Пример #1
0
class OWTreeGraph(OWTreeViewer2D):
    """Graphical visualization of tree models"""

    name = "Tree Viewer"
    icon = "icons/TreeViewer.svg"
    priority = 35
    inputs = [
        widget.InputSignal(
            "Tree",
            TreeModel,
            "ctree",
            # Had different input names before merging from
            # Classification/Regression tree variants
            replaces=["Classification Tree", "Regression Tree"])
    ]
    outputs = [
        widget.OutputSignal(
            "Selected Data",
            Table,
            widget.Default,
            id="selected-data",
        ),
        widget.OutputSignal(ANNOTATED_DATA_SIGNAL_NAME,
                            Table,
                            id="annotated-data")
    ]

    settingsHandler = ClassValuesContextHandler()
    target_class_index = ContextSetting(0)
    regression_colors = Setting(0)

    replaces = [
        "Orange.widgets.classify.owclassificationtreegraph.OWClassificationTreeGraph",
        "Orange.widgets.classify.owregressiontreegraph.OWRegressionTreeGraph"
    ]

    COL_OPTIONS = ["Default", "Number of instances", "Mean value", "Variance"]
    COL_DEFAULT, COL_INSTANCE, COL_MEAN, COL_VARIANCE = range(4)

    def __init__(self):
        super().__init__()
        self.domain = None
        self.dataset = None
        self.clf_dataset = None
        self.tree_adapter = None

        self.color_label = QLabel("Target class: ")
        combo = self.color_combo = gui.OrangeComboBox()
        combo.setSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.Fixed)
        combo.setSizeAdjustPolicy(
            QComboBox.AdjustToMinimumContentsLengthWithIcon)
        combo.setMinimumContentsLength(8)
        combo.activated[int].connect(self.color_changed)
        self.display_box.layout().addRow(self.color_label, combo)

    def set_node_info(self):
        """Set the content of the node"""
        for node in self.scene.nodes():
            node.set_rect(QRectF())
            self.update_node_info(node)
        w = max([n.rect().width() for n in self.scene.nodes()] + [0])
        if w > self.max_node_width:
            w = self.max_node_width
        for node in self.scene.nodes():
            rect = node.rect()
            node.set_rect(QRectF(rect.x(), rect.y(), w, rect.height()))
        self.scene.fix_pos(self.root_node, 10, 10)

    def _update_node_info_attr_name(self, node, text):
        attr = self.tree_adapter.attribute(node.node_inst)
        if attr is not None:
            text += "<hr/>{}".format(attr.name)
        return text

    def activate_loaded_settings(self):
        if not self.model:
            return
        super().activate_loaded_settings()
        if self.domain.class_var.is_discrete:
            self.color_combo.setCurrentIndex(self.target_class_index)
            self.toggle_node_color_cls()
        else:
            self.color_combo.setCurrentIndex(self.regression_colors)
            self.toggle_node_color_reg()
        self.set_node_info()

    def color_changed(self, i):
        if self.domain.class_var.is_discrete:
            self.target_class_index = i
            self.toggle_node_color_cls()
            self.set_node_info()
        else:
            self.regression_colors = i
            self.toggle_node_color_reg()

    def toggle_node_size(self):
        self.set_node_info()
        self.scene.update()
        self.scene_view.repaint()

    def toggle_color_cls(self):
        self.toggle_node_color_cls()
        self.set_node_info()
        self.scene.update()

    def toggle_color_reg(self):
        self.toggle_node_color_reg()
        self.set_node_info()
        self.scene.update()

