def test__back_propagation(self): data = [[1, 1, 2]] target = [1, 0, 0] nn = NeuralNetwork() nn.create_network(len(data[0]), 2, (1,), weights=[[-.1, .2, .1, -.4], [-.15, -.2, .3]]) r = nn._feed_forward(data[0]) uw = nn._back_propagation(r, target[0])
def run_iris(): # Load iris data set iris = datasets.load_iris() n_inputs = len(iris.data[0]) n_outputs = len(iris.target_names) network = NeuralNetwork() network.create_network(n_inputs, n_outputs, (3, 4)) data_scaled = preprocessing.scale(iris.data) print("Their neural network results: {}".format(cross_val_score(nn, data_scaled, iris.target, 3))) print("My neural network results: {}".format(cross_val_score(network, data_scaled, iris.target, 3)))
def run_diabetes(): data = [] target = [] # Read data with open('pima-indians-diabetes.data') as diabetes_file: diabetes_reader = csv.reader(diabetes_file, quoting=csv.QUOTE_NONNUMERIC) for row in diabetes_reader: data.append(row[:8]) target.append(int(row[8])) n_inputs = len(data[0]) n_outputs = len(set(target)) network = NeuralNetwork() network.create_network(n_inputs, n_outputs, (3, 4)) data_scaled = preprocessing.scale(np.array(data)) print("Neural network results accuracy: {}".format(cross_val_score(network, data_scaled, np.array(target), 3)))
def test__back_propagation(self): data = [[1, 1, 2]] target = [1, 0, 0] nn = NeuralNetwork() nn.create_network(len(data[0]), 2, (1, ), weights=[[-.1, .2, .1, -.4], [-.15, -.2, .3]]) r = nn._feed_forward(data[0]) uw = nn._back_propagation(r, target[0])
#!/usr/bin/env python3 import sys import random from NeuralNetwork.neural_network import NeuralNetwork import json import numpy as np with open('C:\\Users\\dbari\Documents\\GitHub\\Connect4-py\\options.json', 'r') as file: options = json.load(file) ann = NeuralNetwork(options) class Settings(): def __init__(self): self.timebank = None self.time_per_move = None self.player_names = None self.your_bot = None self.your_botid = None self.field_width = None self.field_height = None class Field(): def __init__(self): self.position = [] self.field_state = None def update_field(self, celltypes, settings):