Пример #1
0
def generate_image_depth_pair_match(dataset_root, rgb_file_path,
                                    depth_file_path, match_text, image_id):
    rgb_ref_file_path, depth_ref_file_path = associate.return_rgb_depth_from_rgb_selection(
        rgb_file_path, depth_file_path, match_text, dataset_root, image_id)
    im_greyscale_reference = cv2.imread(
        rgb_ref_file_path, cv2.IMREAD_GRAYSCALE).astype(Utils.image_data_type)
    im_greyscale_reference = ImageProcessing.z_standardise(
        im_greyscale_reference)
    im_depth_reference = cv2.imread(depth_ref_file_path,
                                    cv2.IMREAD_ANYDEPTH).astype(
                                        Utils.depth_data_type_float)

    return im_greyscale_reference, im_depth_reference
Пример #2
0
def save_projection_of_back_projected(height,width,frame_reference,X_back_projection):
    N = width*height
    # render/save image of projected, back projected points
    projected_back_projected = frame_reference.camera.apply_perspective_pipeline(X_back_projection)
    # scale ndc if applicable
    #projected_back_projected[0,:] = projected_back_projected[0,:]*width
    #projected_back_projected[1,:] = projected_back_projected[1,:]*height
    debug_buffer = np.zeros((height,width), dtype=np.float64)
    for i in range(0,N,1):
        u = projected_back_projected[0,i]
        v = projected_back_projected[1,i]

        if not np.isnan(u) and not np.isnan(v):
            debug_buffer[int(v),int(u)] = 1.0
    cv2.imwrite("debug_buffer.png", ImageProcessing.normalize_to_image_space(debug_buffer))
Пример #3
0
def generate_image_depth_pair(dataset_root, rgb_folder, depth_folder, image_id,
                              ext):

    image_id_str = f'{image_id:.9f}'
    rgb_ref_file_path = dataset_root + rgb_folder + image_id_str + ext
    depth_ref_file_path = dataset_root + depth_folder + image_id_str + ext

    im_greyscale_reference = cv2.imread(
        rgb_ref_file_path, cv2.IMREAD_GRAYSCALE).astype(Utils.image_data_type)
    im_greyscale_reference = ImageProcessing.z_standardise(
        im_greyscale_reference)
    im_depth_reference = cv2.imread(depth_ref_file_path,
                                    cv2.IMREAD_ANYDEPTH).astype(
                                        Utils.depth_data_type_float)
    return im_greyscale_reference, im_depth_reference
Пример #4
0
from Numerics import Utils
import Camera.Intrinsic as Intrinsic
import Camera.Camera as Camera
import Solver_Cython
from VisualOdometry import Frame
from Numerics import ImageProcessing

# TODO use raw depth values

#im_greyscale_reference = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Synthetic/framebuffer_fov_90_square_Y.png',0)
im_greyscale_reference = cv2.imread(
    '/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Synthetic/framebuffer_fov_90_square.png',
    0)
#im_greyscale_reference = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Synthetic/framebuffer_fov_90_square_negative.png',0)
#im_greyscale_reference = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Home_Images/Images_ZR300_X_Trans_Depth/image_25_small.png',0)
im_greyscale_reference = ImageProcessing.z_standardise(im_greyscale_reference)

#im_greyscale_target = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Synthetic/framebuffer_translated_fov_90_square_Y.png',0)
im_greyscale_target = cv2.imread(
    '/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Synthetic/framebuffer_translated_fov_90_square.png',
    0)
#im_greyscale_target = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Synthetic/framebuffer_left_90_fov_90_square.png',0)
#im_greyscale_target = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Synthetic/framebuffer_translated_fov_90_square_negative.png',0)
#im_greyscale_target = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Home_Images/Images_ZR300_X_Trans_Depth/image_30_small.png',0)
im_greyscale_target = ImageProcessing.z_standardise(im_greyscale_target)

#depth_reference = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Synthetic/depthbuffer_fov_90_square_Y.png',0).astype(
#    Utils.depth_data_type)
depth_reference = cv2.imread(
    '/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Synthetic/depthbuffer_fov_90_square.png',
    0).astype(Utils.depth_data_type)
Пример #5
0
import numpy as np
import cv2
import Camera.Intrinsic as Intrinsic
import Camera.Camera as Camera
from VisualOdometry import Frame
from Numerics import ImageProcessing, Utils

