def setUp(self): self.mock_model = Mock() self.mock_optimizer = Mock() domain = [{'name': 'var_1', 'type': 'continuous', 'domain': (-5,5), 'dimensionality': 2}] self.space = Design_space(domain, None) self.ei_acquisition = AcquisitionEI(self.mock_model, self.space, self.mock_optimizer)
def test_optimize_without_analytical_gradient_prediction(self): """Test that acquisition function optimize method returns expected optimum without analytical gradient prediction """ expected_optimum_position = [[0, 0]] self.mock_optimizer.optimize.return_value = expected_optimum_position self.mock_model.analytical_gradient_prediction = False self.ei_acquisition = AcquisitionEI(self.mock_model, self.space, self.mock_optimizer) optimum_position = self.ei_acquisition.optimize() assert optimum_position == expected_optimum_position
class TestEIAcquisition(unittest.TestCase): def setUp(self): self.mock_model = Mock() self.mock_optimizer = Mock() domain = [{'name': 'var_1', 'type': 'continuous', 'domain': (-5,5), 'dimensionality': 2}] self.space = Design_space(domain, None) self.ei_acquisition = AcquisitionEI(self.mock_model, self.space, self.mock_optimizer) def test_acquisition_function(self): """Test that acquisition function returns correct weighted acquisition """ self.mock_model.predict.return_value = (1, 3) self.mock_model.get_fmin.return_value = 0.1 weighted_acquisition = self.ei_acquisition.acquisition_function(np.array([2,2])) assert np.isclose(weighted_acquisition, np.array([[-0.79646919], [-0.79646919]])).all() def test_acquisition_function_withGradients(self): """Test that acquisition function with gradients returns correct weight acquisition and gradient """ self.mock_model.predict_withGradients.return_value = (1, 1, 0.1, 0.1) self.mock_model.get_fmin.return_value = 0.1 weighted_acquisition, weighted_gradient = self.ei_acquisition.acquisition_function_withGradients(np.array([2,2])) assert np.isclose(weighted_acquisition, np.array([[-0.0986038],[-0.0986038]])).all() assert np.isclose(weighted_gradient, np.array([[-0.00822768, -0.00822768], [-0.00822768, -0.00822768]])).all() def test_optimize_with_analytical_gradient_prediction(self): """Test that acquisition function optimize method returns expected optimum with analytical gradient prediction """ expected_optimum_position = [[0, 0]] self.mock_optimizer.optimize.return_value = expected_optimum_position self.mock_model.analytical_gradient_prediction = True self.ei_acquisition = AcquisitionEI(self.mock_model, self.space, self.mock_optimizer) optimum_position = self.ei_acquisition.optimize() assert optimum_position == expected_optimum_position def test_optimize_without_analytical_gradient_prediction(self): """Test that acquisition function optimize method returns expected optimum without analytical gradient prediction """ expected_optimum_position = [[0, 0]] self.mock_optimizer.optimize.return_value = expected_optimum_position self.mock_model.analytical_gradient_prediction = False self.ei_acquisition = AcquisitionEI(self.mock_model, self.space, self.mock_optimizer) optimum_position = self.ei_acquisition.optimize() assert optimum_position == expected_optimum_position
