Пример #1
0
  def __setitem__(self, index, value):
      """Override built in.

      This is called when instance is called to assign a value,
      e.g.:

      matrix[3, 'A'] = (entry1, entry2)"""
      if type(index) == types.TupleType:
          row, colName = index
      else:
          raise IndexError("index is not a tuple")
      if type(value) == types.TupleType:
          value1, value2 = value
      elif type(value) == types.StringType:
          value = value
      else:
          raise ValueError("value being assigned is not a tuple")

      if colName in self.colList:
          # find the location in order in the array
          col = self.colList.index(colName)
          # calculate the offsets to the actual array location
          col1 = col * 2
          col2 = col1 + 1
          # store each element in turn
          self.array[(row,col1+self.extraCount)] = asarray(value1,self._typecode)
          self.array[(row,col2+self.extraCount)] = asarray(value2,self._typecode)

      elif colName in self.extraList:
          col = self.extraList.index(colName)
          self.array[(row,col)] = asarray(value,self._typecode)
      else:
          raise KeyError("can't find %s column" % col)
Пример #2
0
    def __setitem__(self, index, value):
        """Override built in.

      This is called when instance is called to assign a value,
      e.g.:

      matrix[3, 'A'] = (entry1, entry2)"""
        if type(index) == types.TupleType:
            row, colName = index
        else:
            raise IndexError("index is not a tuple")
        if type(value) == types.TupleType:
            value1, value2 = value
        elif type(value) == types.StringType:
            value = value
        else:
            raise ValueError("value being assigned is not a tuple")

        if colName in self.colList:
            # find the location in order in the array
            col = self.colList.index(colName)
            # calculate the offsets to the actual array location
            col1 = col * 2
            col2 = col1 + 1
            # store each element in turn
            self.array[(row, col1 + self.extraCount)] = asarray(
                value1, self._typecode)
            self.array[(row, col2 + self.extraCount)] = asarray(
                value2, self._typecode)

        elif colName in self.extraList:
            col = self.extraList.index(colName)
            self.array[(row, col)] = asarray(value, self._typecode)
        else:
            raise KeyError("can't find %s column" % col)
Пример #3
0
def exercise_generalized_inverse_numpy():
  #print 'Numeric'
  from Numeric import asarray
  from LinearAlgebra import generalized_inverse
  m = asarray([[1,1],[0,0]])
  n = generalized_inverse(m)
  #print 'matrix \n',m
  #print 'inverse\n', n
  m = asarray([[1,1,1],[0,0,0],[0,0,0]])
  n = generalized_inverse(m)
Пример #4
0
def exercise_generalized_inverse_numpy():
    #print 'Numeric'
    from Numeric import asarray
    from LinearAlgebra import generalized_inverse
    m = asarray([[1, 1], [0, 0]])
    n = generalized_inverse(m)
    #print 'matrix \n',m
    #print 'inverse\n', n
    m = asarray([[1, 1, 1], [0, 0, 0], [0, 0, 0]])
    n = generalized_inverse(m)
Пример #5
0
 def __rmul__(self, other):
     import copy
     from Numeric import asarray, matrixmultiply
     a = copy.copy(self)
     if asarray(other).shape == ():
         a.SetBasis(other * self.GetBasis())
     elif asarray(other).shape == self.GetBasis().shape:
         a.SetBasis(matrixmultiply(other, self.GetBasis()))
     else:
         raise ValueError, 'matrices are not aligned'
     return a
Пример #6
0
    def __rmul__(self,other):
        import copy
        from Numeric import asarray,matrixmultiply
        a=copy.copy(self)
	if asarray(other).shape == ():
		a.SetBasis(other*self.GetBasis())
	elif asarray(other).shape == self.GetBasis().shape:
		a.SetBasis(matrixmultiply(other,self.GetBasis()))
	else: 
        	raise ValueError, 'matrices are not aligned'
        return a
Пример #7
0
 def _asarray1d(arr):
     """Ensure 1d array for one array.
     """
     m = asarray(arr)
     if len(m.shape)==0:
         m = reshape(m,(1,))
     return m
Пример #8
0
def iahistogram(f):
    """  o Purpose
      Image histogram.

  o Synopsis
      h = iahistogram(f)

  o Input
      f: 

  o Output
      h: 

  o Description
  
  o Examples
      f = iaread('woodlog.pgm')
      iashow(f)
      h = iahistogram(f)
      g,d = iaplot(h)
      g('set data style boxes')
      g.plot(d)
      showfig(h)
      
