Пример #1
0
def effect_gvd(wl_um, gvd, t_fs, d_mm):
    """
    Calculates the effect the group velocity dispersion has on an unchirped Gaussian pulse. 
    
    Source:
    http://www.rp-photonics.com/chromatic_dispersion.html
    numpy.log() is natural log
    
    CHANGELOG:
    20170315/RB: started function. 
    
    INPUT:
    wl_um (ndarray): wavelengths in micron 
    gvd: group velocity dispersion in fs^2/mm
    t: pulse durations
    d: thicknesses of material
    
    OUTPUT:
    t_out (ndarray): 3D array with pulse lengths wl_um x t x d
    
    """

    t_fs = CF.make_numpy_ndarray(t_fs)
    d_mm = CF.make_numpy_ndarray(d_mm)

    W, T, D = numpy.meshgrid(wl_um, t_fs, d_mm, indexing="ij")
    G, dump, dump = numpy.meshgrid(gvd, t_fs, d_mm, indexing="ij")

    t_out = T * numpy.sqrt(1 + (4 * numpy.log(2) * G * D / T**2)**2)

    return t_out
Пример #2
0
def interpolate_two_datasets(x1, y1, x2, y2, x_step = 1, interpolation_kind = "default", verbose = 0):
    """
    Take datasets 1 and 2 and unify the x-axis, interpolate the y-values of both for the new axis. The new x-axis will be only where x1 and x2 overlap. 
    
    INPUTS:
    x1, x2 (ndarray, list): x-axes of the data
    y1, y2 (ndarray, list): y values of the data
    x_step (number): step size of the x-axis of the interpolated data
    interpolation_kind (string): Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic', where 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'
    
    OUTPUTS:
    new_x (ndarray): new x-axis
    new_y1, new_y2 (ndarray): the interpolated values of y1 and y2
    
    
    """
    
    if interpolation_kind == "default":
        interpolation_kind = "linear"
        
        
    x1 = CF.make_numpy_ndarray(x1)
    y1 = CF.make_numpy_ndarray(y1)
    x2 = CF.make_numpy_ndarray(x2)
    y2 = CF.make_numpy_ndarray(y2)
    
    if x1[0] > x1[-1]:
        x1 = x1[::-1]
        y1 = y1[::-1]

    if x2[0] > x2[-1]:
        x2 = x2[::-1]
        y2 = y2[::-1]
    
    
    if x1[0] > x2[0]:
        start = x1[0]
    else:
        start = x2[0]
        
    if x1[-1] < x2[-1]:
        finish = x1[-1]
    else:
        finish = x2[-1]    
        
    if verbose > 0:
        print(start, finish)

    new_x = numpy.arange(start, finish, step = x_step)

    f = interp1d(x1, y1, kind = interpolation_kind)
    new_y1 = f(new_x)
    
    f = interp1d(x2, y2, kind = interpolation_kind)
    new_y2 = f(new_x)
    
    return new_x, new_y1, new_y2
Пример #3
0
def quadratic(A, t):
    """
    sum_i A[i] * t**i
    """
    A = CF.make_numpy_ndarray(A)
    t = CF.make_numpy_ndarray(t)
    res = 0
    for i in range(len(A)):
        res += A[i] * t**(i)
    return res
Пример #4
0
def absorption_for_gas(ev,
                       absorption,
                       mbars,
                       cms,
                       evs=[],
                       interpolation_kind=""):
    """
    
    INPUTS:
    x_ev (ndarray): energies, x-axis
    y_ab (ndarray): absorption, y-axis
    
    mbars (list): list with pressures, in mbar
    cms (list): list with pathlengths, in cm
    evs (list): list with specific wavelengths to calculate the transmission for. If length is zero, all energies will be calculated. 
    
