def model(dataReader):
    num_input = 2
    num_hidden = 3
    num_output = 1

    max_epoch = 1000
    batch_size = 5
    learning_rate = 0.1

    params = HyperParameters_4_1(learning_rate,
                                 max_epoch,
                                 batch_size,
                                 net_type=NetType.BinaryClassifier,
                                 init_method=InitialMethod.Xavier,
                                 stopper=Stopper(StopCondition.StopLoss, 0.02))

    net = NeuralNet_4_1(params, "Arc")

    fc1 = FcLayer_1_1(num_input, num_hidden, params)
    net.add_layer(fc1, "fc1")
    sigmoid1 = ActivationLayer(Sigmoid())
    net.add_layer(sigmoid1, "sigmoid1")

    fc2 = FcLayer_1_1(num_hidden, num_output, params)
    net.add_layer(fc2, "fc2")
    logistic = ClassificationLayer(Logistic())
    net.add_layer(logistic, "logistic")

    net.train(dataReader, checkpoint=10, need_test=True)
    return net
Пример #2
0
def model():
    dr = LoadData()

    num_input = dr.num_feature
    num_hidden1 = 64
    num_hidden2 = 64
    num_hidden3 = 32
    num_hidden4 = 16
    num_output = 1

    max_epoch = 100
    batch_size = 16
    learning_rate = 0.1
    eps = 1e-3

    params = HyperParameters40(learning_rate,
                               max_epoch,
                               batch_size,
                               eps,
                               net_type=NetType.BinaryClassifier,
                               init_method=InitialMethod.Xavier)

    net = NeuralNet40(params, "Income")

    fc1 = FcLayer(num_input, num_hidden1, params)
    net.add_layer(fc1, "fc1")
    a1 = ActivatorLayer(Relu())
    net.add_layer(a1, "relu1")

    fc2 = FcLayer(num_hidden1, num_hidden2, params)
    net.add_layer(fc2, "fc2")
    a2 = ActivatorLayer(Relu())
    net.add_layer(a2, "relu2")

    fc3 = FcLayer(num_hidden2, num_hidden3, params)
    net.add_layer(fc3, "fc3")
    a3 = ActivatorLayer(Relu())
    net.add_layer(a3, "relu3")

    fc4 = FcLayer(num_hidden3, num_hidden4, params)
    net.add_layer(fc4, "fc4")
    a4 = ActivatorLayer(Relu())
    net.add_layer(a4, "relu4")

    fc5 = FcLayer(num_hidden4, num_output, params)
    net.add_layer(fc5, "fc5")
    logistic = ClassificationLayer(Logistic())
    net.add_layer(logistic, "logistic")

    #net.load_parameters()

    net.train(dr, checkpoint=10, need_test=True)
    net.ShowLossHistory("epoch")
Пример #3
0
def model(dr):
    num_input = dr.num_feature
    num_hidden1 = 32
    num_hidden2 = 16
    num_hidden3 = 8
    num_hidden4 = 4
    num_output = 1

    max_epoch = 100
    batch_size = 16
    learning_rate = 0.1

    params = HyperParameters_4_0(learning_rate,
                                 max_epoch,
                                 batch_size,
                                 net_type=NetType.BinaryClassifier,
                                 init_method=InitialMethod.MSRA,
                                 stopper=Stopper(StopCondition.StopDiff, 1e-3))

    net = NeuralNet_4_0(params, "Income")

    fc1 = FcLayer_1_0(num_input, num_hidden1, params)
    net.add_layer(fc1, "fc1")
    a1 = ActivationLayer(Relu())
    net.add_layer(a1, "relu1")

    fc2 = FcLayer_1_0(num_hidden1, num_hidden2, params)
    net.add_layer(fc2, "fc2")
    a2 = ActivationLayer(Relu())
    net.add_layer(a2, "relu2")

    fc3 = FcLayer_1_0(num_hidden2, num_hidden3, params)
    net.add_layer(fc3, "fc3")
    a3 = ActivationLayer(Relu())
    net.add_layer(a3, "relu3")

    fc4 = FcLayer_1_0(num_hidden3, num_hidden4, params)
    net.add_layer(fc4, "fc4")
    a4 = ActivationLayer(Relu())
    net.add_layer(a4, "relu4")

    fc5 = FcLayer_1_0(num_hidden4, num_output, params)
    net.add_layer(fc5, "fc5")
    logistic = ClassificationLayer(Logistic())
    net.add_layer(logistic, "logistic")