"""
    from Numeric import asarray,searchsorted,sort,ravel,concatenate,product 
    
    f = asarray(f)
    n = searchsorted(sort(ravel(f)), range(max(ravel(f))+1))
    n = concatenate([n, [product(f.shape)]])
    h = n[1:]-n[:-1]
    
    return h
Пример #9
0
 def _asarray1d(arr):
     """Ensure 1d array for one array.
     """
     m = asarray(arr)
     if len(m.shape) == 0:
         m = reshape(m, (1, ))
     return m
Пример #10
0
def iaind2sub(dim,i):
    """  o Purpose
      Convert linear index to double subscripts.

  o Synopsis
      x,y = iaind2sub(dim,i)

  o Input
      dim: Dimension.
    i: Index.

  o Output
      x: 
    y: 

  o Description
  
  o Examples
      f = Numeric.array([[0,6,0,2],[4,0,1,8],[0,0,3,0]])
      print f
      i = Numeric.nonzero(Numeric.ravel(f))
      (x,y) = iaind2sub(f.shape, i)
      print x
      print y
      print f[x[0],y[0]]
      print f[x[4],y[4]]
      
"""
    from Numeric import asarray 
    
    i = asarray(i)
    x = i / dim[1]
    y = i % dim[1]
    
    return x,y
Пример #11
0
 def setWidget(self, widget, newValue):
     """Called by AttributeControl to set our widgets' values to the observed values,
        to implement refresh(). This is also used during initialization.
        """
     drawingArea = widget.drawingArea
     color = map(int, tuple(asarray(newValue[:3]) * 65535))
     gdkColor = drawingArea.get_colormap().alloc_color(*color)
     self.setColor(drawingArea, gdkColor, newValue[3])
Пример #12
0
	def TranslateCoordinates(self,translation,type):
		"""Returns a translated grid

		This method can be used to translate the coordinates of a 
		grid. Two different types of translation exist

		* 'active' : Translates every grid point according to 
		'translation'

		* 'passive' : Translates the origin of the grid according to 
		'translation'

		This method only supports a translation vector that matches
		the grid coordinates and for this reason 'translation' should
		be specified in terms of these coordinates.
		"""
		import ArrayTools
		from Numeric import asarray
		from Vector import Vector
		import copy

		# finding the output grid
		translategrid=copy.copy(self)

		# preparing for translation and calculating origin
		#trunctranslation=self._GetTruncatedTranslation(translation)
		if type=='active':
			translationnumbers=self._GetTranslationNumbers(-asarray(translation))		
			# origin
			translategrid.SetOrigin(self.GetOrigin())
		elif type=='passive':
			translationnumbers=self._GetTranslationNumbers(asarray(translation))		
			# origin
			transorigin=Vector(space=self.GetOrigin().GetSpace())
			transorigin.SetCartesianCoordinates(translategrid.GetSpace().CartesianCoordinatesFromCoordinates(self.CoordinatesFromGridCoordinates(translation)))
			translategrid.SetOrigin(self.GetOrigin()+transorigin)
		else:
			raise ValueError, 'translation type not defined'

		# finding the output array
		translatearray=ArrayTools.Translate(self.GetArray(),translationnumbers)
		translategrid.SetArray(translatearray)

		return translategrid
Пример #13
0
def spline(x, y, yp1=None, ypn=None):
	"""y2 = spline(x_vals,y_vals, yp1=None, ypn=None) 
	returns the y2 table for the spline as needed by splint()"""

	n=len(x)
	u=zeros(n,Float)
	y2=zeros(n,Float)
	
	x=asarray(x, Float)
	y=asarray(y, Float)
	
	dx=x[1:]-x[:-1]
	dxi=1.0/dx
	dx2i=1.0/(x[2:]-x[:-2])
	dy=(y[1:]-y[:-1])
	siga=dx[:-1]*dx2i
	dydx=dy*dxi
	
