def train(self): if not os.path.exists(self.output_dir): os.makedirs(self.output_dir) # logger.info(f'Fold {split_index + 1}') train_dataloader, eval_dataloader, train_examples, eval_examples = self.create_dataloader( ) num_train_optimization_steps = self.train_steps # Prepare model config = BertConfig.from_pretrained(self.model_name_or_path) model = BertForTokenClassification.from_pretrained( self.model_name_or_path, self.args, config=config) model.to(self.device) model.train() # Prepare optimizer param_optimizer = list(model.named_parameters()) param_optimizer = [n for n in param_optimizer] no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [{ 'params': [ p for n, p in param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': self.weight_decay }, { 'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = AdamW(optimizer_grouped_parameters, lr=self.learning_rate, eps=self.adam_epsilon) scheduler = WarmupLinearSchedule(optimizer, warmup_steps=self.warmup_steps, t_total=self.train_steps) global_step = 0 logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_examples)) logger.info(" Batch size = %d", self.train_batch_size) logger.info(" Num steps = %d", num_train_optimization_steps) best_acc = 0 best_MRR = 0 tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 train_dataloader = cycle(train_dataloader) for step in range(num_train_optimization_steps): batch = next(train_dataloader) batch = tuple(t.to(self.device) for t in batch) input_ids, input_mask, segment_ids, label_domain, label_dependcy = batch loss_domain, loss_dependcy = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, label_domain=label_domain, label_dependcy=label_dependcy) loss = loss_domain + loss_dependcy tr_loss += loss.item() train_loss = round(tr_loss / (nb_tr_steps + 1), 4) nb_tr_examples += input_ids.size(0) nb_tr_steps += 1 loss.backward() if (nb_tr_steps + 1) % self.gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() scheduler.step() global_step += 1 if (step + 1) % (self.eval_steps * self.gradient_accumulation_steps) == 0: tr_loss = 0 nb_tr_examples, nb_tr_steps = 0, 0 logger.info("***** Report result *****") logger.info(" %s = %s", 'global_step', str(global_step)) logger.info(" %s = %s", 'train loss', str(train_loss)) if self.do_eval and (step + 1) % ( self.eval_steps * self.gradient_accumulation_steps) == 0: for file in ['dev.csv']: inference_labels = [] gold_labels_domain = [] gold_labels_dependcy = [] inference_logits = [] scores_domain = [] scores_dependcy = [] ID = [x.guid for x in eval_examples] logger.info("***** Running evaluation *****") logger.info(" Num examples = %d", len(eval_examples)) logger.info(" Batch size = %d", self.eval_batch_size) model.eval() eval_loss_domain, eval_loss_dependcy, eval_accuracy_domain, eval_accuracy_dependcy = 0, 0, 0, 0 nb_eval_steps, nb_eval_examples = 0, 0 for input_ids, input_mask, segment_ids, label_domain, label_dependcy in eval_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) label_domain = label_domain.to(self.device) label_dependcy = label_dependcy.to(self.device) with torch.no_grad(): batch_eval_loss_domain, batch_eval_loss_dependcy = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, label_domain=label_domain, label_dependcy=label_dependcy) logits_domain, logits_dependcy = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask) logits_domain = logits_domain.view( -1, self.num_labels_domain).detach().cpu().numpy() logits_dependcy = logits_dependcy.view( -1, self.num_labels_dependcy).detach().cpu().numpy() label_domain = label_domain.view(-1).to('cpu').numpy() label_dependcy = label_dependcy.view(-1).to( 'cpu').numpy() scores_domain.append(logits_domain) scores_dependcy.append(logits_dependcy) gold_labels_domain.append(label_domain) gold_labels_dependcy.append(label_dependcy) eval_loss_domain += batch_eval_loss_domain.mean().item( ) eval_loss_dependcy += batch_eval_loss_dependcy.mean( ).item() nb_eval_examples += input_ids.size(0) nb_eval_steps += 1 gold_labels_domain = np.concatenate(gold_labels_domain, 0) gold_labels_dependcy = np.concatenate( gold_labels_dependcy, 0) scores_domain = np.concatenate(scores_domain, 0) scores_dependcy = np.concatenate(scores_dependcy, 0) model.train() eval_loss_domain = eval_loss_domain / nb_eval_steps eval_loss_dependcy = eval_loss_dependcy / nb_eval_steps eval_accuracy_domain = accuracyF1(scores_domain, gold_labels_domain, mode='domain') eval_accuracy_dependcy = accuracyF1(scores_dependcy, gold_labels_dependcy, mode='dependcy') print('eval_F1_domain', eval_accuracy_domain, 'eval_F1_dependcy', eval_accuracy_dependcy, 'global_step', global_step, 'loss', train_loss) result = { 'eval_loss_domain': eval_loss_domain, 'eval_loss_dependcy': eval_loss_dependcy, 'eval_F1_domain': eval_accuracy_domain, 'eval_F1_dependcy': eval_accuracy_dependcy, 'global_step': global_step, 'loss': train_loss } output_eval_file = os.path.join(self.output_dir, "eval_results.txt") with open(output_eval_file, "a") as writer: for key in sorted(result.keys()): logger.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) writer.write('*' * 80) writer.write('\n') if eval_accuracy_domain > best_acc: print("=" * 80) print("Best F1", eval_accuracy_domain) print("Saving Model......") # best_acc = eval_accuracy best_acc = eval_accuracy_domain # Save a trained model model_to_save = model.module if hasattr( model, 'module') else model output_model_file = os.path.join( self.output_dir, "pytorch_model.bin") torch.save(model_to_save.state_dict(), output_model_file) print("=" * 80) else: print("=" * 80)