    OUTPUT:
    ev (ndarray): 
    
    
    """

    mbars = CF.make_numpy_ndarray(mbars)
    cms = CF.make_numpy_ndarray(cms)
    evs = CF.make_numpy_ndarray(evs)

    if len(evs) != 0:
        y_ab = interpolate_absorption(ev=ev,
                                      ab=absorption,
                                      x=evs,
                                      interpolation_kind=interpolation_kind)
        x_ev = evs
        n_evs = len(evs)
    else:
        y_ab = absorption[:]
        x_ev = ev[:]
        n_evs = len(y_ab)

    n_mbars = len(mbars)
    n_cms = len(cms)

    ab = numpy.zeros((n_evs, n_mbars, n_cms))

    for i in range(n_evs):
        ab[i, :, :] = y_ab[i]

    for i in range(n_mbars):
        ab[:, i, :] *= mbars[i]

    for i in range(n_cms):
        ab[:, :, i] *= cms[i]

    tr = 10**ab

    return ev, ab, tr
Пример #5
0
def transmission_for_compound(wl_nm,
                              abs_mm,
                              R,
                              thickness_mms,
                              wl_nms=[],
                              interpolation_kind="default"):
    """
    
    INPUTS:
    wl_nm (ndarray): wavelength axis of the imported data
    abs_mm (ndarray): pure absorption component
    R (ndarray): reflection component
    
    thickness_mms (int, list, ndarray): list with thicknesses in mm
    wl_nms (int, list, ndarray): list with wavelengths of interest, can be empty, then wl_nm is used. 

    mms (list): list with pathlengths, in mm
    l_nms (list): list with specific wavelengths to calculate the transmission for. If length is zero, all energies will be calculated. 
    
    OUTPUT:
    ev (ndarray): 
    
    
    """

    thickness_mms = CF.make_numpy_ndarray(thickness_mms)
    n_thick = len(thickness_mms)
    wl_nms = CF.make_numpy_ndarray(wl_nms)

    if len(wl_nms) != 0:
        y_abs_mm = MATH.interpolate_data(original_x=wl_nm,
                                         original_y=abs_mm,
                                         new_x=wl_nms,
                                         interpolate_kind=interpolation_kind)
        R = MATH.interpolate_data(original_x=wl_nm,
                                  original_y=R,
                                  new_x=wl_nms,
                                  interpolate_kind=interpolation_kind)
        n_nms = len(wl_nms)
    else:
        y_abs_mm = abs_mm[:]
        wl_nms = wl_nm[:]
        n_nms = len(abs_mm)

    ABS, TH = numpy.meshgrid(y_abs_mm, thickness_mms)
    R, dump = numpy.meshgrid(R, thickness_mms)

    _R = (1 - R)**2
    transmission = 10**(-ABS * TH) * (_R)

    return wl_nms, thickness_mms, transmission
Пример #6
0
def transmission_for_compound(e_ev,
                              tr_norm,
                              ums,
                              evs=[],
                              interpolation_kind="default"):
    """
    
    INPUTS:
    ev (ndarray): ev axis of the imported data
    
    
    x_ev (ndarray): energies, x-axis
    y_tr (ndarray): absorption, y-axis
    
    ums (list): list with pathlengths, in um
    evs (list): list with specific wavelengths to calculate the transmission for. If length is zero, all energies will be calculated. 
    
    OUTPUT:
    ev (ndarray): 
    
    
    """

    ums = CF.make_numpy_ndarray(ums)
    evs = CF.make_numpy_ndarray(evs)

    if len(evs) != 0:
        y_tr = MATH.interpolate_data(original_x=ev,
                                     original_y=transmission,
                                     new_x=evs,
                                     interpolate_kind=interpolation_kind)
        x_ev = evs
        n_evs = len(evs)
    else:
        y_tr = transmission[:]
        x_ev = ev[:]
        n_evs = len(y_tr)

    n_ums = len(ums)

    tr = numpy.zeros((n_evs, n_ums))

    for i in range(n_evs):
        tr[i, :] = y_tr[i]

    ab = numpy.log10(tr)
    for i in range(n_ums):
        ab[:, i] *= ums[i]
    tr = 10**ab

    return ev, tr
Пример #7
0
def rb_cos(A, t):
    """
    4 parameters
    function: A[0] + A[1] * numpy.cos(2 * numpy.pi * A[2] * t + A[3])
    A[0]: offset
    A[1]: amplitude
    A[2]: frequency
    A[3]: phase
    """
    A = CF.make_numpy_ndarray(A)
    if len(A) != 4:
        raise IndexError("rb_cos(): you should enter 4 parameters in list A.")
    t = CF.make_numpy_ndarray(t)
    return A[0] + A[1] * numpy.cos(2 * numpy.pi * A[2] * t + numpy.pi * A[3])
Пример #8
0
def reflectance(n1, n2, a_deg=[], a_range=(0, 90), n_steps=-1):
    """
    It is calculated for what?
    - a_deg > a_range
    