	# u[i]=(y[i+1]-y[i])/float(x[i+1]-x[i]) - (y[i]-y[i-1])/float(x[i]-x[i-1])
	u[1:-1]=dydx[1:]-dydx[:-1] #this is an incomplete rendering of u... the rest requires recursion in the loop
	
	if yp1 is None:
		y2[0]=u[0]=0.0
	else:
		y2[0]= -0.5
		u[0]=(3.0*dxi[0])*(dy[0]*dxi[0] -yp1)

	for i in range(1,n-1):
		sig=siga[i-1]
		p=sig*y2[i-1]+2.0
		y2[i]=(sig-1.0)/p
		u[i]=(6.0*u[i]*dx2i[i-1] - sig*u[i-1])/p

	if ypn is None:
		qn=un=0.0
	else:
		qn= 0.5
		un=(3.0*dxi[-1])*(ypn- dy[-1]*dxi[-1] )
		
	y2[-1]=(un-qn*u[-2])/(qn*y2[-2]+1.0)
	for k in range(n-2,-1,-1):
		y2[k]=y2[k]*y2[k+1]+u[k]

	return y2
Пример #14
0
 def SetBasis(self, basis):
     from Numeric import asarray
     dim = len(basis)
     v = dim * [0]
     for i in range(dim):
         try:
             v[i] = basis[i].GetCartesianCoordinates()
         except:
             v[i] = basis[i]
     self.Basis = asarray(v)
Пример #15
0
    def MultiplyVector(self,vector,other):
	""" Multiplies a Vector with a scalar"""
	import copy
	from Numeric import asarray
	v=copy.copy(vector)
	if asarray(other).shape == ():
	    v.SetCartesianCoordinates(other*vector.GetCartesianCoordinates())
	    return v
	else:
	    raise ValueError, 'wrong multiplication of Vector'
Пример #16
0
 def MultiplyVector(self, vector, other):
     """ Multiplies a Vector with a scalar"""
     import copy
     from Numeric import asarray
     v = copy.copy(vector)
     if asarray(other).shape == ():
         v.SetCartesianCoordinates(other * vector.GetCartesianCoordinates())
         return v
     else:
         raise ValueError, 'wrong multiplication of Vector'
Пример #17
0
    def SetBasis(self,basis):
	from Numeric import asarray
	dim=len(basis)
	v=dim*[0]
	for i in range(dim):
	    try:
		v[i]=basis[i].GetCartesianCoordinates()
	    except:
		v[i]=basis[i]
	self.Basis=asarray(v)
Пример #18
0
	def SetArray(self,array):
		"""Sets the array

		This method sets the array. The array should have the shape
		( *a1* , *a2*,..., *ai* , *N1* , *N2* ,..., *NN* ) in case of 
		a grid having *i* components in a *N* dimensional space.
		*Ni* corresponds to the number of values along each axis.
		Note that even though the array is given in terms of a tuple 
		or a list it will be converted to a NumPy array.
		"""
		self.Array=asarray(array)
Пример #19
0
 def validate ( self, object, name, value ):
     """ Validates that a value is legal for the trait.
     """
     try:
         # Make sure the value is an array:
         type_value = type( value )
         if type_value is not ArrayType:
             if type_value not in SequenceTypes:
                 self.error( object, name, self.repr( value ) ) 
             value = asarray( value, self.typecode )
             
         # Make sure the array is of the right type:
         if ((self.typecode is not None) and 
             (value.typecode() != self.typecode)):
             if self.coerce:
                 value = value.astype( self.typecode )
             else:
                 value = asarray( value, self.typecode )
                 
         # If no shape requirements, then return the value:
         trait_shape = self.shape
         if trait_shape is None:
             return value
             
         # Else make sure that the value's shape is compatible:
         value_shape = value.shape
         if len( trait_shape ) == len( value_shape ):
             for i, dim in enumerate( value_shape ):
                 item = trait_shape[i]
                 if item is not None:
                     if type( item ) is int:
                         if dim != item:
                             break
                     elif ((dim < item[0]) or 
                           ((item[1] is not None) and (dim > item[1]))):
                         break
             else:
                 return value
     except:
         pass
     self.error( object, name, self.repr( value ) ) 
Пример #20
0
    def validate(self, object, name, value):
        """ Validates that a value is legal for the trait.
        """
        try:
            # Make sure the value is an array:
            type_value = type(value)
            if type_value is not ArrayType:
                if type_value not in SequenceTypes:
                    self.error(object, name, self.repr(value))
                value = asarray(value, self.typecode)

            # Make sure the array is of the right type:
            if ((self.typecode is not None)
                    and (value.typecode() != self.typecode)):
                if self.coerce:
                    value = value.astype(self.typecode)
                else:
                    value = asarray(value, self.typecode)

            # If no shape requirements, then return the value:
            trait_shape = self.shape
            if trait_shape is None:
                return value

