting value
    max_tabu_size = 20  #arbitrary starting value
    j = 0

    #Adding starting value to the List
    tabu_list.append(solution)

    #Termination Criteria
    while (
            j < 1000
    ):  #arbitrary starting value, the higher the number the better the solution
        i = 0
        neighbours = []
        for i in range(
                no_of_neighbours
        ):  #Generates 10 different random solutions/neighbours which is used later to find the best
            generate_neighbour = generate_random_neighbour(best_candidate)
            neighbours.append(generate_neighbour)

        #Iterates through the neighbours to find the latest best solution
        for neighbour in neighbours:
            if (neighbour not in tabu_list
                    and evaluate(neighbour) < evaluate(best_candidate)):
                best_candidate = neighbour

        #Evaluates the best solution in comparison to the current one
        if (evaluate(best_candidate) < evaluate(solution)):
            solution = best_candidate
            distances.append(evaluate(solution))
Пример #2
0
def hill_climbing(iteration):
    solution = []
    neigh_solution = []
    list_of_values = []
    sol_distance = 0
    neigh_distance = 0

    #Initial random solution
    solution = generate_random_solution()
    #plot_colours(test_colours, solution, 'Initial Hill Climb')

    #Loop for specified number of iterations
    for i in range(iteration):

        #Evaluate total distance of solution
        sol_distance = evaluate(solution)

        #Generate random neighbour to current solution
        neigh_solution = generate_random_neighbour(solution)

        #Evaluate total distance of neighbour solution
        neigh_distance = evaluate(neigh_solution)

        #Update solution if neighbour is better
        if (neigh_distance < sol_distance):
            solution = copy.deepcopy(neigh_solution)
            list_of_values.append(neigh_distance)

    #Return a list of the distance values at each iteration, and the best solution found
    return solution, list_of_values
Пример #3
0
def multi_hc(tries):
    curr_solution = []
    valList = []
    curr_dist = 0
    best_dist = 1000  #arbitrary starting value, just has to be greater than any possible distance
    best_solution = []
    best_sol_list = []
    dist_list = []

    for i in range(tries):
        #Hill Climb
        curr_solution, valList = hill_climbing(500)

        #Calculate total distance of current solution
        curr_dist = evaluate(curr_solution)

        #Determine if new solution is better, if it is copy it into the 'best' variables
        if (curr_dist < best_dist):
            best_dist = curr_dist
            best_solution = copy.deepcopy(curr_solution)
            best_sol_list = copy.deepcopy(valList)
        dist_list.append(curr_dist)

    return dist_list, best_solution, best_dist, best_sol_list
Пример #4
0
parser = argparse.ArgumentParser()
parser.add_argument('--max_samples',
                    default=25000,
                    type=int,
                    help='maximum number of conversation pairs to use')
parser.add_argument('--max_length',
                    default=40,
                    type=int,
                    help='maximum sentence length')
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--num_layers', default=2, type=int)
parser.add_argument('--num_units', default=512, type=int)
parser.add_argument('--d_model', default=256, type=int)
parser.add_argument('--num_heads', default=8, type=int)
parser.add_argument('--dropout', default=0.1, type=float)
parser.add_argument('--activation', default='relu', type=str)
parser.add_argument('--epochs', default=20, type=int)

hparams = parser.parse_args()

dataset, tokenizer = get_dataset(hparams)

model = transformer(hparams)

model.load_weights('Test/cp.ckpt')

model.save("Test\model")

evaluate(hparams, model, tokenizer)