#im_greyscale = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Home_Images/Images_ZR300_XTrans/image_1.png',0)
#im_greyscale = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/rccar_26_09_18/marc_1_full/color/966816.173323313.png',cv2.IMREAD_GRAYSCALE)
#im_greyscale = cv2.imread('/Users/marchaubenstock/Workspace/Diplomarbeit_Resources/VO_Bench/rgbd_dataset_freiburg2_desk/rgb/1311868164.363181.png',cv2.IMREAD_GRAYSCALE)
im_greyscale = cv2.imread('/Users/marchaubenstock/Workspace/Rust/open-cv/images/calib.png',cv2.IMREAD_GRAYSCALE)
#im_greyscale = im_greyscale.astype(Utils.image_data_type)

pixels_standardised = ImageProcessing.z_standardise(im_greyscale)
pixels_norm = im_greyscale.astype(np.float64)

pixels_normalized_disp = ImageProcessing.normalize_to_image_space(pixels_standardised)
pixels_disp = ImageProcessing.normalize_to_image_space(pixels_norm)
depth_image = pixels_standardised.astype(Utils.depth_data_type_int)

se3_identity = np.identity(4, dtype=Utils.matrix_data_type)
intrinsic_identity = Intrinsic.Intrinsic(-1, -1, 0, 0)
camera_identity = Camera.Camera(intrinsic_identity, se3_identity)

frame = Frame.Frame(pixels_standardised, depth_image, camera_identity, True)

#cv2.imshow('grad x',frame.grad_x)
cv2.imshow('grad x abs',np.abs(frame.grad_x))
#cv2.imshow('neg sobel x',-frame.grad_x)
#cv2.imshow('sobel y',frame.grad_y)
#cv2.imshow('image',pixels_disp)
Пример #6
0
                                             image_height / 2)

##############

points_persp = camera.apply_perspective_pipeline(points)

(X_orig, Y_orig, Z_orig) = list(Utils.points_into_components(points))
(X_persp, Y_persp, Z_persp) = list(Utils.points_into_components(points_persp))

##############

scene = Scene.Scene(image_width, image_height, spheres, camera)

scene.render()

frame_buffer_image = ImageProcessing.normalize_to_image_space(
    scene.frame_buffer)
depth_buffer_image = scene.depth_buffer

cv2.imwrite("framebuffer.png", frame_buffer_image)
cv2.imwrite("depthbuffer.png", depth_buffer_image)

###############

scene_translated = Scene.Scene(image_width, image_height, spheres,
                               camera_translated)

scene_translated.render()

frame_buffer_image = ImageProcessing.normalize_to_image_space(
    scene_translated.frame_buffer)
depth_buffer_image = scene_translated.depth_buffer
Пример #7
0
def solve_photometric(frame_reference,
                      frame_target,
                      max_its,
                      eps,
                      debug=False):
    # init
    # array for twist values x, y, z, roll, pitch, yaw
    #t_est = np.array([0, 0, 0], dtype=matrix_data_type).reshape((3, 1))
    t_est = np.array([0, 0, 0], dtype=matrix_data_type).reshape((3, 1))
    #R_est = np.array([[0.05233595624, -0.9986295347545, 0],
    #                  [0.9986295347545, 0.05233595624, 0],
    #                  [0, 0, 1]], dtype=matrix_data_type)
    #R_est = np.array([[1, 0, 0],
    #                  [0, 1, 0],
    #                  [0, 0, 1]], dtype=matrix_data_type)
    R_est = np.identity(3, dtype=matrix_data_type)
    I_3 = np.identity(3, dtype=matrix_data_type)

    (height, width) = frame_target.pixel_image.shape
    N = height * width
    position_vector_size = 3
    twist_size = 6
    stacked_obs_size = position_vector_size * N
    homogeneous_se3_padding = Utils.homogenous_for_SE3()
    # Step Factor
    #alpha = 0.125
    Gradient_step_manager = GradientStepManager.GradientStepManager(
        alpha_start=1.0,
        alpha_min=-0.7,
        alpha_step=-0.01,
        alpha_change_rate=0,
        gradient_monitoring_window_start=3,
        gradient_monitoring_window_size=0)
    v_mean = -10000
    v_mean_abs = -10000
    it = -1
    std = math.sqrt(0.4)
    image_range_offset = 10

    SE_3_est = np.append(np.append(R_est, t_est, axis=1),
                         Utils.homogenous_for_SE3(),
                         axis=0)

    generator_x = Lie.generator_x_3_4()
    generator_y = Lie.generator_y_3_4()
    generator_z = Lie.generator_z_3_4()
    generator_roll = Lie.generator_roll_3_4()
    generator_pitch = Lie.generator_pitch_3_4()
    generator_yaw = Lie.generator_yaw_3_4()

    X_back_projection = np.ones((4, N), Utils.matrix_data_type)
    valid_measurements_reference = np.full(N, False)
    valid_measurements_target = np.full(N, False)

    # Precompute back projection of pixels
    GaussNewtonRoutines_Cython.back_project_image(
        width, height, frame_reference.camera, frame_reference.pixel_depth,
        frame_target.pixel_depth, X_back_projection, image_range_offset)

    if debug:
        # render/save image of projected, back projected points
        projected_back_projected = frame_reference.camera.apply_perspective_pipeline(
            X_back_projection)
        # scale ndc if applicable
        #projected_back_projected[0,:] = projected_back_projected[0,:]*width
        #projected_back_projected[1,:] = projected_back_projected[1,:]*height
        debug_buffer = np.zeros((height, width), dtype=np.float64)
        for i in range(0, N, 1):
            u = projected_back_projected[0, i]
            v = projected_back_projected[1, i]

            if not np.isnan(u) and not np.isnan(v):
                debug_buffer[int(v), int(u)] = 1.0
        cv2.imwrite("debug_buffer.png",
                    ImageProcessing.normalize_to_image_space(debug_buffer))