            # Else make sure that the value's shape is compatible:
            value_shape = value.shape
            if len(trait_shape) == len(value_shape):
                for i, dim in enumerate(value_shape):
                    item = trait_shape[i]
                    if item is not None:
                        if type(item) is int:
                            if dim != item:
                                break
                        elif ((dim < item[0])
                              or ((item[1] is not None) and (dim > item[1]))):
                            break
                else:
                    return value
        except:
            pass
        self.error(object, name, self.repr(value))
Пример #21
0
    def ReadFromPositionsScalars(self, positions, scalars):
        """Reads vtkPolyData from positions and scalars"""
        # Inserting positions
        self.pointdata = vtkPointsFromArray(positions)

        # Inserting scalars
        #self.scalardata=vtkScalarsFromArray(scalars)
        self.scalardata = vtkFloatArrayFromNumPyArray(
            copy.copy(asarray(scalars)[..., NewAxis]))
        # Inserting positions and scalars in vtkPolyData
        self.GetvtkPolyData().SetPoints(self.pointdata.GetvtkPoints())
        #self.GetvtkPolyData().GetPointData().SetScalars(self.scalardata.GetvtkScalars())
        pointdata = self.GetvtkPolyData().GetPointData()
        pointdata.SetScalars(self.scalardata.GetvtkFloatArray())
Пример #22
0
    def setColor(self, drawingArea, color, alpha):
        """Accepts a gdkcolor and a floating point alpha, showing their values in the control widgets
           and setting the attached object attribute to the new color value.
           """
        drawingArea.gdkColor = color
        drawingArea.modify_bg(gtk.STATE_NORMAL, color)
        drawingArea.colorTuple = (color.red   / 65535,
                                  color.green / 65535,
                                  color.blue  / 65535,
                                  alpha)

        # Show the color in hex, since floating point takes too much space
        drawingArea.label.set_text("#%02X%02X%02X%02X" %
                                   tuple(asarray(drawingArea.colorTuple)*255))
        drawingArea.setFunction(drawingArea.colorTuple)
Пример #23
0
def CoordinateArrayFromUnitVectors(shape,
                                   gridunitvectors,
                                   origin=[0, 0, 0],
                                   indexfunction=lambda i, length: i):
    """
	This method can be used to obtain an array representing the coordinates
	of a space defined by 'gridunitvecors'. 'gridunitvectors' is in turn a
 	list containing the vectors defining the cells of the grid, i.e. the
	vectors between neighboring grid points. These vectors are spanned
	according to the specified shape. 

	'origin' -- specifies the origin of the returned coordinate array. 
	
	'indexfunction' -- is a lambda expression that defines the indices 
	with which each of the specified gridunitvectors are to be multiplied. 
	'indexfunction' must take two arguments, 'i' and 'length' - default
	is 'lambda i,length:i'. During exection the input index 'i' will run 
	over the interval 0,1,..., 'length' -1.

	**An Example**

	To obtain a coordinate array of shape (10,10) with 
	'gridunitvectors' =[[2,0],[0,1]] and the origin at [10,0] use:

	'CoordinateArrayFromUnitVectors((10,10),[[2,0],[0,1],[10,0])'

	Note that the output array will be of shape 
	(< *dimension* > ,  < *spatialcoordinates* >).
	"""
    from Numeric import add, fromfunction, array, asarray
    coordinatelist = []
    gridunitvectors = asarray(gridunitvectors)
    # Looping over the dimensionality of the vectors
    for dim in range(gridunitvectors.shape[1]):
        coordinates = origin[dim]
        # Contribution from each unitvector
        for nunitvector in range(gridunitvectors.shape[0]):
            # Finding the indices from which the coordinate grid
            # is spanned
            indices = map(
                lambda i, f=indexfunction, l=shape[nunitvector]: f(i, l),
                range(shape[nunitvector]))
            coordinatefunc = lambda i, v=gridunitvectors[nunitvector, dim
                                                         ]: i * v
            coordinates = add.outer(coordinates, map(coordinatefunc, indices))
        coordinatelist.append(coordinates)
    return array(coordinatelist)
Пример #24
0
def get_colours(n):
    """ Return n pastel colours. """
    base = asarray([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

    if n <= 3:
        return base[0:n]

    # how many new colours to we need to insert between
    # red and green and between green and blue?
    needed = (((n - 3) + 1) / 2, (n - 3) / 2)

    colours = []
    for start in (0, 1):
        for x in linspace(0, 1, needed[start] + 2):
            colours.append((base[start] * (1.0 - x)) + (base[start + 1] * x))

    return [pastel(c) for c in colours[0:n]]
Пример #25
0
def get_colours(n):
    """ Return n pastel colours. """
    base = asarray([[1,0,0], [0,1,0], [0,0,1]])

    if n <= 3:
        return base[0:n]