    def ctree(self, model=None):
        """Input signal handler"""
        self.clear_scene()
        self.color_combo.clear()
        self.closeContext()
        self.model = model
        if model is None:
            self.info.setText('No tree.')
            self.root_node = None
            self.dataset = None
            self.tree_adapter = None
        else:
            self.tree_adapter = self._get_tree_adapter(model)
            self.domain = model.domain
            self.dataset = model.instances
            if self.dataset is not None and self.dataset.domain != self.domain:
                self.clf_dataset = Table.from_table(model.domain, self.dataset)
            else:
                self.clf_dataset = self.dataset
            class_var = self.domain.class_var
            if class_var.is_discrete:
                self.scene.colors = [QColor(*col) for col in class_var.colors]
                self.color_label.setText("Target class: ")
                self.color_combo.addItem("None")
                self.color_combo.addItems(self.domain.class_vars[0].values)
                self.color_combo.setCurrentIndex(self.target_class_index)
            else:
                self.scene.colors = \
                    ContinuousPaletteGenerator(*model.domain.class_var.colors)
                self.color_label.setText("Color by: ")
                self.color_combo.addItems(self.COL_OPTIONS)
                self.color_combo.setCurrentIndex(self.regression_colors)
            self.openContext(self.domain.class_var)
            # self.root_node = self.walkcreate(model.root, None)
            self.root_node = self.walkcreate(self.tree_adapter.root)
            self.info.setText('{} nodes, {} leaves'.format(
                self.tree_adapter.num_nodes,
                len(self.tree_adapter.leaves(self.tree_adapter.root))))
        self.setup_scene()
        self.send("Selected Data", None)
        self.send(ANNOTATED_DATA_SIGNAL_NAME,
                  create_annotated_table(self.dataset, []))

    def walkcreate(self, node, parent=None):
        """Create a structure of tree nodes from the given model"""
        node_obj = TreeNode(self.tree_adapter, node, parent)
        self.scene.addItem(node_obj)
        if parent:
            edge = GraphicsEdge(node1=parent, node2=node_obj)
            self.scene.addItem(edge)
            parent.graph_add_edge(edge)
        for child_inst in self.tree_adapter.children(node):
            if child_inst is not None:
                self.walkcreate(child_inst, node_obj)
        return node_obj

    def node_tooltip(self, node):
        return "<br>".join(
            to_html(str(rule))
            for rule in self.tree_adapter.rules(node.node_inst))

    def update_selection(self):
        if self.model is None:
            return
        nodes = [
            item.node_inst for item in self.scene.selectedItems()
            if isinstance(item, TreeNode)
        ]
        data = self.tree_adapter.get_instances_in_nodes(
            self.clf_dataset, nodes)
        self.send("Selected Data", data)
        self.send(
            ANNOTATED_DATA_SIGNAL_NAME,
            create_annotated_table(self.dataset,
                                   self.tree_adapter.get_indices(nodes)))

    def send_report(self):
        if not self.model:
            return
        items = [
            ("Tree size", self.info.text()),
            (
                "Edge widths",
                ("Fixed", "Relative to root", "Relative to parent")[
                    # pylint: disable=invalid-sequence-index
                    self.line_width_method])
        ]
        if self.domain.class_var.is_discrete:
            items.append(("Target class", self.color_combo.currentText()))
        elif self.regression_colors != self.COL_DEFAULT:
            items.append(
                ("Color by", self.COL_OPTIONS[self.regression_colors]))
        self.report_items(items)
        self.report_plot(self.scene)

    def update_node_info(self, node):
        if self.domain.class_var.is_discrete:
            self.update_node_info_cls(node)
        else:
            self.update_node_info_reg(node)

    def update_node_info_cls(self, node):
        """Update the printed contents of the node for classification trees"""
        node_inst = node.node_inst
        distr = self.tree_adapter.get_distribution(node_inst)[0]
        total = self.tree_adapter.num_samples(node_inst)
        distr = distr / np.sum(distr)
        if self.target_class_index:
            tabs = distr[self.target_class_index - 1]
            text = ""
        else:
            modus = np.argmax(distr)
            tabs = distr[modus]
            text = self.domain.class_vars[0].values[int(modus)] + "<br/>"
        if tabs > 0.999:
            text += "100%, {}/{}".format(total, total)
        else:
            text += "{:2.1f}%, {}/{}".format(100 * tabs, int(total * tabs),
                                             total)

        text = self._update_node_info_attr_name(node, text)
        node.setHtml('<p style="line-height: 120%; margin-bottom: 0">'
                     '{}</p>'.format(text))

    def update_node_info_reg(self, node):
        """Update the printed contents of the node for regression trees"""
        node_inst = node.node_inst
        mean, var = self.tree_adapter.get_distribution(node_inst)[0]
        insts = self.tree_adapter.num_samples(node_inst)
        text = "{:.1f} ± {:.1f}<br/>".format(mean, var)
        text += "{} instances".format(insts)
        text = self._update_node_info_attr_name(node, text)
        node.setHtml(
            '<p style="line-height: 120%; margin-bottom: 0">{}</p>'.format(
                text))

