Пример #1
0
    def my_raster_plot(self, id_list=None, t_start=None, t_stop=None, display=True, kwargs={}, reduce=1, id_start=0):
        """
        Generate a raster plot for the SpikeList in a subwindow of interest,
        defined by id_list, t_start and t_stop. 
        
        Inputs:
            id_list - can be a integer (and then N cells are randomly selected) or a list of ids. If None, 
                      we use all the ids of the SpikeList
            t_start - in ms. If not defined, the one of the SpikeList object is used
            t_stop  - in ms. If not defined, the one of the SpikeList object is used
            kwargs  - dictionary contening extra parameters that will be sent to the plot 
                      function
        
        Examples:
            >> z = subplot(221)
            >> spikelist.raster_plot(display=z, kwargs={'color':'r'})
        
        See also
            SpikeTrain.raster_plot
        """
        subplot = get_display(display)
        if id_list == None: 
            id_list = self.id_list
            spk = self
        else:
            spk = self.id_slice(id_list)

        if t_start is None: t_start = spk.t_start
        if t_stop is None:  t_stop  = spk.t_stop
        if t_start != spk.t_start or t_stop != spk.t_stop:
            spk = spk.time_slice(t_start, t_stop)


        ids, spike_times = spk.convert(format="[ids, times]")
        idx = numpy.where((spike_times >= t_start) & (spike_times <= t_stop))[0]
        
        new_id_list=numpy.arange(len(id_list))+id_start
        ids_map = dict(zip(id_list, new_id_list))
        
        
        new_ids=[ids_map[id] for id in ids]
        if len(spike_times) > 0:
            subplot.plot(spike_times[::reduce], new_ids[::reduce], ',', **kwargs)
        xlabel = "Time (ms)"
        ylabel = "Neuron #"
        set_labels(subplot, xlabel, ylabel)
        
        
        
        min_id = numpy.min(new_id_list)
        max_id = numpy.max(new_id_list)
        length = t_stop - t_start
        set_axis_limits(subplot, t_start-0.05*length, t_stop+0.05*length, min_id-2, max_id+2)
        pylab.draw()
Пример #2
0
    def runTest(self):

        f = plotting.get_display(True)
        x = range(10)
        pylab.plot(x)
        plotting.set_axis_limits(pylab, 0., 123., -123., 456.)

        # set up a SimpleMultiplot with arbitrary values
        self.nrows = 1
        self.ncolumns = 1
        title = 'testMultiplot'
        xlabel = 'testXlabel'
        ylabel = 'testYlabel'
        scaling = ('linear','log')
        self.smt = plotting.SimpleMultiplot(nrows=self.nrows, ncolumns=self.ncolumns, title=title, xlabel=xlabel, ylabel=ylabel, scaling=scaling)
        plotting.set_axis_limits(self.smt.panel(0), 0., 123., -123., 456.)
Пример #3
0
    def runTest(self):

        f = plotting.get_display(True)
        x = range(10)
        pylab.plot(x)
        plotting.set_axis_limits(pylab, 0., 123., -123., 456.)

        # set up a SimpleMultiplot with arbitrary values
        self.nrows = 1
        self.ncolumns = 1
        title = 'testMultiplot'
        xlabel = 'testXlabel'
        ylabel = 'testYlabel'
        scaling = ('linear', 'log')
        self.smt = plotting.SimpleMultiplot(nrows=self.nrows,
                                            ncolumns=self.ncolumns,
                                            title=title,
                                            xlabel=xlabel,
                                            ylabel=ylabel,
                                            scaling=scaling)
        plotting.set_axis_limits(self.smt.panel(0), 0., 123., -123., 456.)
Пример #4
0
    def event_triggered_average(self, events, average = True, t_min = 0, t_max = 100, display = False, with_time = False, kwargs={}):
        """
        Return the spike triggered averaged of an analog signal according to selected events,
        on a time window t_spikes - tmin, t_spikes + tmax
        Can return either the averaged waveform (average = True), or an array of all the
        waveforms triggered by all the spikes.

        Inputs:
            events  - Can be a SpikeTrain object (and events will be the spikes) or just a list
                      of times
            average - If True, return a single vector of the averaged waveform. If False,
                      return an array of all the waveforms.
            t_min   - Time (>0) to average the signal before an event, in ms (default 0)
            t_max   - Time (>0) to average the signal after an event, in ms  (default 100)
            display - if True, a new figure is created. Could also be a subplot.
            kwargs  - dictionary contening extra parameters that will be sent to the plot
                      function

        Examples:
            >> vm.event_triggered_average(spktrain, average=False, t_min = 50, t_max = 150)
            >> vm.event_triggered_average(spktrain, average=True)
            >> vm.event_triggered_average(range(0,1000,10), average=False, display=True)
        """

        if isinstance(events, SpikeTrain):
            events = events.spike_times
            ylabel = "Spike Triggered Average"
        else:
            assert numpy.iterable(events), "events should be a SpikeTrain object or an iterable object"
            ylabel = "Event Triggered Average"
        assert (t_min >= 0) and (t_max >= 0), "t_min and t_max should be greater than 0"
        assert len(events) > 0, "events should not be empty and should contained at least one element"
        time_axis = numpy.linspace(-t_min, t_max, (t_min+t_max)/self.dt)
        N         = len(time_axis)
        Nspikes   = 0.
        subplot   = get_display(display)
        if average:
            result = numpy.zeros(N, float)
        else:
            result = []