    # how many new colours to we need to insert between
    # red and green and between green and blue?
    needed = (((n - 3) + 1) / 2, (n - 3) / 2)

    colours = []
    for start in (0, 1):
        for x in linspace(0, 1, needed[start]+2):
            colours.append((base[start] * (1.0 - x)) +
                           (base[start+1] * x))

    return [pastel(c) for c in colours[0:n]]
Пример #26
0
	def SetRGBColors(self,colorlist):
		"""Sets the vtkLookupTable

		This method can be used to change the colortable. 'colorlist'
		is expected to be a list of colors whose elements is either 
		specified in terms of the RGB colorscale or in terms of the 
		name of a color. A complete list of the recognized colors can 
		be obtained via the method 'GetColorNames' . 

		**An example**

		To generate a colortable going from red to 
		(0.5000,0.1647,0.1647) to black use: 
		'SetRGBColors(["red",(0.5000,0.1647,0.1647),"black"])' .
		"""
		from Numeric import asarray,Float,array

		interval=256/(len(colorlist)-1)
		Ncolors=interval*(len(colorlist)-1)

		self.SetNumberOfColors(Ncolors)

		# Translating colors (if any) to r,g,b numbers
		for i in range(len(colorlist)):
			if type(colorlist[i]) in [type([]),type(())]:
				colorlist[i]=asarray(colorlist[i],Float)
			else:
				colorlist[i]=array(self.ColorNameToRGB(colorlist[i]))
				
		# Finding the difference between adjacent colors
		# dcolorlist is the steplenght for each color entry
		dcolorlist=[]

		for i in range(len(colorlist)-1):
			dcolorlist.append((colorlist[i+1]-colorlist[i])/interval)
		# Inserting the colors in the table
		color=colorlist[0]
		for loopnumber in range(len(colorlist)-1):
			for entry in range(loopnumber*interval,(loopnumber+1)*interval):
				r,g,b=color
				self.SetTableValue(entry,r,g,b,1.0)
				color=color+dcolorlist[loopnumber]
Пример #27
0
	def Repeat(self,periods):
		"""Returns a repeated grid

		This method can be used used to repeat the grid an integer 
		number of times according to the unit cell. Note that the unit
 		cell in the returned grid will also be expanded according to 
		'periods' . 
		"""
		from ArrayTools import RepeatArray
		from Numeric import transpose,asarray
		a=copy.copy(self)
		# Finding the new grid
		valueorder=len(self.GetShape())-len(self.GetSpatialShape())
		# Only the spatial coordinates are repeated
		a.SetArray(RepeatArray(a.GetArray(),valueorder*[1]+periods))
		# Finding the new space
		newspace=copy.copy(self.GetSpace())
		newspace.SetBasis(transpose(transpose(self.GetSpace().GetBasis())*asarray(periods)))
		a.SetSpace(newspace)
		return a
Пример #28
0
def pastel(colour, weight=2.4):
    """ Convert colour into a nice pastel shade"""
    rgb = asarray(colorConverter.to_rgb(colour))
    # scale colour
    maxc = max(rgb)
    if maxc < 1.0 and maxc > 0:
        # scale colour
        scale = 1.0 / maxc
        rgb = rgb * scale
    # now decrease saturation
    total = sum(rgb)
    slack = 0
    for x in rgb:
        slack += 1.0 - x

    # want to increase weight from total to weight
    # pick x s.t.  slack * x == weight - total
    # x = (weight - total) / slack
    x = (weight - total) / slack

    rgb = [c + (x * (1.0 - c)) for c in rgb]

    return rgb
Пример #29
0
def pastel(colour, weight=2.4):
    """ Convert colour into a nice pastel shade"""
    rgb = asarray(colorConverter.to_rgb(colour))
    # scale colour 
    maxc = max(rgb)
    if maxc < 1.0 and maxc > 0:
        # scale colour
        scale = 1.0 / maxc
        rgb = rgb * scale
    # now decrease saturation
    total = sum(rgb)
    slack = 0
    for x in rgb:
        slack += 1.0 - x

    # want to increase weight from total to weight
    # pick x s.t.  slack * x == weight - total
    # x = (weight - total) / slack
    x = (weight - total) / slack

    rgb = [c + (x * (1.0-c)) for c in rgb]

    return rgb
Пример #30
0
def Map(function, array, coordinates):
    """Return a mapped array