    """

    n1 = CF.make_numpy_ndarray(n1)
    n2 = CF.make_numpy_ndarray(n2)
    a_deg = CF.make_numpy_ndarray(a_deg)

    if len(a_deg) == 0:
        if n_steps == -1:
            n_steps = int(a_range[1] - a_range[0]) + 1
            if n_steps < 5:
                n_steps = 5
        a_deg = numpy.linspace(a_range[0], a_range[1], num=n_steps)

    a_rad = a_deg * numpy.pi / 180

    N1, A = numpy.meshgrid(n1, a_rad)
    N2, A = numpy.meshgrid(n2, a_rad)

    # when n2 > n1, there is a critical angle. Here angles > critical angles are set to nan.
    temp = ((N1 * numpy.sin(A)) / (N2))**2
    numpy.putmask(temp, temp >= 1, numpy.nan)
    x = numpy.sqrt(1 - temp)

    a = N1 * numpy.cos(A)
    b = N2 * x
    Rs = numpy.abs((a - b) / (a + b))**2

    a = N1 * x
    b = N2 * numpy.cos(A)
    Rp = numpy.abs((a - b) / (a + b))**2

    return a_deg, Rs, Rp
Пример #9
0
def n_k_for_wavelengths(db_record,
                        wl_um,
                        interpolate_kind="default",
                        verbose=0):
    """
    Calculate the refractive index and extinction coefficient for wavelengths wl_um. The input is the data from refractiveindex.info and comes as one of 9 equations (not all of them are implemented) or as a table of values. For the latter interpolation will be used to get the values for the asked wavelengths. 
    
    db_record is the dictionary.
      
    """

    if "type" not in db_record:
        raise KeyError(
            "ri_for_wavelengths(): The database record does not have a key 'type'."
        )

    wl_um = CF.make_numpy_ndarray(wl_um)

    if db_record["type"] == "tabulated nk":

        if wl_um[0] < db_record["data"][:, 0][0]:
            raise ValueError(
                "Error, wavelength %1.2f micron is too low! It should be above %1.2f micron."
                % (wl_um[0], db_record["data"][:, 0][0]))
        elif wl_um[-1] > db_record["data"][:, 0][-1]:
            raise ValueError(
                "Error, wavelength %1.2f micron is too high! It should be below %1.2f micron."
                % (wl_um[-1], db_record["data"][:, 0][-1]))

        DEBUG.verbose("  Tabulated data (type nk)", verbose_level=1)
        n = MATH.interpolate_data(db_record["data"][:, 0],
                                  db_record["data"][:, 1], wl_um)
        k = MATH.interpolate_data(db_record["data"][:, 0],
                                  db_record["data"][:, 2], wl_um)

    else:
        raise NotImplementedError(
            "Importing n and k are only implemented for tabulated records.")

    return n, k
Пример #10
0
def make_coordinates(inch_per_unit, x_units, y_units, left, bottom, width, 
height, flag_verbose = False):
    
    """
    
    matplotlib.figure.add_axes() requires coordinates (left, bottom, width, 
    height) for each axes instance. The values are between 0 and 1. There are 
    two problems. 
    
    First is that the aspect ratio may be off. If the figure is a rectangle and 
    the subplot is 0.5 wide and 0.5 high, the subplot is also a rectangle. 
    Second is that if the figure size changes all the carefully planned margins 
    are lost. 
    
    This function works with units. The x-axis is x_units long. Each unit has a 
    defined length inch_per_unit. The left edges are at [left]. This solves the 
    two problems. If your plot is N units wide and N units high, it will be a 
    square. When you resize the figure (change x_units) the margins, which are 
    in units, will remain the same.     
    
