Пример #1
0
def generate_se3_from_groundtruth(groundtruth_list):
    tx = float(groundtruth_list[0])
    ty = float(groundtruth_list[1])
    tz = float(groundtruth_list[2])

    qx = float(groundtruth_list[3])
    qy = float(groundtruth_list[4])
    qz = float(groundtruth_list[5])
    qw = float(groundtruth_list[6])

    #qx *= -1
    #qy *= -1
    #qz *= -1
    #qw *= -1

    se3 = np.identity(4)

    roll, pitch, yaw = SE3.Quaternion_toEulerianRadians(qx, qy, qz, qw)
    #roll*=-1
    #pitch*=-1
    #yaw*=-1
    SO3 = SE3.makeS03(roll, pitch, yaw)  #  seems to be more precise
    #SO3 = SE3.quaternion_to_s03(qx,qy,qz,qw)

    se3[0:3, 0:3] = SO3[0:3, 0:3]
    se3[0, 3] = tx
    se3[1, 3] = ty
    se3[2, 3] = tz

    return se3
Пример #2
0
 def post_process_in_mem(self, se3):
     rot = SE3.extract_rotation(se3)
     euler = SE3.rotationMatrixToEulerAngles(rot)
     rot_new = SE3.makeS03(euler[0], euler[1], -euler[2])
     se3[0:3, 0:3] = rot_new
     #se3[0, 3] = -se3[0, 3]
     se3[1, 3] = -se3[1, 3]
Пример #3
0
    def post_process_in_mem(self, se3):
        x = se3[0, 3]
        y = se3[1, 3]
        z = se3[2, 3]
        rot = SE3.extract_rotation(se3)
        euler = SE3.rotationMatrixToEulerAngles(rot)
        rot_new = SE3.makeS03(euler[2], -euler[1], euler[0])
        #se3[0:4,0:4] = se3_new[0:4,0:4]

        se3[0:3, 0:3] = rot_new[0:3, 0:3]

        se3[0, 3] = z
        #se3[1, 3] = y
        se3[2, 3] = -x
Пример #4
0
    def post_process_in_mem(self, se3):
        rot = SE3.extract_rotation(se3)
        euler = SE3.rotationMatrixToEulerAngles(rot)
        #rot_new = SE3.makeS03(euler[1], -euler[2], euler[0])
        rot_new = SE3.makeS03(euler[0], euler[2], euler[1])
        #se3[0:3, 0:3] = rot_new
        x = se3[0, 3]
        y = se3[1, 3]
        z = se3[2, 3]
        #se3[0, 3] = -y
        #se3[1, 3] = z
        #se3[2, 3] = -x

        se3[0, 3] = x
        se3[1, 3] = z
        se3[2, 3] = y
Пример #5
0
ground_truth_acc = np.identity(4,Utils.matrix_data_type)
se3_estimate_acc = np.identity(4,Utils.matrix_data_type)
ground_truth_list = []
pose_estimate_list = []
ref_image_list = []
target_image_list = []

depth_factor = 5000.0
#depth_factor = 1.0
use_ndc = True


image_groundtruth_dict = dict(associate.match(rgb_text, groundtruth_text))
#se3_ground_truth_prior = np.transpose(SE3.quaternion_to_s03(0.6132, 0.5962, -0.3311, -0.3986))
se3_ground_truth_prior = SE3.makeS03(0,0,pi)
se3_ground_truth_prior = np.append(se3_ground_truth_prior,np.zeros((3,1),dtype=Utils.matrix_data_type),axis=1)
se3_ground_truth_prior = SE3.append_homogeneous_along_y(se3_ground_truth_prior)
#se3_ground_truth_prior = SE3.invert(se3_ground_truth_prior)
se3_ground_truth_prior[0:3,3] = 0


for i in range(0, len(ref_id_list)):

    ref_id = ref_id_list[i]
    target_id = target_id_list[i]

    SE3_ref_target = Parser.generate_ground_truth_se3(groundtruth_text,image_groundtruth_dict,ref_id,target_id,None)
    im_greyscale_reference, im_depth_reference = Parser.generate_image_depth_pair(dataset_root,rgb_text,depth_text,match_text,ref_id)
    im_greyscale_target, im_depth_target = Parser.generate_image_depth_pair(dataset_root,rgb_text,depth_text,match_text,target_id)
Пример #6
0
def solve_photometric(frame_reference,
                      frame_target,
                      threadLock,
                      pose_estimate_list,
                      max_its,
                      eps,
                      alpha_step,
                      gradient_monitoring_window_start,
                      image_range_offset_start,
                      max_depth,
                      twist_prior=None,
                      motion_cov_inv_in=None,
                      use_ndc=False,
                      use_robust=False,
                      track_pose_estimates=False,
                      use_motion_prior=False,
                      ackermann_pose_prior=None,
                      use_ackermann=False,
                      debug=False):

    if track_pose_estimates and (threadLock == None
                                 or pose_estimate_list == None):
        raise RuntimeError(
            'Visualization Flag is set, but no list and lock are supplied')