    def toggle_node_color_cls(self):
        """Update the node color for classification trees"""
        colors = self.scene.colors
        for node in self.scene.nodes():
            distr = node.tree_adapter.get_distribution(node.node_inst)[0]
            total = sum(distr)
            if self.target_class_index:
                p = distr[self.target_class_index - 1] / total
                color = colors[self.target_class_index - 1].lighter(200 -
                                                                    100 * p)
            else:
                modus = np.argmax(distr)
                p = distr[modus] / (total or 1)
                color = colors[int(modus)].lighter(300 - 200 * p)
            node.backgroundBrush = QBrush(color)
        self.scene.update()

    def toggle_node_color_reg(self):
        """Update the node color for regression trees"""
        def_color = QColor(192, 192, 255)
        if self.regression_colors == self.COL_DEFAULT:
            brush = QBrush(def_color.lighter(100))
            for node in self.scene.nodes():
                node.backgroundBrush = brush
        elif self.regression_colors == self.COL_INSTANCE:
            max_insts = len(
                self.tree_adapter.get_instances_in_nodes(
                    self.dataset, [self.tree_adapter.root]))
            for node in self.scene.nodes():
                node_insts = len(
                    self.tree_adapter.get_instances_in_nodes(
                        self.dataset, [node.node_inst]))
                node.backgroundBrush = QBrush(
                    def_color.lighter(120 - 20 * node_insts / max_insts))
        elif self.regression_colors == self.COL_MEAN:
            minv = np.nanmin(self.dataset.Y)
            maxv = np.nanmax(self.dataset.Y)
            fact = 1 / (maxv - minv) if minv != maxv else 1
            colors = self.scene.colors
            for node in self.scene.nodes():
                node_mean = self.tree_adapter.get_distribution(
                    node.node_inst)[0][0]
                node.backgroundBrush = QBrush(colors[fact *
                                                     (node_mean - minv)])
        else:
            nodes = list(self.scene.nodes())
            variances = [
                self.tree_adapter.get_distribution(node.node_inst)[0][1]
                for node in nodes
            ]
            max_var = max(variances)
            for node, var in zip(nodes, variances):
                node.backgroundBrush = QBrush(
                    def_color.lighter(120 - 20 * var / max_var))
        self.scene.update()

    def _get_tree_adapter(self, model):
        if isinstance(model, SklModel):
            return SklTreeAdapter(model)
        return TreeAdapter(model)
Пример #2
0
class OWMergeData(widget.OWWidget):
    name = "Merge Data"
    description = "Merge data sets based on the values of selected features."
    icon = "icons/MergeData.svg"
    priority = 1110

    inputs = [
        widget.InputSignal("Data",
                           Orange.data.Table,
                           "setData",
                           widget.Default,
                           replaces=["Data A"]),
        widget.InputSignal("Extra Data",
                           Orange.data.Table,
                           "setExtraData",
                           replaces=["Data B"])
    ]
    outputs = [
        widget.OutputSignal(
            "Data",
            Orange.data.Table,
            replaces=["Merged Data A+B", "Merged Data B+A", "Merged Data"])
    ]

    attr_augment_data = settings.Setting('', schema_only=True)
    attr_augment_extra = settings.Setting('', schema_only=True)
    attr_merge_data = settings.Setting('', schema_only=True)
    attr_merge_extra = settings.Setting('', schema_only=True)
    attr_combine_data = settings.Setting('', schema_only=True)
    attr_combine_extra = settings.Setting('', schema_only=True)
    merging = settings.Setting(0)

    want_main_area = False
    resizing_enabled = False

    class Warning(widget.OWWidget.Warning):
        duplicate_names = widget.Msg("Duplicate variable names in output.")

