Пример #1
0
    def __init__(self,
                 activation=MA.Pass(),
                 regularizations=[],
                 initializations=[],
                 learningScenari=[],
                 decorators=[],
                 name=None,
                 maxInConnections=1,
                 streams=["train", "test"]):
        super(Layer_ABC, self).__init__(initializations=[], streams=streams)
        self.maxInConnections = maxInConnections

        #a unique tag associated to the layer
        self.appelido = str(uuid.uuid1())

        if name is not None:
            self.name = name
        else:
            self.name = "%s_%s" % (self.__class__.__name__, self.appelido)

        self.inputs = MTYPES.Variable(streams=self.streams)
        self.outputs = MTYPES.Variable(streams=self.streams)
        self.outputs_preactivation = None

        self.abstractions = {
            "activation": [activation],
            "regularizations": regularizations,
            "decorators": decorators,
            "initializations": initializations,
            "learningScenari": learningScenari,
        }

        self._inputRegistrations = set()
        self._resetNetwork()
Пример #2
0
    def __init__(self,
                 size,
                 layerTypes,
                 activation=MA.Pass(),
                 regularizations=[],
                 initializations=[],
                 learningScenario=None,
                 decorators=[],
                 name=None):

        self.isLayer = True

        #a unique tag associated to the layer
        self.appelido = numpy.random.random()

        if name is not None:
            self.name = name
        else:
            self.name = "%s_%s" % (self.__class__.__name__, self.appelido)

        self.types = layerTypes

        self.nbInputs = None
        self.inputs = None
        self.nbOutputs = size
        self.outputs = None  # this is a symbolic var
        self.testOutputs = None  # this is a symbolic var

        self.preactivation_outputs = None
        self.preactivation_testOutputs = None

        self.activation = activation
        self.regularizationObjects = regularizations
        self.regularizations = []
        self.decorators = decorators
        self.initializations = initializations
        self.learningScenario = learningScenario

        self.network = MNET.Network()
        self.network._addLayer(self)

        self._inputRegistrations = set()

        self._mustInit = True
        self._mustReset = True
        self._decorating = False

        self.parameters = {}
Пример #3
0
)

c2 = MCONV.Convolution2D( 
	nbFilters = 15,
	filterHeight = 3,
	filterWidth = 3,
	activation = MA.Max_norm(),
	pooler = maxPool,
	name = "conv2"
)
fa = MCONV.Flatten(name="flata")
fb = MCONV.Flatten(name="flatb")
f = MCONV.Flatten(name = "flat")

h = ML.Hidden(2048, activation = MA.Max_norm(), decorators = [MD.BinomialDropout(0.75)], regularizations = [], name = "hid" )
passa = ML.Hidden(1500, activation = MA.Pass(), decorators = [MD.BinomialDropout(0.5)], regularizations = [], name = "pass1" )
passb = ML.Hidden(1500, activation = MA.Pass(), decorators = [MD.BinomialDropout(0.5)], regularizations = [], name = "pass2" )
h2 = ML.Hidden(2048, activation = MA.Max_norm(), decorators = [MD.BinomialDropout(0.75)], regularizations = [], name = "hid2" )
o = ML.SoftmaxClassifier(2, decorators = [], learningScenario = ls, costObject = cost, name = "out", regularizations = [] )

model = i > c1 > c3 > c2 > f > h > h2 > o
c1 > fa > passa > h > h2 > o
c2 > fb > passb >h > h2 > o

tscore = []
vscore = []
tdata = load_data(trainfile)
vdata = load_data(validfile)
vdata = (center(vdata[0]),vdata[1])        
test = load_data(testfile)
test = center(test)