Пример #1
0
    def __init__(self,
                 num_flights=50,
                 num_airlines=5,
                 triples=True,
                 reduction_factor=100,
                 discretisation_size=50,
                 custom_schedule=None,
                 df=None,
                 xp_problem=None):
        scheduleTypes = scheduleMaker.schedule_types(show=False)
        # init variables, schedule and cost function
        if custom_schedule is None and df is None:
            schedule_df = scheduleMaker.df_maker(num_flights,
                                                 num_airlines,
                                                 distribution=scheduleTypes[0])
        else:
            if df is None:
                schedule_df = scheduleMaker.df_maker(custom=custom_schedule)
            else:
                schedule_df = df

        self.reductionFactor = reduction_factor
        self.costFun = CostFuns().costFun["realistic"]
        self.flightTypeDict = CostFuns().flightTypeDict
        self.discretisationSize = discretisation_size

        if xp_problem is None:
            self.xp_problem = xp.problem()
        else:
            self.xp_problem = xp_problem
        with HiddenPrints():
            self.xp_problem.reset()

        # internal optimisation step
        udpp_model_xp = udppModel.UDPPmodel(schedule_df, self.costFun,
                                            self.xp_problem)
        udpp_model_xp.run()

        with HiddenPrints():
            self.xp_problem.reset()

        super().__init__(udpp_model_xp.get_new_df(),
                         self.costFun,
                         triples=triples,
                         xp_problem=self.xp_problem)
        flights = [flight for flight in self.flights]

        for flight in self.flights:
            flights[flight.slot.index] = flight
        self.flights = flights

        self.set_flights_input_net(self.discretisationSize)

        self.offerChecker = checkOffer.OfferChecker(self.scheduleMatrix)
        _, self.matches_vect = self.offerChecker.all_couples_check(
            self.airlines_pairs)
        self.reverseAirDict = dict(
            zip(list(self.airDict.keys()), list(self.airDict.values())))
Пример #2
0
def make_batch(batchSize):
    inputs = []
    outputs = []
    initialCosts = []
    airlines = []
    UDPPmodels = []

    for run in range(batchSize):
        df = df_maker(custom=[6, 4, 3, 7, 2, 8])
        df["margins"] = [
            random.choice(range(10, 50)) for i in range(df.shape[0])
        ]
        costFun = CostFuns().costFun["linear"]

        udMod = udppModel.UDPPmodel(df, costFun)

        UDPPmodels.append(udMod)

        airline = [air for air in udMod.airlines if air.name == "A"][0]
        airlines.append(airline)

        initialCosts.append(udMod.compute_costs(airline.flights, "initial"))

        with HiddenPrints():
            UDPPlocalOpt(airline, udMod.slots)

        inputVect = make_network_input(airline)
        outputVect = make_network_output(airline)
        inputs.append(inputVect)
        outputs.append(outputVect)

    return inputs, outputs, airlines, UDPPmodels
import numpy as np
import time
import pandas as pd

airline: IstopAirline
flight: IstopFlight

np.random.seed(0)
scheduleTypes = scheduleMaker.schedule_types(show=True)

# init variables, chedule and cost function
num_flights = 3
num_airlines = 4
# schedule_df = scheduleMaker.df_maker(num_flights, num_airlines, distribution=scheduleTypes[0])

schedule_df = scheduleMaker.df_maker(
    custom=[num_flights for _ in range(num_airlines)])
schedule_df.to_csv("custom_" + str(num_airlines) + "_" + str(num_flights) +
                   ".csv")
# schedule_df_1 = pd.read_csv("custom_5_5.csv")
# print(schedule_df["type"]==schedule_df_1["type"])
cost_fun = CostFuns().costFun["realistic"]

# create model
# rl_model = old_rl.Rl(schedule_df, cost_fun, triples=True, parallel=False)
#
#
# t = time.perf_counter()
# couple_matches = rl_model.all_couples_matches()
# print("time to get all couple matches: ", time.perf_counter() - t)
# print(len(couple_matches), " convenient pairs found", "\n")
#
Пример #4
0
    This model optimise the total cost constraining all airline to don't have negative impact
    