	This method can be used to map an array along with the coordinates
	corresponding to each grid point. The arrangement of the arguments
	in the input function is expected to be of the form 
	'function(' *arrayvalue* , *coordinate* ')' where *coordinate* is a 
	NumPy array having a length correspoding to the dimension.
	"""
    from Numeric import reshape, swapaxes, asarray

    # Finding the dimension of the array
    dim = coordinates.shape[0]
    spatialshape = array.shape[-dim:]

    # Reshaping array shape=(indices,)
    flatarray = reshape(array, (array.shape[:-dim] + (-1, )))
    # Reshaping coordinates (indices,dim)
    flatcoordinates = swapaxes(reshape(coordinates, (dim, -1)), 0, 1)

    maparray = asarray(map(function, flatarray, flatcoordinates))

    # Reshaping back again
    return reshape(maparray, spatialshape)
Пример #31
0
    def CoordinatesFromCartesianCoordinates(self,coordinates):
	from LinearAlgebra import solve_linear_equations
	return solve_linear_equations(transpose(self.GetBasis()),asarray(coordinates))
Пример #32
0
def iaconv(f,h):
    """  o Purpose
      2D convolution.

      modified by drewp to build a result array of the same typecode
      as 'f', which makes this work on complex arrays.

  o Synopsis
      g = iaconv(f,h)

  o Input
      f: input image.
    h: PSF (point spread function), or kernel. The origin is at the array center.

  o Output
      g: 

  o Description
      Perform a 2D discrete convolution. The kernel origin is at the center of image h.

  o Examples
      import Numeric
      f = Numeric.zeros((5,5))
      f[2,2] = 1
      print f
      h = Numeric.array([[1,2,3],[4,5,6]])
      print h
      a = iaconv(f,h)
      print a
      
    f = Numeric.array([[1,0,0,0],[0,0,0,0]])
      print f
      h = Numeric.array([1,2,3])
      print h
      a = iaconv(f,h)
      print a
      
    f = Numeric.array([[1,0,0,0,0,0],[0,0,0,0,0,0]])
      print f
      h = Numeric.array([1,2,3,4])
      print h
      a = iaconv(f,h)
      print a
      
    f = iaread('cameraman.pgm')
      h = [[1,2,1],[0,0,0],[-1,-2,-1]]
      g = iaconv(f,h)
      gn = ianormalize(g, [0,255])
      iashow(gn)
      
"""
    from Numeric import asarray,NewAxis,zeros,array,product
    
    f, h = asarray(f), asarray(h)
    if len(f.shape) == 1: f = f[NewAxis,:]
    if len(h.shape) == 1: h = h[NewAxis,:]
    if product(f.shape) < product(h.shape):
        f, h = h, f
    g = zeros(array(f.shape) + array(h.shape) - 1,f.typecode())
    for i in range(h.shape[0]):
        for j in range(h.shape[1]):
            g[i:i+f.shape[0], j:j+f.shape[1]] += h[i,j] * f
    
    return g
Пример #33
0
    def CoordinatesFromCartesianCoordinates(self,coor):
	"""  Returns the Cartesian coordinates (i.e 'coordinates')"""
	return asarray(coor)
Пример #34
0
 def ReadFromArray(self, array):
     """Reads vtkScalars from array"""
     # The array is copied to make it contiguous
     self.scalardata = vtkFloatArrayFromNumPyArray(
         copy.copy(asarray(array)[..., NewAxis]))
     self.GetvtkScalars().SetScalars(self.scalardata.GetvtkFloatArray())
Пример #35
0
def closeto(x,y):
    try: assert(abs(asarray(x)-asarray(y))<1e-10)
    except AssertionError:
        raise AssertionError('Failed: %s and %s not close' %(x,y))
Пример #36
0
 def CoordinatesFromCartesianCoordinates(self, coor):
     """  Returns the Cartesian coordinates (i.e 'coordinates')"""
     return asarray(coor)
Пример #37
0
    def CartesianCoordinatesFromCoordinates(self,coordinates):
	return dot(asarray(coordinates),self.GetBasis())
Пример #38
0
 def CartesianCoordinatesFromCoordinates(self, coordinates):
     return dot(asarray(coordinates), self.GetBasis())
Пример #39
0
def SeqToProfile(seq, alphabet=None, char_order=None,\
    split_degenerates=False):
    """Generates a Profile object from a Sequence object.

    seq: Sequence object
    alphabet (optional): Alphabet object (if you want to split
        degenerate symbols, the alphabet object should have a 
        Degenerates property. Default is the Alphabet associated with 
        the Sequence object.
    char_order (optional): The order the characters occur in the Profile.
        Default is the list(alphabet)
    split_degenerates (optional): Whether you want the counts for the 
        degenerate symbols to be divided over the non-degenerate symbols they
        code for.
    