    # init
    # array for twist values x, y, z, roll, pitch, yaw
    t_est = np.array([0, 0, 0], dtype=matrix_data_type).reshape((3, 1))
    #R_est = np.array([[0.0, -1.0, 0],
    #                  [1.0, 0.0, 0],
    #                  [0, 0, 1]], dtype=matrix_data_type)
    R_est = np.identity(3, dtype=matrix_data_type)
    I_3 = np.identity(3, dtype=matrix_data_type)
    I_4 = np.identity(4, dtype=matrix_data_type)
    I_6 = np.identity(6, dtype=matrix_data_type)
    zero_cov = np.zeros((6, 6), dtype=matrix_data_type)
    #SE3_best = np.identity(4,dtype=matrix_data_type)
    (height, width) = frame_target.pixel_image.shape
    N = height * width
    position_vector_size = 3
    twist_size = 6
    stacked_obs_size = position_vector_size * N
    homogeneous_se3_padding = Utils.homogenous_for_SE3()
    variance = -1
    v_mean = maxsize
    image_range_offset = image_range_offset_start
    degrees_of_freedom = 5.0  # empirically derived: see paper
    normal_matrix_ret = np.identity(6, dtype=Utils.matrix_data_type)
    motion_cov_inv = motion_cov_inv_in
    #motion_cov_inv = np.linalg.inv(motion_cov_inv_in)
    w = np.zeros((twist_size, 1), dtype=Utils.matrix_data_type)
    w_empty = np.zeros((twist_size, 1), dtype=Utils.matrix_data_type)
    w_prev = np.zeros((twist_size, 1), dtype=Utils.matrix_data_type)
    w_acc = np.zeros((twist_size, 1), dtype=Utils.matrix_data_type)
    v_id = np.zeros((N, 1), dtype=matrix_data_type, order='F')
    pseudo_inv = np.identity(twist_size, dtype=matrix_data_type)
    not_better = False
    valid_pixel_ratio = 1.0
    motion_cov_inv_norm = Utils.norm_covariance_row(motion_cov_inv_in)

    fx = frame_reference.camera.intrinsic.extract_fx()
    fy = frame_reference.camera.intrinsic.extract_fy()

    depth_factor = np.sign(fx)
    #depth_factor = -np.sign(fx)

    Gradient_step_manager = GradientStepManager.GradientStepManager(
        alpha_start=alpha_step,
        alpha_min=-0.7,
        alpha_step=-0.01,
        alpha_change_rate=0,
        gradient_monitoring_window_start=gradient_monitoring_window_start,
        gradient_monitoring_window_size=0)

    SE_3_est = np.append(np.append(R_est, t_est, axis=1),
                         Utils.homogenous_for_SE3(),
                         axis=0)
    SE_3_prev = np.append(np.append(R_est, t_est, axis=1),
                          Utils.homogenous_for_SE3(),
                          axis=0)
    #SE_3_est_orig = np.append(np.append(R_est, t_est, axis=1), Utils.homogenous_for_SE3(), axis=0)
    #SE_3_est_last_valid = np.append(np.append(R_est, t_est, axis=1), Utils.homogenous_for_SE3(), axis=0)

    generator_x = Lie.generator_x_3_4()
    #generator_x = Lie.generator_x_3_4_neg()
    generator_y = Lie.generator_y_3_4()
    #generator_y = Lie.generator_y_3_4_neg()
    #generator_z = Lie.generator_z_3_4()
    generator_z = Lie.generator_z_3_4_neg()

    # Depth factor of -1.0 leads to inverted roll and pitch when displaying
    # Why?: Generator defines the direction of increase (My thoughts)
    generator_roll = Lie.generator_roll_3_4()
    #generator_roll = Lie.generator_roll_3_4_neg()
    #generator_pitch = Lie.generator_pitch_3_4()
    generator_pitch = Lie.generator_pitch_3_4_neg()
    generator_yaw = Lie.generator_yaw_3_4()
    #generator_yaw = Lie.generator_yaw_3_4_neg()

    X_back_projection = depth_factor * np.ones((4, N), Utils.matrix_data_type)
    X_back_projection[3, :] = 1.0
    #X_back_projection_last_valid = np.ones((4, N), Utils.matrix_data_type)
    valid_measurements_reference = np.full(N, False)
    valid_measurements_target = np.full(N, False)
    #valid_measurements_last = np.full(N,False)
    #valid_measurements_target = np.full(N,False)
    valid_measurements = valid_measurements_reference
    number_of_valid_measurements = N
    #v = np.zeros((N, 1), dtype=matrix_data_type, order='F')

