Пример #1
0
def train_model(model, train_loader, test_loader, device, args):
    model = model.to(device)
    loss_list = []
    optimizer = optim.Adam(model.parameters(), lr=args.lr, betas=(0.5, 0.999))
    for epoch in range(1, args.epochs + 1):
        train(model, train_loader, optimizer, device, epoch, args)
        test_rec_loss, test_reg_loss, test_loss = test(model, test_loader,
                                                       device, args)
        loss_list.append([test_rec_loss, test_reg_loss, test_loss])
        if epoch % args.landmark_interval == 0:
            evaluation.interpolation_2d(model,
                                        test_loader,
                                        device,
                                        epoch,
                                        args,
                                        prefix='wae')
            evaluation.sampling(model,
                                device,
                                epoch,
                                args,
                                prior=None,
                                prefix='wae')
            evaluation.reconstruction(model,
                                      test_loader,
                                      device,
                                      epoch,
                                      args,
                                      prefix='wae')
    return loss_list
Пример #2
0
def train_model(model, prior, train_loader, test_loader, device, args):
    model = model.to(device)
    prior = prior.to(device)
    loss_list = []
    optimizer = optim.Adam(list(model.parameters()) + list(prior.parameters()), lr=1e-4)
    for epoch in range(1, args.epochs + 1):
        train(model, prior, train_loader, optimizer, device, epoch, args)
        test_rec_loss, test_reg_loss, test_loss = test(model, prior, test_loader, device, args)
        loss_list.append([test_rec_loss, test_reg_loss, test_loss])
        if epoch % args.landmark_interval == 0:
            evaluation.interpolation_2d(model, test_loader, device, epoch, args, prefix='vampprior')
            prior.eval()
            model.eval()
            x = prior()
            _, _, z_p_mean, z_p_logvar = model(x)
            print(z_p_mean.size())
            evaluation.sampling(model, device, epoch, args, prior=[z_p_mean, z_p_logvar], prefix='vampprior')
            evaluation.reconstruction(model, test_loader, device, epoch, args, prefix='vampprior')
    return loss_list
Пример #3
0
                         model_type=args.model_type)
    else:
        args.x_dim = int(64 * 64)
        args.z_dim = 64
        args.nc = 3
        model = AE_CelebA(z_dim=args.z_dim,
                          nc=args.nc,
                          model_type=args.model_type)

    src_loaders = load_datasets(args=args)
    loss = wae.train_model(model, src_loaders['train'], src_loaders['val'],
                           device, args)

    # conditional generation
    model.eval()
    evaluation.sampling(model, device, args.epochs, args, prefix='wae', nrow=4)

    # t-sne visualization
    if args.source_data == 'MNIST':
        evaluation.visualization_tsne(model,
                                      src_loaders['val'],
                                      device,
                                      args,
                                      prefix='wae')
    else:
        evaluation.visualization_tsne2(model,
                                       src_loaders['val'],
                                       device,
                                       args,
                                       prefix='wae')
Пример #4
0
        loss = prae.train_model(model, prior, src_loaders['train'],
                                src_loaders['val'], device, args)
    else:
        loss = drae.train_model(model, prior, src_loaders['train'],
                                src_loaders['val'], device, args)

    # conditional generation
    prior.eval()
    model.eval()
    z_p_mean, z_p_logvar = prior()
    prior_list = [z_p_mean, z_p_logvar]
    for i in range(args.K):
        evaluation.sampling(
            model,
            device,
            i + 1,
            args,
            prefix='rae',
            prior=[z_p_mean[i, :].unsqueeze(0), z_p_logvar[i, :].unsqueeze(0)],
            nrow=4)

    # t-sne visualization
    if args.source_data == 'MNIST':
        evaluation.visualization_tsne(model,
                                      src_loaders['val'],
                                      device,
                                      args,
                                      prefix='rae',
                                      prior=prior_list)
    else:
        evaluation.visualization_tsne2(model,
                                       src_loaders['val'],