UDPP = full udpp internal (not exactly) optimisation

ISTOP = offer provider

"""

np.random.seed(0)
scheduleType = scheduleMaker.schedule_types(show=True)

num_flights = 50
num_airlines = 9

for i in range(0, 1):
    df = scheduleMaker.df_maker(num_flights, num_airlines, distribution=scheduleType[3])


    df_NNB = df.copy(deep=True)
    df_UDPP = df_NNB.copy(deep=True)
    costFun = CostFuns().costFun["realistic"]

    print("max from FPFS")
    max_model = nnBound.NNBoundModel(df_NNB, costFun)
    max_model.run()
    max_model.print_performance()
    max_model.m.write("problem", "lp")

    print("UDPP Opt from FPFS")
    udpp_model_xp = udppModel.UDPPmodel(df_UDPP, costFun)
    udpp_model_xp.run()
Пример #5
0
from ModelStructure.ScheduleMaker import scheduleMaker
from UDPP.udppModel import UDPPmodel
from ModelStructure.Costs.costFunctionDict import CostFuns
import pandas as pd

final_df: pd.DataFrame

costFun = CostFuns().costFun["step"]

final_df = pd.DataFrame(columns=["instance", "airline", "margins", "priority", "eta", "slot", "new slot"])
scheduleType = scheduleMaker.schedule_types(show=False)

for i in range(5000):
    df = scheduleMaker.df_maker(50, 4, distribution=scheduleType[0])
    udMod = UDPPmodel(df, costFun)
    udMod.run(optimised=True)
    for airline in udMod.airlines:
        for flight in airline.flights:
            to_append = [i, flight.airline, flight.margin, flight.priority, flight.eta, flight.slot.time,
                         flight.newSlot.time]
            a_series = pd.Series(to_append, index=final_df.columns)
            final_df = final_df.append(a_series, ignore_index=True)

    if i % 50 ==0:
        print(i)

# standardisation
for col in final_df.columns[2:-1]:
    final_df[col] = (final_df[col] - final_df[col].mean()) / final_df[col].std()

final_df.to_csv("50_4_increase.csv")
Пример #6
0
instance = instanceMaker.Instance(num_flights=num_flights,
                                  num_airlines=num_airlines)
mat = instance.get_schedule_tensor()

print(instance.airDict)
print(instance.flightTypeDict)

# for i in range(mat.shape[0]):
#     flight = instance.flights[i]
#     print(flight.airline, flight.type, instance.flightDict[flight.type], flight, flight.slot.time - flight.eta)
#     print(mat[i])

from Old_RL import old_rl
import pandas as pd

df = scheduleMaker.df_maker(custom=[5, 5, 5, 5])
mod = old_rl.Rl(df, CostFuns().costFun["realistic"])
dfSchedules = mod.udppDf
dfSchedules["instance"] = [0 for _ in range(20)]
dfSchedMat = pd.DataFrame(mod.scheduleMatrix.T)
dfSchedMat["instance"] = [0 for _ in range(22)]

for i in range(1, 201):
    df = scheduleMaker.df_maker(custom=[5, 5, 5, 5])
    mod = old_rl.Rl(df, CostFuns().costFun["realistic"])
    dfS = mod.udppDf
    dfS["instance"] = [i for _ in range(20)]
    dfSM = pd.DataFrame(mod.scheduleMatrix.T)
    dfSM["instance"] = [i for _ in range(22)]

    dfSchedules = dfSchedules.append(dfS, ignore_index=True)
Пример #7
0
# udMod.run(optimised=True)
# udMod.print_performance()
#
#
# output = net.prioritisation(make_network_input(airline))
# prValues, times = make_prioritisation(output)
# i = 0
# for f in airline.flights:
#     print(f.slot, f.priorityValue, f.newSlot.time, prValues[i], times[i])
#     i += 1

net.load_weights("netWeights.pt")

for i in range(10):
    print("\n\n\n", "run ", i)
    df = scheduleMaker.df_maker(custom=[6, 4, 3, 7, 2, 8])
    df["margins"] = [random.choice(range(10, 50)) for i in range(df.shape[0])]
    df1 = df.copy(deep=True)
    udMod = UDPPmodel(df, costFun)
    udMod.run(optimised=True)
    udMod.print_performance()
    print(udMod.solution[udMod.solution["airline"] == "A"])
    airline_opt = [air for air in udMod.airlines if air.name == "A"][0]

    udMod = UDPPmodel(df1, costFun)
    airline = [air for air in udMod.airlines if air.name == "A"][0]
    output = net.prioritisation(make_network_input(airline))
    prValues, times = make_prioritisation(output)
    print(airline_opt.numFlights, airline.numFlights, len(prValues))
    j = 0
    k = 0