    A Profile is a position x character matrix describing which characters
    occur at each position. In a sequence (as opposed to an alignment) only
    one character occurs at each position. In general a sequence profile
    will only contain ones and zeros. However, you have the possibility of 
    splitting degenerate characters. For example, if a position is R, it 
    means that you have 50/50% chance of A and G. It's also possible to 
    ignore characters, which in a sequence profile will lead to positions
    (rows) containing only zeros.
    
    Example:
    Sequence = ACGU
    Profile(seq, CharOrder=UCAG):
    U   C   A   G
    0   0   1   0   first pos
    0   1   0   0   second pos
    0   0   0   1   third pos
    1   0   0   0   fourth pos

    Sequence= GURY
    Profile(seq,CharOrder=UCAG, split_degenerates=True)
    U   C   A   G
    0   0   0   1   first pos
    1   0   0   0   second pos
    0   0   .5  .5  third pos
    .5  .5  0   0   fourth pos

    Characters can also be ignored
    Sequence = ACN-
    Profile(seq, CharOrder=UCAGN, split_degenerates=True)
    U   C   A   G
    0   0   1   0   first pos
    0   1   0   0   second pos
    .25 .25 .25 .25 third pos
    0   0   0   0   fourth pos <--contains only zeros
    """

    if alphabet is None:
        alphabet = seq.Alphabet
    if char_order is None:
        char_order = list(alphabet)

    #Determine the meaning of each character based on the alphabet, the
    #character order, and the option to split degenerates
    char_meaning = CharMeaningProfile(alphabet, char_order,\
        split_degenerates)
    #construct profile data
    result_data = take(char_meaning.Data, asarray(seq.upper(), UInt8))
    
    return Profile(result_data, alphabet, char_order)
Пример #40
0
    def SetCoordinates(self,coordinates):
	"""Sets the coordinates of the vector in the basis of the 'VectorSpace'."""
        self.Coordinates=asarray(coordinates)
Пример #41
0
 def SetCoordinates(self, coordinates):
     """Sets the coordinates of the vector in the basis of the 'VectorSpace'."""
     self.Coordinates = asarray(coordinates)
Пример #42
0
def closeto(x, y):
    try:
        assert (abs(asarray(x) - asarray(y)) < 1e-10)
    except AssertionError:
        raise AssertionError('Failed: %s and %s not close' % (x, y))
Пример #43
0
 def ReadFromArray(self, array):
     """Read vtkPoints from array"""
     self.pointdata = vtkFloatArrayFromNumPyArray(asarray(array))
     self.GetvtkPoints().SetData(self.pointdata.GetvtkFloatArray())
Пример #44
0
 def CoordinatesFromCartesianCoordinates(self, coordinates):
     from LinearAlgebra import solve_linear_equations
     return solve_linear_equations(transpose(self.GetBasis()),
                                   asarray(coordinates))
Пример #45
0
	def CoordinatesFromGridCoordinates(self,gridcoor):
		"""Returns a list containing the scaled coordinates
		"""
		from Numeric import Float
		return list(asarray(gridcoor,Float)/self.GetSpatialShape())
Пример #46
0
def AlnToProfile(aln, alphabet=None, char_order=None, split_degenerates=False,\
    weights=None):
    """Generates a Profile object from an Alignment.

    aln: Alignment object
    alphabet (optional): an Alphabet object (or list of chars, but if you 
        want to split degenerate symbols, the alphabet must have a 
        Degenerates property. Default is the alphabet of the first seq in 
        the alignment.
    char_order (optional): order of the characters in the profile. Default
        is list(alphabet)
    split_degenerates (optional): Whether you want the counts for the 
        degenerate symbols to be divided over the non-degenerate symbols they
        code for.
    weights (optional): dictionary of seq_id: weight. If not entered all seqs
        are weighted equally

    A Profile is a position x character matrix describing which characters
    occur at each position of an alignment. The Profile is always normalized,
    so it gives the probabilities of each character at each position.
    