    def __init__(self):
        super().__init__()

        self.data = None
        self.extra_data = None
        self.extra_data = None

        self.model = itemmodels.VariableListModel()
        self.model_unique_with_id = itemmodels.VariableListModel()
        self.extra_model_unique = itemmodels.VariableListModel()
        self.extra_model_unique_with_id = itemmodels.VariableListModel()

        box = gui.hBox(self.controlArea, box=None)
        self.infoBoxData = gui.label(box,
                                     self,
                                     self.dataInfoText(None),
                                     box="Data")
        self.infoBoxExtraData = gui.label(box,
                                          self,
                                          self.dataInfoText(None),
                                          box="Extra Data")

        grp = gui.radioButtonsInBox(self.controlArea,
                                    self,
                                    "merging",
                                    box="Merging",
                                    callback=self.change_merging)
        self.attr_boxes = []

        radio_width = \
            QApplication.style().pixelMetric(QStyle.PM_ExclusiveIndicatorWidth)

        def add_option(label, pre_label, between_label, merge_type, model,
                       extra_model):
            gui.appendRadioButton(grp, label)
            vbox = gui.vBox(grp)
            box = gui.hBox(vbox)
            box.layout().addSpacing(radio_width)
            self.attr_boxes.append(box)
            gui.widgetLabel(box, pre_label)
            model[:] = [getattr(self, 'attr_{}_data'.format(merge_type))]
            extra_model[:] = [
                getattr(self, 'attr_{}_extra'.format(merge_type))
            ]
            cb = gui.comboBox(box,
                              self,
                              'attr_{}_data'.format(merge_type),
                              callback=self._invalidate,
                              model=model)
            cb.setSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.Fixed)
            cb.setFixedWidth(190)
            gui.widgetLabel(box, between_label)
            cb = gui.comboBox(box,
                              self,
                              'attr_{}_extra'.format(merge_type),
                              callback=self._invalidate,
                              model=extra_model)
            cb.setSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.Fixed)
            cb.setFixedWidth(190)
            vbox.layout().addSpacing(6)

        add_option("Append columns from Extra Data", "by matching", "with",
                   "augment", self.model, self.extra_model_unique)
        add_option("Find matching rows", "where", "equals", "merge",
                   self.model_unique_with_id, self.extra_model_unique_with_id)
        add_option("Concatenate tables, merge rows", "where", "equals",
                   "combine", self.model_unique_with_id,
                   self.extra_model_unique_with_id)
        self.set_merging()

    def set_merging(self):
        # pylint: disable=invalid-sequence-index
        # all boxes should be hidden before one is shown, otherwise widget's
        # layout changes height
        for box in self.attr_boxes:
            box.hide()
        self.attr_boxes[self.merging].show()

    def change_merging(self):
        self.set_merging()
        self._invalidate()

    @staticmethod
    def _set_unique_model(data, model):
        if data is None:
            model[:] = []
            return
        m = [INDEX]
        for attr in chain(data.domain.variables, data.domain.metas):
            col = data.get_column_view(attr)[0]
            if attr.is_primitive():
                col = col.astype(float)
                col = col[~np.isnan(col)]
            else:
                col = col[~(col == "")]
            if len(np.unique(col)) == len(col):
                m.append(attr)
        model[:] = m

    @staticmethod
    def _set_model(data, model):
        if data is None:
            model[:] = []
            return
        model[:] = list(chain([INDEX], data.domain, data.domain.metas))

    def _add_instanceid_to_models(self):
        needs_id = self.data is not None and self.extra_data is not None and \
            len(np.intersect1d(self.data.ids, self.extra_data.ids))
        for model in (self.model_unique_with_id,
                      self.extra_model_unique_with_id):
            has_id = INSTANCEID in model
            if needs_id and not has_id:
                model.insert(0, INSTANCEID)
            elif not needs_id and has_id:
                model.remove(INSTANCEID)

    def _init_combo_current_items(self, variables, models):
        for var, model in zip(variables, models):
            value = getattr(self, var)
            if len(model) > 0:
                setattr(self, var, value if value in model else INDEX)

    def _find_best_match(self):
        def get_unique_str_metas_names(model_):
            return [m for m in model_ if isinstance(m, StringVariable)]

        def best_match(model, extra_model):
            attr, extra_attr, n_max_intersect = INDEX, INDEX, 0
            str_metas = get_unique_str_metas_names(model)
            extra_str_metas = get_unique_str_metas_names(extra_model)
            for m_a, m_b in product(str_metas, extra_str_metas):
                n_inter = len(
                    np.intersect1d(self.data[:, m_a].metas,
                                   self.extra_data[:, m_b].metas))
                if n_inter > n_max_intersect:
                    n_max_intersect, attr, extra_attr = n_inter, m_a, m_b
            return attr, extra_attr