    # Precompute the Jacobian of SE3 around the identity
    J_lie = JacobianGenerator.get_jacobians_lie(generator_x,
                                                generator_y,
                                                generator_z,
                                                generator_yaw,
                                                generator_pitch,
                                                generator_roll,
                                                X_back_projection,
                                                N,
                                                stacked_obs_size,
                                                coefficient=2.0)

    # Precompute the Jacobian of the projection function
    J_pi = JacobianGenerator.get_jacobian_camera_model(
        frame_reference.camera.intrinsic, X_back_projection)

    # count the number of true
    #valid_measurements_total = np.logical_and(valid_measurements_reference,valid_measurements_target)
    valid_measurements = valid_measurements_reference

    #number_of_valid_reference = np.sum(valid_measurements_reference)
    #number_of_valid_total = np.sum(valid_measurements_total)
    #number_of_valid_measurements = number_of_valid_reference

    for it in range(0, max_its, 1):
        start = time.time()
        # accumulators
        #TODO: investigate preallocate and clear in a for loop
        J_v = np.zeros((twist_size, 1), dtype=np.float64)
        normal_matrix = np.zeros((twist_size, twist_size), dtype=np.float64)

        # Warp with the current SE3 estimate
        Y_est = np.matmul(SE_3_est, X_back_projection)
        v = np.zeros((N, 1), dtype=matrix_data_type, order='F')

        target_index_projections = frame_target.camera.apply_perspective_pipeline(
            Y_est)

        v_sum = GaussNewtonRoutines_Cython.compute_residual(
            width, height, target_index_projections, valid_measurements,
            frame_target.pixel_image, frame_reference.pixel_image, v,
            image_range_offset)

        number_of_valid_measurements = np.sum(valid_measurements_reference)

        Gradient_step_manager.save_previous_mean_error(v_mean_abs, it)

        v_mean = v_sum / number_of_valid_measurements
        #v_mean_abs = np.abs(v_mean)
        v_mean_abs = v_mean

        Gradient_step_manager.track_gradient(v_mean_abs, it)

        if v_mean_abs < eps:
            print('done')
            break

        Gradient_step_manager.analyze_gradient_history(it)
        #Gradient_step_manager.analyze_gradient_history_instantly(v_mean_abs)

        # See Kerl et al. ensures error decreases ( For pyramid levels )
        #if(v_mean > Gradient_step_manager.last_error_mean_abs):
        #continue

        GaussNewtonRoutines.gauss_newton_step(width, height,
                                              valid_measurements, J_pi, J_lie,
                                              frame_target.grad_x,
                                              frame_target.grad_y, v, J_v,
                                              normal_matrix,
                                              image_range_offset)

        # TODO: Investigate faster inversion with QR
        try:
            pseudo_inv = linalg.inv(normal_matrix)
            #(Q,R) = linalg.qr(normal_matrix)
            #Q_t = np.transpose(Q)
            #R_inv = linalg.inv(R)
            #pseudo_inv = np.multiply(R_inv,Q_t)
        except:
            print('Cant invert')
            return SE_3_est

        w = np.matmul(pseudo_inv, J_v)
        # Apply Step Factor
        w = Gradient_step_manager.current_alpha * w

        w_transpose = np.transpose(w)
        w_x = Utils.skew_symmetric(w[3], w[4], w[5])
        w_x_squared = np.matmul(w_x, w_x)

        # closed form solution for exponential map
        theta = math.sqrt(np.matmul(w_transpose, w))
        theta_sqred = math.pow(theta, 2)
        # TODO use Taylor Expansion when theta_sqred is small
        try:
            A = math.sin(theta) / theta
            B = (1 - math.cos(theta)) / theta_sqred
            C = (1 - A) / theta_sqred
        except:
            print('bad theta')
            return SE_3_est

        u = np.array([w[0], w[1], w[2]]).reshape((3, 1))

        R_new = I_3 + np.multiply(A, w_x) + np.multiply(B, w_x_squared)
        V = I_3 + np.multiply(B, w_x) + np.multiply(C, w_x_squared)

        t_est += +np.matmul(V, u)
        R_est = np.matmul(R_new, R_est)

        SE_3_est = np.append(np.append(R_est, t_est, axis=1),
                             homogeneous_se3_padding,
                             axis=0)
        end = time.time()
        print('mean error:', v_mean, 'iteration: ', it, 'runtime: ',
              end - start)
        #print('Runtime for one iteration:', end-start)

    return SE_3_est