    INPUT:
    - inch_per_unit (number): used to scale to inches
    - x_units, y_units (number): width and height of the figure, in units
    - left, bottom, width, height (numpy.ndarray with ints and/or floats, also 
    accepts list or int or float): the positions of the axes. The longest list 
    determines the number of plots. Shorter lists are cycled. 
    
    OUTPUT:
    - figsize: tuple that is accepted by plt.figure(figsize = figsize)
    - coords, a list with tuples with (l,b,w,h). The tuples are accepted by 
    fig.add_axes((l,b,w,h)). 

   
    EXAMPLE 1:

    Three plots next to each other. 
    
    01234567
    1 x  x x
    0xxxxxxx
    
    x_units = 8
    y_units = 3
    left = [1,3,6]  #
    bottom = 1      # [1], [1,1], [1,1,1] 
                    # not [1,1,1,1], that gives extra subplot
    width = [1,2]   # [1,2,1]
    height = 1      # [1], [1,1], [1,1,1]
    
    
    EXAMPLE 2:
    
    Four equally sized and spaced plots.
    
    01234
    3 x x
    2xxxx
    1 x x 
    0xxxx
    
    inch_per_unit = 1.0
    x_units = 5
    y_units = 5
    left = [1,3]        # [1,3,1,3]
                        # not [1,3,1], that would give: [1,3,1,1]
    bottom = [3,3,1,1]  #
    width = 1           # [1], [1,1], [1,1,1], [1,1,1,1]
    height = 1          # [1], [1,1], [1,1,1], [1,1,1,1]
    

    EXAMPLE 3:
        
    A complex arrangement. All coordinates are explicitly given. 
    
    01234567
    6   x  x
    5   x  x
    4xxxx  x
    3  xxxxx
    2  x   x
    1  x   x
    0xxxxxxx   

    x_units = 8
    y_units = 8
    left = [1,5,1,4]
    bottom = [5,4,1,1]
    width = [3,2,2,3]
    height = [2,3,3,2]    
    
    
    
    CHANGELOG:
    20130317/RB: started   
    
     
    """ 
    # calculate figure size
    figsize = (x_units * inch_per_unit, y_units * inch_per_unit)

    # change all values to values between 0 and 1
    left = CF.make_numpy_ndarray(left) / x_units
    bottom = CF.make_numpy_ndarray(bottom) / y_units
    width = CF.make_numpy_ndarray(width) / x_units
    height = CF.make_numpy_ndarray(height) / y_units
    
    # find longest list, determines number of sub plots
    N = find_longest_list(left, bottom, width, height)
    
    # determine the coordinates
    coords = []
    for i in range(N):
        
        l = left[i % len(left)]
        b = bottom[i % len(bottom)]
        w = width[i % len(width)]
        h = height[i % len(height)]
        
        coords.append((l,b,w,h))
        
    return figsize, coords
Пример #11
0
 def test_dict(self):
     result = CF.make_numpy_ndarray({"a": 1, "b": 2})
Пример #12
0
 def test_list_1(self):
     result = CF.make_numpy_ndarray([1,2])
     self.assertEqual(type(result), numpy.ndarray)  
     self.assertTrue(numpy.all(numpy.array([1,2]) == result)) 
Пример #13
0
 def test_string_2(self):
     result = CF.make_numpy_ndarray(["fiets", "auto"])
     self.assertEqual(type(result), numpy.ndarray)  
     self.assertTrue(numpy.all(numpy.array(["fiets", "auto"]) == result)) 
Пример #14
0
 def test_string_1(self):
     result = CF.make_numpy_ndarray("fiets")
     self.assertEqual(type(result), numpy.ndarray)  
     self.assertEqual(result, ["fiets"])
     self.assertTrue(result[0] == "fiets")
Пример #15
0
 def test_float_1(self):
     result = CF.make_numpy_ndarray(1)
     self.assertEqual(type(result), numpy.ndarray)  
     self.assertEqual(result, numpy.array(1))
Пример #16
0
def ri_for_wavelengths(db_record,
                       wl_um,
                       interpolate_kind="default",
                       verbose=0):
    """
    Calculate the refractive index for wavelengths wl_um. The input is the data from refractiveindex.info and comes as one of 9 equations (not all of them are implemented) or as a table of values. For the latter interpolation will be used to get the values for the asked wavelengths. 
    
    db_record is the dictionary.
      