        # recalculate everything into timesteps, is more stable against rounding errors
        # and subsequent cutouts with different sizes
        events = numpy.floor(numpy.array(events)/self.dt)
        t_min_l = numpy.floor(t_min/self.dt)
        t_max_l = numpy.floor(t_max/self.dt)
        t_start = numpy.floor(self.t_start/self.dt)
        t_stop = numpy.floor(self.t_stop/self.dt)

        for spike in events:
            if ((spike-t_min_l) >= t_start) and ((spike+t_max_l) < t_stop):
                spike = spike - t_start
                if average:
                    result += self.signal[(spike-t_min_l):(spike+t_max_l)]
                else:
                    result.append(self.signal[(spike-t_min_l):(spike+t_max_l)])
                Nspikes += 1
        if average:
            result = result/Nspikes
        else:
            result = numpy.array(result)

        if not subplot or not HAVE_PYLAB:
            if with_time:
                return result, time_axis
            else:
                return result
        else:
            xlabel = "Time (ms)"
            set_labels(subplot, xlabel, ylabel)
            if average:
                subplot.plot(time_axis, result, **kwargs)
            else:
                for idx in xrange(len(result)):
                    subplot.plot(time_axis, result[idx,:], c='0.5', **kwargs)
                    subplot.hold(1)
                result = numpy.sum(result, axis=0)/Nspikes
                subplot.plot(time_axis, result, c='k', **kwargs)
            xmin, xmax, ymin, ymax = subplot.axis()

            subplot.plot([0,0],[ymin, ymax], c='r')
            set_axis_limits(subplot, -t_min, t_max, ymin, ymax)
            pylab.draw()
Пример #5
0
    def event_triggered_average(self,
                                events,
                                average=True,
                                t_min=0,
                                t_max=100,
                                display=False,
                                with_time=False,
                                kwargs={}):
        """
        Return the spike triggered averaged of an analog signal according to selected events,
        on a time window t_spikes - tmin, t_spikes + tmax
        Can return either the averaged waveform (average = True), or an array of all the
        waveforms triggered by all the spikes.

        Inputs:
            events  - Can be a SpikeTrain object (and events will be the spikes) or just a list
                      of times
            average - If True, return a single vector of the averaged waveform. If False,
                      return an array of all the waveforms.
            t_min   - Time (>0) to average the signal before an event, in ms (default 0)
            t_max   - Time (>0) to average the signal after an event, in ms  (default 100)
            display - if True, a new figure is created. Could also be a subplot.
            kwargs  - dictionary contening extra parameters that will be sent to the plot
                      function

        Examples:
            >> vm.event_triggered_average(spktrain, average=False, t_min = 50, t_max = 150)
            >> vm.event_triggered_average(spktrain, average=True)
            >> vm.event_triggered_average(range(0,1000,10), average=False, display=True)
        """

        if isinstance(events, SpikeTrain):
            events = events.spike_times
            ylabel = "Spike Triggered Average"
        else:
            assert numpy.iterable(
                events
            ), "events should be a SpikeTrain object or an iterable object"
            ylabel = "Event Triggered Average"
        assert (t_min >= 0) and (t_max >=
                                 0), "t_min and t_max should be greater than 0"
        assert len(
            events
        ) > 0, "events should not be empty and should contained at least one element"
        time_axis = numpy.linspace(-t_min, t_max, (t_min + t_max) / self.dt)
        N = len(time_axis)
        Nspikes = 0.
        subplot = get_display(display)
        if average:
            result = numpy.zeros(N, float)
        else:
            result = []

        # recalculate everything into timesteps, is more stable against rounding errors
        # and subsequent cutouts with different sizes
        events = numpy.floor(numpy.array(events) / self.dt)
        t_min_l = numpy.floor(t_min / self.dt)
        t_max_l = numpy.floor(t_max / self.dt)
        t_start = numpy.floor(self.t_start / self.dt)
        t_stop = numpy.floor(self.t_stop / self.dt)

        for spike in events:
            if ((spike - t_min_l) >= t_start) and ((spike + t_max_l) < t_stop):
                spike = spike - t_start
                if average:
                    result += self.signal[(spike - t_min_l):(spike + t_max_l)]
                else:
                    result.append(self.signal[(spike - t_min_l):(spike +
                                                                 t_max_l)])
                Nspikes += 1
        if average:
            result = result / Nspikes
        else:
            result = numpy.array(result)

        if not subplot or not HAVE_PYLAB:
            if with_time:
                return result, time_axis
            else:
                return result
        else:
            xlabel = "Time (ms)"
            set_labels(subplot, xlabel, ylabel)
            if average:
                subplot.plot(time_axis, result, **kwargs)
            else:
                for idx in xrange(len(result)):
                    subplot.plot(time_axis, result[idx, :], c='0.5', **kwargs)
                    subplot.hold(1)
                result = numpy.sum(result, axis=0) / Nspikes
                subplot.plot(time_axis, result, c='k', **kwargs)
            xmin, xmax, ymin, ymax = subplot.axis()

            subplot.plot([0, 0], [ymin, ymax], c='r')
            set_axis_limits(subplot, -t_min, t_max, ymin, ymax)
            pylab.draw()