def setUp(self): self.mock_model = Mock() self.mock_optimizer = Mock() domain = [{'name': 'var_1', 'type': 'categorical', 'domain': (0, 1)}, {'name': 'var_2', 'type': 'continuous', 'domain': (-5,5), 'dimensionality': 2}] # con_1: if var_1 is 0, var_2_1 must be <= -1 # con_2: 3 * (var_2_1 + var_2_2) <= 24 constraints = [{'name': 'con_1', 'constraint': '(x[:,0] == 0) * (x[:,1] + 1)'}, {'name': 'con_2', 'constraint': ' 3 * (x[:,1] + x[:,2]) - 24'}] self.space = Design_space(domain, constraints) self.ei_acquisition = AcquisitionEI(self.mock_model, self.space, self.mock_optimizer) self.ei_acquisition._compute_acq = Mock() self.ei_acquisition._compute_acq_withGradients = Mock()
def test_ChecKGrads_EI(self): acquisition_ei = acquisition_for_test( AcquisitionEI(self.model, self.feasible_region)) grad_ei = GradientChecker(acquisition_ei.acquisition_function, acquisition_ei.d_acquisition_function, self.X_test) self.assertTrue(grad_ei.checkgrad(tolerance=self.tolerance))
class TestEIAcquisitionWithCategoricalVariables(unittest.TestCase): def setUp(self): self.mock_model = Mock() self.mock_optimizer = Mock() domain = [{'name': 'var_1', 'type': 'categorical', 'domain': (0, 1)}, {'name': 'var_2', 'type': 'continuous', 'domain': (-5,5), 'dimensionality': 2}] # con_1: if var_1 is 0, var_2_1 must be <= -1 # con_2: 3 * (var_2_1 + var_2_2) <= 24 constraints = [{'name': 'con_1', 'constraint': '(x[:,0] == 0) * (x[:,1] + 1)'}, {'name': 'con_2', 'constraint': ' 3 * (x[:,1] + x[:,2]) - 24'}] self.space = Design_space(domain, constraints) self.ei_acquisition = AcquisitionEI(self.mock_model, self.space, self.mock_optimizer) self.ei_acquisition._compute_acq = Mock() self.ei_acquisition._compute_acq_withGradients = Mock() def test_acquisition_function(self): """Test that acquisition function does correct constraint(s) check""" y = [1.37, 8.22, 4.2, 0.55, 3.14] self.ei_acquisition._compute_acq.return_value = np.array(y)[:, None] correct_y = [-y[0]] + [0,0] + [-y[3]] + [0] x_unzipped = np.array([[0, 1, 3.3, -3.3], [1, 0, 1.5, 4.7], [0, 1, 4.1, 4.5], [1, 0, -4.1, 4.5], [1, 0, 5, 3]]) acquisitions = self.ei_acquisition.acquisition_function(x_unzipped) assert np.isclose(acquisitions, np.array(correct_y)[:, None]).all() def test_acquisition_function_withGradients(self): """Test that acquisition function does correct constraint(s) check with gradients""" y = [1.37, 8.22, 4.2, 0.55, 3.14] y_grad = [.3, .7, -.5, .1, -.02] self.ei_acquisition._compute_acq_withGradients.return_value = np.array(y)[:, None], np.array(y_grad)[:, None] correct_y = [-y[0]] + [0,0] + [-y[3]] + [0] correct_y_grad = [-y_grad[0]] + [0,0] + [-y_grad[3]] + [0] x_unzipped = np.array([[0, 1, 3.3, -3.3], [1, 0, 1.5, 4.7], [0, 1, 4.1, 4.5], [1, 0, -4.1, 4.5], [1, 0, 5, 3]]) acquisitions, gradients = self.ei_acquisition.acquisition_function_withGradients(x_unzipped) assert np.isclose(acquisitions, np.array(correct_y)[:, None]).all() assert np.isclose(gradients, np.array(correct_y_grad)[:, None]).all()
def setUp(self): self.mock_model = Mock() self.mock_optimizer = Mock() self.expected_optimum_position = [[0, 0]] self.mock_optimizer.optimize.return_value = self.expected_optimum_position, self.expected_optimum_position domain = [{ 'name': 'var_1', 'type': 'continuous', 'domain': (-5, 5), 'dimensionality': 2 }] self.space = Design_space(domain, None) self.mock_optimizer.context_manager = ContextManager(self.space) self.ei_acquisition = AcquisitionEI(self.mock_model, self.space, self.mock_optimizer) self.random_batch = RandomBatch(self.ei_acquisition, 10)