Пример #1
0
    def apply(self):
        kernel = ["linear", "poly", "rbf", "sigmoid"][self.kernel_type]
        common_args = dict(kernel=kernel,
                           degree=self.degree,
                           gamma=self.gamma,
                           coef0=self.coef0,
                           tol=self.tol,
                           preprocessors=self.preprocessors)
        if self.svrtype == OWSVMRegression.Epsilon_SVR:
            learner = SVRLearner(C=self.epsilon_C,
                                 epsilon=self.epsilon,
                                 **common_args)
        else:
            learner = NuSVRLearner(C=self.nu_C, nu=self.nu, **common_args)
        learner.name = self.learner_name
        predictor = None

        sv = None
        if self.data is not None:
            self.error(0)
            if not learner.check_learner_adequacy(self.data.domain):
                self.error(0, learner.learner_adequacy_err_msg)
            else:
                predictor = learner(self.data)
                predictor.name = self.learner_name
                sv = self.data[predictor.skl_model.support_]

        self.send("Learner", learner)
        self.send("Predictor", predictor)
        self.send("Support vectors", sv)
Пример #2
0
 def test_SVR(self):
     nrows, ncols = 200, 5
     X = np.random.rand(nrows, ncols)
     y = X.dot(np.random.rand(ncols))
     data = Table(X, y)
     learn = SVRLearner(kernel='rbf', gamma=0.1)
     res = CrossValidation(data, [learn], k=2)
     self.assertLess(RMSE(res)[0], 0.15)
Пример #3
0
 def test_LinearSVR(self):
     nrows, ncols = 200, 5
     X = np.random.rand(nrows, ncols)
     y = X.dot(np.random.rand(ncols))
     data = Table(X, y)
     learn = SVRLearner()
     cv = CrossValidation(k=2)
     res = cv(data, [learn])
     self.assertLess(RMSE(res)[0], 0.15)
Пример #4
0
 def test_SVR(self):
     nrows, ncols = 200, 5
     X = np.random.rand(nrows, ncols)
     y = X.dot(np.random.rand(ncols))
     data = Table.from_numpy(None, X, y)
     learn = SVRLearner(kernel='rbf', gamma=0.1)
     cv = CrossValidation(k=2)
     res = cv(data, [learn])
     self.assertLess(RMSE(res)[0], 0.15)
Пример #5
0
 def create_learner(self):
     kernel = ["linear", "poly", "rbf", "sigmoid"][self.kernel_type]
     common_args = dict(kernel=kernel,
                        degree=self.degree,
                        gamma=self.gamma,
                        coef0=self.coef0,
                        tol=self.tol,
                        preprocessors=self.preprocessors)
     if self.svrtype == OWSVMRegression.Epsilon_SVR:
         return SVRLearner(C=self.epsilon_C,
                           epsilon=self.epsilon,
                           **common_args)
     else:
         return NuSVRLearner(C=self.nu_C, nu=self.nu, **common_args)