def test_eval(self): data = DATAMultiWOZ(debug=False, data_dir=self.data_dir) test_examples = data.read_examples( os.path.join(self.data_dir, 'test.json')) print('eval_examples的数量', len(test_examples)) ID = [x.guid for x in test_examples] test_features = data.convert_examples_to_features( test_examples, self.tokenizer, self.max_seq_length) all_input_ids = torch.tensor(data.select_field(test_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(data.select_field( test_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(data.select_field( test_features, 'segment_ids'), dtype=torch.long) eval_labels_domain = torch.tensor( [f.labels_domain for f in test_features], dtype=torch.long) eval_labels_dependcy = torch.tensor( [f.labels_dependcy for f in test_features], dtype=torch.long) test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, eval_labels_domain, eval_labels_dependcy) # Run prediction for full data test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=self.eval_batch_size) config = BertConfig.from_pretrained(self.model_name_or_path) model = BertForTokenClassification.from_pretrained(os.path.join( self.output_dir, "pytorch_model.bin"), self.args, config=config) model.to(self.device) model.eval() inference_labels = [] gold_labels_domain = [] gold_labels_dependcy = [] scores_domain = [] scores_dependcy = [] for input_ids, input_mask, segment_ids, label_domain, label_dependcy in test_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) label_domain = label_domain.to(self.device) label_dependcy = label_dependcy.to(self.device) with torch.no_grad(): logits_domain = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, ).view(-1, self.num_labels_domain).detach().cpu().numpy() logits_dependcy = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, ).view(-1, self.num_labels_dependcy).detach().cpu().numpy() label_domain = label_domain.view(-1).to('cpu').numpy() label_dependcy = label_dependcy.view(-1).to('cpu').numpy() scores_domain.append(logits_domain) scores_dependcy.append(logits_dependcy) gold_labels_domain.append(label_domain) gold_labels_dependcy.append(label_dependcy) gold_labels_domain = np.concatenate(gold_labels_domain, 0) gold_labels_depandcy = np.concatenate(gold_labels_dependcy, 0) scores_domain = np.concatenate(scores_domain, 0) scores_dependcy = np.concatenate(scores_dependcy, 0) # 计算评价指标 assert scores_domain.shape[0] == scores_dependcy.shape[ 0] == gold_labels_domain.shape[0] == gold_labels_depandcy.shape[0] eval_accuracy_domain = accuracyF1(scores_domain, gold_labels_domain, mode='domain', report=True) eval_accuracy_dependcy = accuracyF1(scores_dependcy, gold_labels_dependcy, mode='depency', report=True) print('eval_accuracy_domain', eval_accuracy_domain) print('eval_accuracy_dependcy', eval_accuracy_dependcy)
def test_eval(self): data = DATAMultiWOZ( debug=False, data_dir=self.data_dir ) test_examples = data.read_examples(os.path.join(self.data_dir, 'test.tsv')) print('eval_examples的数量', len(test_examples)) ID = [x.guid for x in test_examples] test_features = data.convert_examples_to_features(test_examples, self.tokenizer, self.max_seq_length) all_input_ids = torch.tensor(data.select_field(test_features, 'input_ids'), dtype=torch.long) all_input_mask = torch.tensor(data.select_field(test_features, 'input_mask'), dtype=torch.long) all_segment_ids = torch.tensor(data.select_field(test_features, 'segment_ids'), dtype=torch.long) all_utterance_mask = torch.tensor(data.select_field(test_features, 'utterance_mask'), dtype=torch.long) all_response_mask = torch.tensor(data.select_field(test_features, 'response_mask'), dtype=torch.long) all_history_mask = torch.tensor(data.select_field(test_features, 'history_mask'), dtype=torch.long) all_label = torch.tensor([f.label for f in test_features], dtype=torch.long) test_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,all_utterance_mask,all_response_mask,all_history_mask, all_label) # Run prediction for full data test_sampler = SequentialSampler(test_data) test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=self.eval_batch_size) config = BertConfig.from_pretrained(self.model_name_or_path, num_labels=self.num_labels) model = BertForSequenceClassification.from_pretrained( os.path.join(self.output_dir, "pytorch_model.bin"), self.args, config=config) model.to(self.device) model.eval() inference_labels = [] gold_labels = [] scores = [] for input_ids, input_mask, segment_ids, label_ids in test_dataloader: input_ids = input_ids.to(self.device) input_mask = input_mask.to(self.device) segment_ids = segment_ids.to(self.device) label_ids = label_ids.to(self.device) with torch.no_grad(): logits = model( input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, ).detach().cpu().numpy() label_ids = label_ids.to('cpu').numpy() scores.append(logits) inference_labels.append(np.argmax(logits, axis=1)) gold_labels.append(label_ids) gold_labels = np.concatenate(gold_labels, 0) scores = np.concatenate(scores, 0) logits = np.concatenate(inference_labels, 0) # 计算评价指标 assert len(ID) == scores.shape[0]== scores.shape[0] eval_accuracy = accuracyF1(logits, gold_labels) # eval_DOUBAN_MRR,eval_DOUBAN_mrr,eval_DOUBAN_MAP,eval_Precision1 = compute_DOUBAN(ID,scores,gold_labels) # print( # 'eval_MRR',eval_DOUBAN_MRR,eval_DOUBAN_mrr, # 'eval_MAP',eval_DOUBAN_MAP, # 'eval_Precision1',eval_Precision1) print('F1',eval_accuracy)