    Ignoring chars: you can ignore characters in the alignment by not putting
    the char in the CharOrder. If you ignore all characters at a particular
    position, an error will be raised, because the profile can't be normalized.

    Splitting degenerates: you can split degenerate characters over the 
    non-degenerate characters they code for. For example: R = A or G. So,
    an R at a position counts for 0.5 A and 0.5 G.
   
    Example:
    seq1    TCAG    weight: 0.5
    seq2    TAR-    weight: 0.25
    seq3    YAG-    weight: 0.25
    Profile(aln,alphabet=DnaAlphabet,char_order="TACG",weights=w,
    split_degenerates=True)
    Profile:
       T      A      C      G
    [[ 0.875  0.     0.125  0.   ]
     [ 0.     0.5    0.5    0.   ]
     [ 0.     0.625  0.     0.375]
     [ 0.     0.     0.     1.   ]]
    """

    if alphabet is None:
        alphabet = aln.values()[0].Alphabet
    if char_order is None:
        char_order = list(alphabet)
    if weights is None:
        weights = dict.fromkeys(aln.keys(),1/len(aln))
    
    char_meaning = CharMeaningProfile(alphabet, char_order,\
        split_degenerates)

    profiles = []
    for k,v in aln.items():
        profiles.append(take(char_meaning.Data, asarray(v.upper(), UInt8))\
            * weights[k])
    s = reduce(add,profiles)
    
    result = Profile(s,alphabet, char_order)
    try:
        result.normalizePositions()
    except:
        raise ValueError,\
        "Probably one of the rows in your profile adds up to zero,\n "+\
        "because you are ignoring all of the characters in the "+\
        "corresponding\n column in the alignment"
    return result
Пример #47
0
def iagaussian(s,mu,sigma):
    """  o Purpose
      Generate a 2D Gaussian image.

  o Synopsis
      g = iagaussian(s,mu,sigma)

  o Input
      s: [rows columns]
    mu: Mean vector. 2D point (x;y). Point of maximum value.
    sigma: covariance matrix (square).  [ Sx^2 Sxy; Syx Sy^2]

  o Output
      g: 

  o Description
      A 2D Gaussian image is an image with a Gaussian distribution. It can be used to generate test patterns or Gaussian filters both for spatial and frequency domain. The integral of the gaussian function is 1.0.

  o Examples
      import Numeric
      f = iagaussian([8,4], [3,1], [[1,0],[0,1]])
      print Numeric.array2string(f, precision=4, suppress_small=1)
      g = ianormalize(f, [0,255]).astype(Numeric.UnsignedInt8)
      print g
    f = iagaussian(100, 50, 10*10)
      g = ianormalize(f, [0,1])
      g,d = iaplot(g)
      showfig(g)
    f = iagaussian([50,50], [25,10], [[10*10,0],[0,20*20]])
      g = ianormalize(f, [0,255]).astype(Numeric.UnsignedInt8)
      iashow(g)
"""
    from Numeric import asarray,product,arange,NewAxis,transpose,matrixmultiply,reshape,concatenate,resize,sum,zeros,Float,ravel,pi,sqrt,exp 
    from LinearAlgebra import inverse,determinant 
    
    if type(sigma).__name__ in ['int', 'float', 'complex']: sigma = [sigma]
    s, mu, sigma = asarray(s), asarray(mu), asarray(sigma)
    
    if (product(s) == max(s)):
        x = arange(product(s))
        d = x - mu
        if len(d.shape) == 1:
            tmp1 = d[:,NewAxis]
            tmp3 = d
        else:
            tmp1 = transpose(d)
            tmp3 = tmp1
        if len(sigma) == 1:
            tmp2 = 1./sigma
        else:
            tmp2 = inverse(sigma)
        k = matrixmultiply(tmp1, tmp2) * tmp3
    else:
        aux = arange(product(s))
        x, y = iaind2sub(s, aux)
        xx = reshape(concatenate((x,y)), (2, product(x.shape)))
    
        d = transpose(xx) - resize(reshape(mu,(len(mu),1)), (s[0]*s[1],len(mu)))
    
        if len(sigma) == 1:
            tmp = 1./sigma
        else:
            tmp = inverse(sigma)
        k = matrixmultiply(d, tmp) * d
        k = sum(transpose(k))
    
    g = zeros(s, Float)
    aux = ravel(g)
    if len(sigma) == 1:
        tmp = sigma
    else:
        tmp = determinant(sigma)
    aux[:] = 1./(2*pi*sqrt(tmp)) * exp(-1./2 * k)
    
    return g