    """

    if "type" not in db_record:
        raise KeyError(
            "ri_for_wavelengths(): The database record does not have a key 'type'."
        )

    wl_um = CF.make_numpy_ndarray(wl_um)

    error_string = "Calculation of the refractive index is not implemented for "

    # check the range
    if "formula" in db_record["type"]:

        #         temp = numpy.where(wl_um < db_record["range"][0])[0]
        #         print(temp)
        #         wl_um[temp] = numpy.nan
        #
        #         temp = numpy.where(wl_um > db_record["range"][1])[0]
        #         print(temp)
        #         wl_um[temp] = numpy.nan
        print(db_record["range"][0])
        if wl_um[0] < db_record["range"][0]:
            raise ValueError(
                "Error, wavelength %1.2f micron is too low! It should be above %1.2f micron."
                % (wl_um[0], db_record["range"][0]))
        elif wl_um[-1] > db_record["range"][1]:
            raise ValueError(
                "Error, wavelength %1.2f micron is too high! It should be below %1.2f micron."
                % (wl_um[-1], db_record["range"][-1]))

    if "tabulated" in db_record["type"]:
        if wl_um[0] < db_record["data"][:, 0][0]:
            raise ValueError(
                "Error, wavelength %1.2f micron is too low! It should be above %1.2f micron."
                % (wl_um[0], db_record["data"][:, 0][0]))
        elif wl_um[-1] > db_record["data"][:, 0][-1]:
            raise ValueError(
                "Error, wavelength %1.2f micron is too high! It should be below %1.2f micron."
                % (wl_um[-1], db_record["data"][:, 0][-1]))

    if db_record["type"] == "formula 1":
        DEBUG.verbose("  Using formula 1 to calculate refractive indices",
                      verbose_level=1)
        n_terms = int(len(db_record["coefficients"]) / 2 - 0.5)
        ri = numpy.ones(len(wl_um)) + db_record["coefficients"][0]
        l = wl_um**2
        for i in range(n_terms):
            ri += (db_record["coefficients"][2 * i + 1] *
                   l) / (l - db_record["coefficients"][2 * i + 2]**2)
        ri = numpy.sqrt(ri)
        if verbose >= 1:
            for i in range(len(wl_um)):
                print(i, wl_um[i], ri[i])

    elif db_record["type"] == "formula 2":
        DEBUG.verbose("  Using formula 2 to calculate refractive indices",
                      verbose_level=1)
        n_terms = int(len(db_record["coefficients"]) / 2 - 0.5)
        ri = numpy.ones(len(wl_um)) + db_record["coefficients"][0]
        l = wl_um**2
        for i in range(n_terms):
            ri += (db_record["coefficients"][2 * i + 1] *
                   l) / (l - db_record["coefficients"][2 * i + 2])
        ri = numpy.sqrt(ri)

        if verbose >= 1:
            for i in range(len(wl_um)):
                print(i, wl_um[i], ri[i])

    elif db_record["type"] == "formula 3":
        DEBUG.verbose("  Using formula 3 to calculate refractive indices",
                      verbose_level=1)
        n_terms = int(len(db_record["coefficients"]) / 2 - 0.5)
        ri = numpy.zeros(len(wl_um)) + db_record["coefficients"][0]
        for i in range(n_terms):
            ri += db_record["coefficients"][
                2 * i + 1] * wl_um**db_record["coefficients"][2 * i + 2]
        ri = numpy.sqrt(ri)
        if verbose >= 1:
            for i in range(len(wl_um)):
                print(i, wl_um[i], ri[i])