        def set_attrs(attr_name, attr_extra_name, attr, extra_attr):
            if getattr(self, attr_name) == INDEX and \
                    getattr(self, attr_extra_name) == INDEX:
                setattr(self, attr_name, attr)
                setattr(self, attr_extra_name, extra_attr)

        if self.data and self.extra_data:
            attrs = best_match(self.model, self.extra_model_unique)
            set_attrs("attr_augment_data", "attr_augment_extra", *attrs)
            attrs = best_match(self.model_unique_with_id,
                               self.extra_model_unique_with_id)
            set_attrs("attr_merge_data", "attr_merge_extra", *attrs)
            set_attrs("attr_combine_data", "attr_combine_extra", *attrs)

    @check_sql_input
    def setData(self, data):
        self.data = data
        self._set_model(data, self.model)
        self._set_unique_model(data, self.model_unique_with_id)
        self._add_instanceid_to_models()
        self._init_combo_current_items(
            ("attr_augment_data", "attr_merge_data", "attr_combine_data"),
            (self.model, self.model_unique_with_id, self.model_unique_with_id))
        self.infoBoxData.setText(self.dataInfoText(data))
        self._find_best_match()

    @check_sql_input
    def setExtraData(self, data):
        self.extra_data = data
        self._set_unique_model(data, self.extra_model_unique)
        self._set_unique_model(data, self.extra_model_unique_with_id)
        self._add_instanceid_to_models()
        self._init_combo_current_items(
            ("attr_augment_extra", "attr_merge_extra", "attr_combine_extra"),
            (self.extra_model_unique, self.extra_model_unique_with_id,
             self.extra_model_unique_with_id))
        self.infoBoxExtraData.setText(self.dataInfoText(data))
        self._find_best_match()

    def handleNewSignals(self):
        self._invalidate()

    def dataInfoText(self, data):
        if data is None:
            return "No data."
        else:
            return "{}\n{} instances\n{} variables".format(
                data.name, len(data),
                len(data.domain) + len(data.domain.metas))

    def commit(self):
        self.Warning.duplicate_names.clear()
        if self.data is None or len(self.data) == 0 or \
                self.extra_data is None or len(self.extra_data) == 0:
            merged_data = None
        else:
            merged_data = self.merge()
            if merged_data:
                merged_domain = merged_data.domain
                var_names = [
                    var.name for var in chain(merged_domain.variables,
                                              merged_domain.metas)
                ]
                if len(set(var_names)) != len(var_names):
                    self.Warning.duplicate_names()
        self.send("Data", merged_data)

    def _invalidate(self):
        self.commit()

    def send_report(self):
        # pylint: disable=invalid-sequence-index
        attr = (self.attr_augment_data, self.attr_merge_data,
                self.attr_combine_data)
        extra_attr = (self.attr_augment_extra, self.attr_merge_extra,
                      self.attr_combine_extra)
        merging_types = ("Append columns from Extra Data",
                         "Find matching rows",
                         "Concatenate tables, merge rows")
        self.report_items((("Merging", merging_types[self.merging]),
                           ("Data attribute", attr[self.merging]),
                           ("Extra data attribute", extra_attr[self.merging])))

    def merge(self):
        # pylint: disable=invalid-sequence-index
        operation = ["augment", "merge", "combine"][self.merging]
        var_data = getattr(self, "attr_{}_data".format(operation))
        var_extra_data = getattr(self, "attr_{}_extra".format(operation))
        merge_method = getattr(self, "_{}_indices".format(operation))

        as_string = not (isinstance(var_data, ContinuousVariable)
                         and isinstance(var_extra_data, ContinuousVariable))
        extra_map = self._get_keymap(self.extra_data, var_extra_data,
                                     as_string)
        match_indices = merge_method(var_data, extra_map, as_string)
        reduced_extra_data = self._compute_reduced_extra_data(var_extra_data)
        return self._join_table_by_indices(reduced_extra_data, match_indices)

    def _compute_reduced_extra_data(self, var_extra_data):
        """Prepare a table with extra columns that will appear in the merged
        table"""
        domain = self.data.domain
        extra_domain = self.extra_data.domain
        all_vars = set(chain(domain.variables, domain.metas))
        if self.merging != MergeType.OUTER_JOIN:
            all_vars.add(var_extra_data)
        extra_vars = chain(extra_domain.variables, extra_domain.metas)
        return self.extra_data[:, [
            var for var in extra_vars if var not in all_vars
        ]]