    net.train(dr, checkpoint=1, need_test=True)
    return net
Пример #4
0
def model_sigmoid(num_input, num_hidden, num_output, hp):
    net = NeuralNet_4_1(hp, "chinabank_sigmoid")

    fc1 = FcLayer_1_1(num_input, num_hidden, hp)
    net.add_layer(fc1, "fc1")
    s1 = ActivationLayer(Sigmoid())
    net.add_layer(s1, "Sigmoid1")

    fc2 = FcLayer_1_1(num_hidden, num_output, hp)
    net.add_layer(fc2, "fc2")
    softmax1 = ClassificationLayer(Softmax())
    net.add_layer(softmax1, "softmax1")

    net.train(dataReader, checkpoint=50, need_test=True)
    net.ShowLossHistory()

    ShowResult(net, hp.toString())
    ShowData(dataReader)
Пример #5
0
def model_relu(num_input, num_hidden, num_output, hp):
    net = NeuralNet40(hp, "chinabank_relu")

    fc1 = FcLayer(num_input, num_hidden, hp)
    net.add_layer(fc1, "fc1")
    r1 = ActivatorLayer(Relu())
    net.add_layer(r1, "Relu1")

    fc2 = FcLayer(num_hidden, num_output, hp)
    net.add_layer(fc2, "fc2")
    softmax1 = ClassificationLayer(Softmax())
    net.add_layer(softmax1, "softmax1")

    net.train(dataReader, checkpoint=50, need_test=True)
    net.ShowLossHistory("epoch")

    ShowResult(net, hp.toString())
    ShowData(dataReader)
def Net(subfolder,
        dataReader,
        num_input,
        num_hidden,
        num_output,
        params,
        show_history=True):
    net = NeuralNet_4_2(params, subfolder)

    fc1 = FcLayer_2_0(num_input, num_hidden, params)
    net.add_layer(fc1, "fc1")
    relu1 = ActivatorLayer(Relu())
    net.add_layer(relu1, "relu1")

    fc2 = FcLayer_2_0(num_hidden, num_hidden, params)
    net.add_layer(fc2, "fc2")
    relu2 = ActivatorLayer(Relu())
    net.add_layer(relu2, "relu2")

    fc3 = FcLayer_2_0(num_hidden, num_hidden, params)
    net.add_layer(fc3, "fc3")
    relu3 = ActivatorLayer(Relu())
    net.add_layer(relu3, "relu3")

    fc4 = FcLayer_2_0(num_hidden, num_hidden, params)
    net.add_layer(fc4, "fc4")
    relu4 = ActivatorLayer(Relu())
    net.add_layer(relu4, "relu4")

    fc5 = FcLayer_2_0(num_hidden, num_output, params)
    net.add_layer(fc5, "fc5")
    softmax = ClassificationLayer(Softmax())
    net.add_layer(softmax, "softmax")

    net.train(dataReader, checkpoint=1, need_test=True)
    if show_history:
        net.ShowLossHistory(XCoordinate.Iteration)

    return net
def Net(dataReader,
        num_input,
        num_hidden,
        num_output,
        params,
        show_history=True):
    net = NeuralNet41(params, "mnist_overfitting")

    fc1 = FcLayer(num_input, num_hidden, params)
    net.add_layer(fc1, "fc1")
    relu1 = ActivatorLayer(Relu())
    net.add_layer(relu1, "relu1")

    fc2 = FcLayer(num_hidden, num_hidden, params)
    net.add_layer(fc2, "fc2")
    relu2 = ActivatorLayer(Relu())
    net.add_layer(relu2, "relu2")

    fc3 = FcLayer(num_hidden, num_hidden, params)
    net.add_layer(fc3, "fc3")
    relu3 = ActivatorLayer(Relu())
    net.add_layer(relu3, "relu3")

    fc4 = FcLayer(num_hidden, num_hidden, params)
    net.add_layer(fc4, "fc4")
    relu4 = ActivatorLayer(Relu())
    net.add_layer(relu4, "relu4")

    fc5 = FcLayer(num_hidden, num_output, params)
    net.add_layer(fc5, "fc5")
    softmax = ClassificationLayer(Softmax())
    net.add_layer(softmax, "softmax")

    net.train(dataReader, checkpoint=1, need_test=True)
    if show_history:
        net.ShowLossHistory()

    return net
Пример #8
0
    max_epoch = 10000
    batch_size = 5
    learning_rate = 0.1
    eps = 1e-3