    elif db_record["type"] == "formula 4":
        DEBUG.verbose("  Using formula 4 to calculate refractive indices",
                      verbose_level=1)
        ri = numpy.zeros(len(wl_um)) + db_record["coefficients"][0]
        n_coeff = len(db_record["coefficients"])
        if n_coeff >= 5:
            ri += (db_record["coefficients"][1] *
                   wl_um**db_record["coefficients"][2]) / (
                       wl_um**2 - db_record["coefficients"][3]**
                       db_record["coefficients"][4])
        if n_coeff >= 9:
            ri += (db_record["coefficients"][5] *
                   wl_um**db_record["coefficients"][6]) / (
                       wl_um**2 - db_record["coefficients"][7]**
                       db_record["coefficients"][8])
        n_terms = int((len(db_record["coefficients"]) - 9) / 2)
        for i in range(n_terms):
            ri += db_record["coefficients"][
                2 * i + 9] * wl_um**db_record["coefficients"][2 * i + 10]
        ri = numpy.sqrt(ri)
        if verbose >= 1:
            for i in range(len(wl_um)):
                print(i, wl_um[i], ri[i])

    elif db_record["type"] == "formula 5":
        DEBUG.verbose("  Using formula 5 to calculate refractive indices",
                      verbose_level=1)
        n_terms = int(len(db_record["coefficients"]) / 2 - 0.5)
        ri = numpy.zeros(len(wl_um)) + db_record["coefficients"][0]
        for i in range(n_terms):
            ri += db_record["coefficients"][
                2 * i + 1] * wl_um**db_record["coefficients"][2 * i + 2]
        if verbose >= 1:
            for i in range(len(wl_um)):
                print(i, wl_um[i], ri[i])

    elif db_record["type"] == "formula 6":
        DEBUG.verbose("  Using formula 6 to calculate refractive indices",
                      verbose_level=1)
        n_terms = int(len(db_record["coefficients"]) / 2 - 0.5)
        ri = numpy.ones(len(wl_um)) + db_record["coefficients"][0]
        l = wl_um**-2
        for i in range(n_terms):
            ri += (db_record["coefficients"][2 * i + 1]) / (
                db_record["coefficients"][2 * i + 2] - l)
        if verbose >= 1:
            for i in range(len(wl_um)):
                print(i, wl_um[i], ri[i])

    elif db_record["type"] == "formula 7":
        DEBUG.verbose("  Using formula 7 to calculate refractive indices",
                      verbose_level=1)
        l = wl_um**2
        n_terms = len(db_record["coefficients"]) - 3
        t1 = db_record["coefficients"][1] / (l - 0.028)
        t2 = db_record["coefficients"][2] * (1 / (l - 0.028))**2
        ri = db_record["coefficients"][0] + t1 + t2
        for i in range(n_terms):
            ri += db_record["coefficients"][i + 3] * l**(i + 1)
        if verbose >= 1:
            for i in range(len(wl_um)):
                print(i, wl_um[i], ri[i])

    elif db_record["type"] == "formula 8":
        raise NotImplementedError(error_string + "formula 8")

    elif db_record["type"] == "formula 9":
        raise NotImplementedError(error_string + "formula 9")

    elif db_record["type"] == "tabulated n":
        DEBUG.verbose("  Tabulated data (type n)", verbose_level=1)
        ri = MATH.interpolate_data(db_record["data"][:, 0],
                                   db_record["data"][:, 1], wl_um)

    elif db_record["type"] == "tabulated nk":
        DEBUG.verbose("  Tabulated data (type nk)", verbose_level=1)
        ri = MATH.interpolate_data(db_record["data"][:, 0],
                                   db_record["data"][:, 1], wl_um)

    else:
        raise ValueError(
            "The type of data in the database record is unknown (usually formula 1-9 or tabulated data). Type here is %s."
            % db_record["type"])

    return ri
Пример #17
0
def gvd_for_wavelengths(db_record,
                        wl_um,
                        interpolate_kind="default",
                        verbose=0):
    """
    Calculate the GVD for wavelengths wl_um. The GVD is calculated as the second derivative of the refractive index with respect to the wavelength. The input is the data from refractiveindex.info and comes as one of 9 equations (not all of them are implemented) or as a table of values. 
    
