def test_dropout(self): import theano, numpy inp = ML.Input(100, 'inp', decorators=[MD.BinomialDropout(dropoutRatio=0.8)]) model = inp.network model.init() data = numpy.random.randn(1, 100).astype(theano.config.floatX) + 1 out = model["inp"].propagate["train"]({ "inp.inputs": data })["inp.propagate.train"] self.assertTrue(sum(out[0] != 0) < sum(data[0] != 0))
def MLP(ls, cost): i = ML.Input(28 * 28, name='inp') h = ML.Hidden(500, activation=MA.Tanh(), decorators=[MD.BinomialDropout(0.2)], initializations=[MI.GlorotTanhInit()], regularizations=[MR.L1(0), MR.L2(0.0001)], name="hid") o = ML.SoftmaxClassifier(10, initializations=[MI.ZerosWeights()], learningScenario=ls, costObject=cost, name="out", regularizations=[MR.L1(0), MR.L2(0.0001)]) mlp = i > h > o return mlp
def __init__(self, ls, cost): maxPool = MCONV.MaxPooling2D(3, 3) i = MCONV.Input(nbChannels=1, height=100, width=100, name='inp') c1 = MCONV.Convolution2D(nbFilters=10, filterHeight=3, filterWidth=3, activation=MA.Max_norm(), pooler=maxPool, name="conv1") c3 = MCONV.Convolution2D(nbFilters=20, filterHeight=3, filterWidth=3, activation=MA.Max_norm(), pooler=maxPool, name="conv3") c2 = MCONV.Convolution2D(nbFilters=10, filterHeight=3, filterWidth=3, activation=MA.Max_norm(), pooler=maxPool, name="conv2") f = MCONV.Flatten(name="flat") h = ML.Hidden(2048, activation=MA.Max_norm(), decorators=[MD.BinomialDropout(0.7)], regularizations=[], name="hid") o = ML.SoftmaxClassifier(2, decorators=[], learningScenario=ls, costObject=cost, name="out", regularizations=[]) self.model = i > c1 > c3 > c2 > f > h > o
name = "conv3" ) c2 = MCONV.Convolution2D( nbFilters = 15, filterHeight = 3, filterWidth = 3, activation = MA.Max_norm(), pooler = maxPool, name = "conv2" ) fa = MCONV.Flatten(name="flata") fb = MCONV.Flatten(name="flatb") f = MCONV.Flatten(name = "flat") h = ML.Hidden(2048, activation = MA.Max_norm(), decorators = [MD.BinomialDropout(0.75)], regularizations = [], name = "hid" ) passa = ML.Hidden(1500, activation = MA.Pass(), decorators = [MD.BinomialDropout(0.5)], regularizations = [], name = "pass1" ) passb = ML.Hidden(1500, activation = MA.Pass(), decorators = [MD.BinomialDropout(0.5)], regularizations = [], name = "pass2" ) h2 = ML.Hidden(2048, activation = MA.Max_norm(), decorators = [MD.BinomialDropout(0.75)], regularizations = [], name = "hid2" ) o = ML.SoftmaxClassifier(2, decorators = [], learningScenario = ls, costObject = cost, name = "out", regularizations = [] ) model = i > c1 > c3 > c2 > f > h > h2 > o c1 > fa > passa > h > h2 > o c2 > fb > passb >h > h2 > o tscore = [] vscore = [] tdata = load_data(trainfile) vdata = load_data(validfile) vdata = (center(vdata[0]),vdata[1]) test = load_data(testfile)