testX, testY = func_utils.reshape_function_data(test_set) to_test_net = Net.Mlp(model_file=conf['model_path'], framework="keras") elif data_type == "Vectors_dataset": parameters, test_set = vect_utils.read_vector_data(conf['data_path']) gap = parameters.iloc[0]['gap'] dim = None print('Puting the test data into the right shape...') testX, testY = vect_utils.reshape_vector_data(test_set) if net_type == "NOREC": to_test_net = Net.Convolution1D(model_file=conf['model_path'], framework="keras") else: to_test_net = Net.Lstm(model_file=conf['model_path'], framework="keras") else: # data_type == "Frames_dataset sample_type = conf['data_path'].split('/')[-1] data_type = data_type + "_" + sample_type samples_dir = conf['data_path'].split('/')[5] dim = (int(samples_dir.split('_')[-2]), int(samples_dir.split('_')[-1])) if sample_type == "raw_samples": if net_type == "NOREC": print('Puting the test data into the right shape...') parameters, testX, testY = frame_utils.read_frame_data( conf['data_path'], sample_type) to_test_net = Net.Convolution2D(model_file=conf['model_path'], framework="keras") else:
# Put the validation data into the right shape valX, valY = vect_utils.reshape_vector_data(val_set) train_data = [trainX, trainY] val_data = [valX, valY] # Model settings in_dim = trainX.shape[1:] out_dim = np.prod(in_dim[1:]) if net_type == "NoRec": to_train_net = Net.Convolution1D(activation=activation, loss=loss, dropout=dropout, drop_percentage=drop_percentage, input_shape=in_dim, output_shape=out_dim, framework="keras") else: # net_type == "Rec" to_train_net = Net.Lstm(activation=activation, loss=loss, dropout=dropout, drop_percentage=drop_percentage, input_shape=in_dim, output_shape=out_dim, data_type="Vector", framework="keras") else: # data_type == 'Frames_dataset': print('Training with frames') data_model = conf['data_model'] samples_dir = data_dir.split('/')[5] dim = (int(samples_dir.split('_')[-2]), int(samples_dir.split('_')[-1])) complexity = conf['complexity'] # Load data channels = False if data_model == "raw": loss = conf['raw_frame_loss'] print("Raw images")