    # Precompute back projection of pixels
    GaussNewtonRoutines.back_project_image(
        width, height, image_range_offset, frame_reference.camera,
        frame_reference.pixel_depth, frame_target.pixel_depth,
        X_back_projection, valid_measurements, valid_measurements_target,
        use_ndc, depth_factor, max_depth)

    count = np.sum(valid_measurements)
    count_target = np.sum(valid_measurements_target)

    z_rot = SE3.makeS03(0, 0, math.pi)
    se3_rot = np.identity(4, dtype=matrix_data_type)
    se3_rot[0:3, 0:3] = z_rot
    #X_back_projection = np.matmul(se3_rot,X_back_projection)

    if debug:
        Plot3D.save_projection_of_back_projected(height, width,
                                                 frame_reference,
                                                 X_back_projection)

    # Precompute the Jacobian of SE3 around the identity
    J_lie = JacobianGenerator.get_jacobians_lie(generator_x,
                                                generator_y,
                                                generator_z,
                                                generator_yaw,
                                                generator_pitch,
                                                generator_roll,
                                                X_back_projection,
                                                N,
                                                stacked_obs_size,
                                                coefficient=1.0)

    # Precompute the Jacobian of the projection function
    J_pi = JacobianGenerator.get_jacobian_camera_model(
        frame_reference.camera.intrinsic, X_back_projection)

    # count the number of true
    #valid_measurements_total = np.logical_and(valid_measurements_reference,valid_measurements_target)

    #number_of_valid_reference = np.sum(valid_measurements_reference)
    #number_of_valid_total = np.sum(valid_measurements_total)
    #number_of_valid_measurements = number_of_valid_reference

    #target_index_projections_id = frame_target.camera.apply_perspective_pipeline(I_4)

    target_index_projections = frame_target.camera.apply_perspective_pipeline(
        X_back_projection, use_ndc, width, height)

    GaussNewtonRoutines.compute_residual(
        width, height, target_index_projections, valid_measurements,
        valid_measurements_target, frame_target.pixel_image,
        frame_reference.pixel_image, frame_target.pixel_depth,
        frame_reference.pixel_depth, v_id, image_range_offset)

    v = np.copy(v_id)
    W = np.ones((1, N), dtype=matrix_data_type, order='F')

    for it in range(0, max_its, 1):
        start = time.time()
        # accumulators
        #TODO: investigate preallocate and clear in a for loop
        g = np.zeros((twist_size, 1))
        normal_matrix = np.identity(twist_size, dtype=matrix_data_type)

        # TODO investigate performance impact
        if track_pose_estimates:
            threadLock.acquire()
            pose_estimate_list.append(SE_3_est)
            threadLock.release()

        #v_diff = math.fabs(Gradient_step_manager.last_error_mean_abs - v_mean)
        #v_diff = Gradient_step_manager.last_error_mean_abs - v_mean

        #Gradient_step_manager.track_gradient(v_mean,it)

        # TODO investigate absolute error threshold aswel?
        #if ((v_diff <= eps)) and Gradient_step_manager.check_iteration(it) :
        #    print('done, mean error:', v_mean, 'diff: ', v_diff, 'pixel ratio:', valid_pixel_ratio)
        #    break

        # no if statement means solver 2
        #if v_mean <= Gradient_step_manager.last_error_mean_abs:
        not_better = False
        prior_empty = False
        if twist_prior[0] == 0 and twist_prior[1] == 0 and twist_prior[2] == 0 and twist_prior[3] == 0 and \
                twist_prior[4] == 0 and twist_prior[5] == 0:
            prior_empty = True

        if use_motion_prior:
            converged = GaussNewtonRoutines.gauss_newton_step_motion_prior(
                width, height, valid_measurements, valid_measurements_target,
                W, J_pi, J_lie, frame_target.grad_x, frame_target.grad_y, v, g,
                normal_matrix, motion_cov_inv, twist_prior, w,
                image_range_offset)
        else:
            converged = GaussNewtonRoutines.gauss_newton_step(
                width, height, valid_measurements, valid_measurements_target,
                W, J_pi, J_lie, frame_target.grad_x, frame_target.grad_y, v, g,
                normal_matrix, image_range_offset)
        normal_matrix_ret = normal_matrix

        #try:
        #    pseudo_inv = linalg.inv(normal_matrix)
        #except:
        #    print('Cant invert')
        #    return SE_3_est

        #w_new = np.matmul(pseudo_inv, g)

        try:
            w_new = linalg.solve(normal_matrix, g)
        except:
            print('Cant solve')
            return SE_3_est