    @staticmethod
    def _values(data, var, as_string):
        """Return an iterotor over keys for rows of the table."""
        if var == INSTANCEID:
            return (inst.id for inst in data)
        if var == INDEX:
            return range(len(data))
        col = data.get_column_view(var)[0]
        if not as_string:
            return col
        if var.is_primitive():
            return (var.str_val(val) if not np.isnan(val) else np.nan
                    for val in col)
        else:
            return (str(val) if val else np.nan for val in col)

    @classmethod
    def _get_keymap(cls, data, var, as_string):
        """Return a generator of pairs (key, index) by enumerating and
        switching the values for rows (method `_values`).
        """
        return ((val, i)
                for i, val in enumerate(cls._values(data, var, as_string)))

    def _augment_indices(self, var_data, extra_map, as_string):
        """Compute a two-row array of indices:
        - the first row contains indices for the primary table,
        - the second row contains the matching rows in the extra table or -1"""
        data = self.data
        extra_map = dict(extra_map)
        # Don't match nans. This is needed since numpy supports using nan as
        # keys. If numpy fixes this, the below conditions will always be false,
        # so we're OK again.
        if np.nan in extra_map:
            del extra_map[np.nan]
        keys = (extra_map.get(val, -1)
                for val in self._values(data, var_data, as_string))
        return np.vstack((np.arange(len(data), dtype=np.int64),
                          np.fromiter(keys, dtype=np.int64, count=len(data))))

    def _merge_indices(self, var_data, extra_map, as_string):
        """Use _augment_indices to compute the array of indices,
        then remove those with no match in the second table"""
        augmented = self._augment_indices(var_data, extra_map, as_string)
        return augmented[:, augmented[1] != -1]

    def _combine_indices(self, var_data, extra_map, as_string):
        """Use _augment_indices to compute the array of indices,
        then add rows in the second table without a match in the first"""
        to_add, extra_map = tee(extra_map)
        # dict instead of set because we have pairs; we'll need only keys
        key_map = dict(self._get_keymap(self.data, var_data, as_string))
        # _augment indices will skip rows where the key in the left table
        # is nan. See comment in `_augment_indices` wrt numpy and nan in dicts
        if np.nan in key_map:
            del key_map[np.nan]
        keys = np.fromiter((j for key, j in to_add if key not in key_map),
                           dtype=np.int64)
        right_indices = np.vstack((np.full(len(keys), -1, np.int64), keys))
        return np.hstack((self._augment_indices(var_data, extra_map,
                                                as_string), right_indices))

    def _join_table_by_indices(self, reduced_extra, indices):
        """Join (horizontally) self.data and reduced_extra, taking the pairs
        of rows given in indices"""
        if not len(indices):
            return None
        domain = Orange.data.Domain(*(getattr(self.data.domain, x) +
                                      getattr(reduced_extra.domain, x)
                                      for x in ("attributes", "class_vars",
                                                "metas")))
        X = self._join_array_by_indices(self.data.X, reduced_extra.X, indices)
        Y = self._join_array_by_indices(np.c_[self.data.Y],
                                        np.c_[reduced_extra.Y], indices)
        string_cols = [
            i for i, var in enumerate(domain.metas) if var.is_string
        ]
        metas = self._join_array_by_indices(self.data.metas,
                                            reduced_extra.metas, indices,
                                            string_cols)
        return Orange.data.Table.from_numpy(domain, X, Y, metas)

    @staticmethod
    def _join_array_by_indices(left, right, indices, string_cols=None):
        """Join (horizontally) two arrays, taking pairs of rows given in indices
        """
        tpe = object if object in (left.dtype, right.dtype) else left.dtype
        left_width, right_width = left.shape[1], right.shape[1]
        arr = np.full((indices.shape[1], left_width + right_width), np.nan,
                      tpe)
        if string_cols:
            arr[:, string_cols] = ""
        for indices, to_change, lookup in ((indices[0], arr[:, :left_width],
                                            left), (indices[1],
                                                    arr[:,
                                                        left_width:], right)):
            known = indices != -1
            to_change[known] = lookup[indices[known]]
        return arr