    For the equations, the second derivatives were calculated using WolframAlpha. 
    """

    if "type" not in db_record:
        raise KeyError(
            "gvd_for_wavelengths: The database record does not have a key 'type'."
        )

    wl_um = CF.make_numpy_ndarray(wl_um)

    error_string = "GVD is not implemented for "

    # check the range
    if "formula" in db_record["type"]:
        if wl_um[0] < db_record["range"][0]:
            raise ValueError(
                "Error, wavelength %1.2f micron is too low! It should be above %1.2f micron."
                % (wl_um[0], db_record["range"][0]))
        elif wl_um[-1] > db_record["range"][1]:
            raise ValueError(
                "Error, wavelength %1.2f micron is too high! It should be below %1.2f micron."
                % (wl_um[-1], db_record["range"][-1]))

    if "tabulated" in db_record["type"]:
        raise NotImplementedError(
            "GVD can't be calculated for tabulated data.")

    if db_record["type"] == "formula 1":
        DEBUG.verbose(
            "  Using formula 1 to calculate group velocity dispersion",
            verbose_level=1)
        gvd = EQ.gvd_formula_1(wl_um, db_record["coefficients"])
        gvd = (1e21 * gvd * wl_um**3) / (2 * numpy.pi * (CONST.c_ms)**2)

    elif db_record["type"] == "formula 2":
        """
        Formula 2 is the same as formula 1, but some given coefficients are already squared. The square root of these coefficients is taken and the GVD equation for formula 1 is used. 
        """
        DEBUG.verbose(
            "  Using formula 2 to calculate group velocity dispersion",
            verbose_level=1)
        s = numpy.copy(db_record["coefficients"])
        for i in range(len(s)):
            if i > 0 and i % 2 == 0:
                s[i] = numpy.sqrt(s[i])
        gvd = EQ.gvd_formula_1(wl_um, s)
        gvd = (1e21 * gvd * wl_um**3) / (2 * numpy.pi * (CONST.c_ms)**2)

    elif db_record["type"] == "formula 3":
        DEBUG.verbose(
            "  Using formula 3 to calculate group velocity dispersion",
            verbose_level=1)
        gvd = EQ.gvd_formula_3(wl_um, db_record["coefficients"])
        gvd = (1e21 * gvd * wl_um**3) / (2 * numpy.pi * (CONST.c_ms)**2)

    elif db_record["type"] == "formula 4":
        DEBUG.verbose(
            "  Using formula 4 to calculate group velocity dispersion",
            verbose_level=1)
        gvd = EQ.gvd_formula_4(wl_um, db_record["coefficients"])
        gvd = (1e21 * gvd * wl_um**3) / (2 * numpy.pi * (CONST.c_ms)**2)

    elif db_record["type"] == "formula 5":
        DEBUG.verbose(
            "  Using formula 5 to calculate group velocity dispersion",
            verbose_level=1)
        gvd = EQ.gvd_formula_5(wl_um, db_record["coefficients"])
        gvd = (1e21 * gvd * wl_um**3) / (2 * numpy.pi * (CONST.c_ms)**2)

    elif db_record["type"] == "formula 6":
        DEBUG.verbose(
            "  Using formula 6 to calculate group velocity dispersion",
            verbose_level=1)
        gvd = EQ.gvd_formula_6(wl_um, db_record["coefficients"])
        gvd = (1e21 * gvd * wl_um**3) / (2 * numpy.pi * (CONST.c_ms)**2)

    elif db_record["type"] == "formula 7":
        DEBUG.verbose(
            "  Using formula 7 to calculate group velocity dispersion",
            verbose_level=1)
        gvd = EQ.gvd_formula_7(wl_um, db_record["coefficients"])
        gvd = (1e21 * gvd * wl_um**3) / (2 * numpy.pi * (CONST.c_ms)**2)

    elif db_record["type"] == "formula 8":
        raise NotImplementedError(error_string + "formula 8")

    elif db_record["type"] == "formula 9":
        raise NotImplementedError(error_string + "formula 9")

    else:
        raise ValueError(
            "The type of data in the database record is unknown (usually formula 1-9). Type here is %s."
            % db_record["type"])

    return wl_um, gvd