    params = HyperParameters40(learning_rate,
                               max_epoch,
                               batch_size,
                               eps,
                               net_type=NetType.BinaryClassifier,
                               init_method=InitialMethod.Xavier)

    net = NeuralNet40(params, "Arc")

    fc1 = FcLayer(num_input, num_hidden, params)
    net.add_layer(fc1, "fc1")
    sigmoid1 = ActivatorLayer(Sigmoid())
    net.add_layer(sigmoid1, "sigmoid1")

    fc2 = FcLayer(num_hidden, num_output, params)
    net.add_layer(fc2, "fc2")
    logistic = ClassificationLayer(Logistic())
    net.add_layer(logistic, "logistic")

    #net.load_parameters()

    net.train(dataReader, checkpoint=10, need_test=True)
    net.ShowLossHistory("epoch")
    ShowResult2D(net, dataReader)
Пример #9
0
    fc1 = FcLayer_1_0(num_input, num_hidden1, params)
    net.add_layer(fc1, "fc1")
    r1 = ActivationLayer(Relu())
    net.add_layer(r1, "r1")

    fc2 = FcLayer_1_0(num_hidden1, num_hidden2, params)
    net.add_layer(fc2, "fc2")
    r2 = ActivationLayer(Relu())
    net.add_layer(r2, "r2")

    fc3 = FcLayer_1_0(num_hidden2, num_hidden3, params)
    net.add_layer(fc3, "fc3")
    r3 = ActivationLayer(Relu())
    net.add_layer(r3, "r3")

    fc4 = FcLayer_1_0(num_hidden3, num_hidden4, params)
    net.add_layer(fc4, "fc4")
    r4 = ActivationLayer(Relu())
    net.add_layer(r4, "r4")

    fc5 = FcLayer_1_0(num_hidden4, num_output, params)
    net.add_layer(fc5, "fc5")
    softmax = ClassificationLayer(Softmax())
    net.add_layer(softmax, "softmax")

    #net.load_parameters()

    net.train(dataReader, checkpoint=0.1, need_test=True)

    net.ShowLossHistory(xcoord=XCoordinate.Iteration)
Пример #10
0
def model():
    dr = LoadData()

    num_input = dr.num_feature
    num_hidden1 = 128
    num_hidden2 = 64
    num_hidden3 = 32
    num_hidden4 = 16
    num_hidden5 = 8
    num_hidden6 = 4
    num_output = 1

    max_epoch = 100
    batch_size = 16
    learning_rate = 0.1

    params = HyperParameters_4_0(learning_rate,
                                 max_epoch,
                                 batch_size,
                                 net_type=NetType.BinaryClassifier,
                                 init_method=InitialMethod.Xavier,
                                 stopper=Stopper(StopCondition.StopDiff, 1e-3))

    net = NeuralNet_4_0(params, "Income")

    fc1 = FcLayer_1_0(num_input, num_hidden1, params)
    net.add_layer(fc1, "fc1")
    a1 = ActivationLayer(Relu())
    net.add_layer(a1, "relu1")

    fc2 = FcLayer_1_0(num_hidden1, num_hidden2, params)
    net.add_layer(fc2, "fc2")
    a2 = ActivationLayer(Relu())
    net.add_layer(a2, "relu2")

    fc3 = FcLayer_1_0(num_hidden2, num_hidden3, params)
    net.add_layer(fc3, "fc3")
    a3 = ActivationLayer(Relu())
    net.add_layer(a3, "relu3")

    fc4 = FcLayer_1_0(num_hidden3, num_hidden4, params)
    net.add_layer(fc4, "fc4")
    a4 = ActivationLayer(Relu())
    net.add_layer(a4, "relu4")

    fc5 = FcLayer_1_0(num_hidden4, num_hidden5, params)
    net.add_layer(fc5, "fc5")
    a5 = ActivationLayer(Relu())
    net.add_layer(a5, "relu5")

    fc6 = FcLayer_1_0(num_hidden5, num_hidden6, params)
    net.add_layer(fc6, "fc")
    a6 = ActivationLayer(Relu())
    net.add_layer(a6, "relu6")

    fc7 = FcLayer_1_0(num_hidden6, num_output, params)
    net.add_layer(fc7, "fc7")
    logistic = ClassificationLayer(Logistic())
    net.add_layer(logistic, "logistic")

    #net.load_parameters()

    net.train(dr, checkpoint=1, need_test=True)
    net.ShowLossHistory()