        # initial step with empty motion prior seems to be quite large
        #if use_motion_prior and prior_empty:
        #    w_new = np.multiply(Gradient_step_manager.current_alpha/2.0, w_new)
        #else:
        w_new = np.multiply(Gradient_step_manager.current_alpha, w_new)

        # For using ackermann motion
        if use_ackermann:
            # V1
            # inc = ackermann_pose_prior - w
            # w_new += np.matmul(motion_cov_inv,inc)
            # w_new += inc

            # V2
            #factor = 0.1*Gradient_step_manager.current_alpha
            factor = 0.1
            #factor = math.pow(Gradient_step_manager.current_alpha,it)
            # ack_prior = np.multiply(Gradient_step_manager.current_alpha,ackermann_pose_prior)
            ack_prior = ackermann_pose_prior

            w_new += Lie.lie_ackermann_correction(factor, motion_cov_inv,
                                                  ack_prior, w, twist_size)

        #else:
        #    not_better = True
        #    w_new = w_empty

        R_cur, t_cur = Lie.exp(w, twist_size)
        R_new, t_new = Lie.exp(w_new, twist_size)

        # C_new . C_cur
        #t_est = np.add(np.matmul(R_new, t_cur), t_new)
        #R_est = np.matmul(R_new, R_cur)

        # C_Cur . C_new
        t_est = np.add(np.matmul(R_cur, t_new), t_cur)
        R_est = np.matmul(R_cur, R_new)

        w = Lie.ln(R_est, t_est, twist_size)

        #SE_3_current = np.append(np.append(R_cur, t_cur, axis=1), homogeneous_se3_padding, axis=0)
        SE_3_est = np.append(np.append(R_est, t_est, axis=1),
                             homogeneous_se3_padding,
                             axis=0)

        #debug_list  = [i for i, x in enumerate(valid_measurements) if x]

        Y_est = np.matmul(SE_3_est, X_back_projection)

        target_index_projections = frame_target.camera.apply_perspective_pipeline(
            Y_est, use_ndc, width, height)
        #target_index_projections[2,:] -= depth_factor*1

        v = GaussNewtonRoutines.compute_residual(
            width, height, target_index_projections, valid_measurements,
            valid_measurements_target, frame_target.pixel_image,
            frame_reference.pixel_image, frame_target.pixel_depth,
            frame_reference.pixel_depth, v, image_range_offset)

        number_of_valid_measurements = np.sum(valid_measurements)
        valid_pixel_ratio = number_of_valid_measurements / N

        if number_of_valid_measurements <= 0 and Gradient_step_manager.check_iteration(
                it):
            print('pixel ratio break')
            print('done, mean error:', v_mean, 'diff: ', v_diff,
                  'pixel ratio:', valid_pixel_ratio)
            #SE_3_est = SE3_best
            break

        if use_robust:
            variance = GaussNewtonRoutines.compute_t_dist_variance(
                v,
                degrees_of_freedom,
                N,
                valid_measurements,
                valid_measurements_target,
                number_of_valid_measurements,
                variance_min=1000,
                eps=0.001)
            if variance > 0.0:
                # clear old weights
                for i in range(0, N):
                    W[0, i] = 1
                GaussNewtonRoutines.generate_weight_matrix(
                    W, v, variance, degrees_of_freedom, N)

        v_weighted = np.copy(v)
        GaussNewtonRoutines.multiply_v_by_diagonal_matrix(
            W, v_weighted, N, valid_measurements)

        v_sum = np.matmul(np.transpose(v), v_weighted)[0][0]

        end = time.time()

        #if v_mean < Gradient_step_manager.last_error_mean_abs:
        #    SE3_best = np.copy(SE_3_est)
        #if not not_better: # solver 6
        Gradient_step_manager.save_previous_mean_error(v_mean)

        if number_of_valid_measurements > 0:
            v_mean = v_sum / number_of_valid_measurements
        else:
            v_mean = maxsize

        v_diff = math.fabs(Gradient_step_manager.last_error_mean_abs - v_mean)
        print('mean error:', v_mean, 'error diff: ', v_diff, 'iteration: ', it,
              'valid pixel ratio: ', valid_pixel_ratio, 'runtime: ',
              end - start, 'variance: ', variance)
        #v_diff = Gradient_step_manager.last_error_mean_abs - v_mean

        #Gradient_step_manager.track_gradient(v_mean,it)

        # TODO investigate absolute error threshold aswel?
        if ((v_diff <= eps)) and Gradient_step_manager.check_iteration(it):
            print('done, mean error:', v_mean, 'diff: ', v_diff,
                  'pixel ratio:', valid_pixel_ratio)
            break

    motion_cov_inv = normal_matrix_ret

    return SE_3_est, w, motion_cov_inv