Пример #1
0
def rastrigins_minimization(population_size, max_generations,
                            k_tournament_participants, crossover_probability,
                            mutation_probability, n_genes_mutated):

    print(colored('\nInitial Population...\n', attrs=['bold']))

    initial_population = population(population_size)
    population_fitness = fitness(initial_population)

    avg = []
    best = []

    avg_fitness = avg_performance(population_fitness)
    best_fitness = best_performance(population_fitness)

    avg.append(avg_fitness)
    best.append(best_fitness)

    generations = 0

    while (generations <
           max_generations) and (minimum_found(population_fitness) is False):
        print(colored(f'\nGeneration {generations+1}...\n', attrs=['bold']))

        new_population = []

        for i in range(0, population_size):
            parents_selected = selection(population_fitness,
                                         k_tournament_participants)

            if crossover_probability >= cloning_probability():
                child = single_point_crossover(parents_selected)
            else:
                child = cloning_best_parent(parents_selected)

            if mutation_chance(mutation_probability):
                mutation(child, n_genes_mutated)

            new_population.append(child[:])

        population_fitness = fitness(new_population)
        generations += 1

        avg_fitness = avg_performance(population_fitness)
        best_fitness = best_performance(population_fitness)

        avg.append(avg_fitness)
        best.append(best_fitness)

    return minimum(population_fitness), generations, avg, best
pop = geneEncoding(pop_size, chrom_length)  # 初始化二进制种群基因编码

for i in range(iterations):
    # print('NO. ', i + 1)
    fit_value = calobjValue(pop, chrom_length, max_value)  # 适应度计算
    # print('初始', fit_value)
    # fit_value = calfitValue(obj_value)  # 筛选淘汰
    best_indiviual, best_fit = best(pop, fit_value)  # 最优解集
    best_indiviual_ten = decoding(best_indiviual, chrom_length,
                                  max_value)  # 最优解集进制转换
    results.append([best_indiviual_ten, best_fit])
    pop, fit_value = selection(pop, fit_value, pop_size, chrom_length,
                               max_value)
    # print('选择', fit_value)
    pop, fit_value = crossover(pop, pc, fit_value, chrom_length, max_value)
    # print('交叉', fit_value)
    pop, fit_value = mutation(pop, pm, chrom_length, max_value)
    # print('变异', fit_value)

print(results[iterations - 1][1])

X = []
Y = []
for i in range(iterations):
    X.append(i)
    Y.append(results[i][1])

plt.plot(X, Y)
plt.show()
Пример #3
0
CR = sys.argv[5]
iteration = sys.argv[6]

Ld = float(Ud) * (-1)
start = time.time()
# Initial 
populationDataOriginal = np.zeros((int(population), int(dim)))
for eachpopulationData_colum in range(int(population)):
    for eachpopulationData_row in range(int(dim)):
        r = rand.random()
        populationDataOriginal[eachpopulationData_colum][eachpopulationData_row] = ((float(Ud) - Ld) * r) + Ld
populationData = populationDataOriginal.copy() # copy populationDataOriginal to populationData
best = 99999
for eachiteration in range(int(iteration)):
	# Mutation
	mutationData = mutation(populationData, float(F))

	# Crossover
	crossoverData = crossover(populationDataOriginal, mutationData, float(CR))

	# Selection
	selectionData = selection(populationDataOriginal, crossoverData, int(dim))			
	count = []
	for i in range(np.size(selectionData, 0)):
		count.append(fitness(selectionData[i][:], int(dim)))
		if count[i] < best:
			best = count[i]
	print(eachiteration, best)
	# reset
	populationDataOriginal = selectionData.copy()
	populationData = selectionData.copy()
Пример #4
0
def SPSOGA(Task):
    # Initial popution
    particle_swarm_server = []
    particle_swarm_order = []
    for i in range(numberOfParticle):
        particle_server = []
        particle_order = []
        for j in range(len(Task.subTask)):
            particle_server.append(random.randint(0, numberOfServer - 1))
            particle_order.append(j)
        random.shuffle(particle_order)
        particle_swarm_server.append(particle_server)
        particle_swarm_order.append(particle_order)
    # Initial pbest
    pbest_particles_server = particle_swarm_server
    pbest_particles_order = particle_swarm_order
    pbest_energy_cons = []
    for i in range(numberOfParticle):
        pbest_energy_cons.append(
            particle2energy(Task, pbest_particles_server[i],
                            pbest_particles_order[i]))
    # Initial gbest
    gbest_paticle_server = []
    gbest_paticle_order = []
    gbest_energy_cons = 9999999
    for i in range(len(pbest_particles_server)):
        energy_cons = particle2energy(Task, pbest_particles_server[i],
                                      pbest_particles_order[i])
        if energy_cons < gbest_energy_cons:
            gbest_energy_cons = energy_cons
            gbest_paticle_server = pbest_particles_server[i]
            gbest_paticle_order = pbest_particles_order[i]

    for i in range(iterations_max):
        # inertia weight
        w = 0.5
        for j in range(numberOfParticle):
            # inertia
            particle_swarm_server[j], particle_swarm_order[j] = mutation(
                particle_swarm_server[j], particle_swarm_order[j], w)
            # personal cognition
            c_1 = random.random()
            particle_swarm_server[j], particle_swarm_order[j] = crossover(
                particle_swarm_server[j], particle_swarm_order[j],
                pbest_particles_server[j], pbest_particles_order[j], c_1)
            # social cognition
            c_2 = random.random()
            particle_swarm_server[j], particle_swarm_order[j] = crossover(
                particle_swarm_server[j], particle_swarm_order[j],
                gbest_paticle_server, gbest_paticle_order, c_2)
            # update pbest
            energy_cons = particle2energy(Task, pbest_particles_server[j],
                                          pbest_particles_order[j])
            if energy_cons < pbest_energy_cons[j]:
                pbest_energy_cons[j] = energy_cons
                pbest_particles_server = pbest_particles_server[j]
                pbest_particles_order = pbest_particles_order[j]
                # update gbest
                if energy_cons < gbest_energy_cons:
                    gbest_energy_cons = energy_cons
                    gbest_paticle_server = pbest_particles_server[j]
                    gbest_paticle_order = pbest_particles_order[j]
    return gbest_energy_cons
Пример #5
0
                ddr2 = brain_player[j]
                temp = ddr1
                ddr1 = ddr2
                ddr2 = temp
                brain_player[i] = ddr1
                brain_player[j] = ddr2

    #print(brain_player)
    return brain_player, False


found_the_best = False
mr = 0

while True:
    mr, done = get_the_fitness(pops)
    if done:
        break
    new_pops = new_population(mr)
    mutated_pops = mutation(new_pops)
    populated = build_population(mutated_pops)
    pops = populated.make_pop()
    #print(pops)

for i in range(len(mr)):
    if mr[i][0] == 0:
        mr[i] = (100000000, mr[i][1], mr[i][2])

print(mr)
pygame.quit()