Пример #1
0
class OWDiscretize(widget.OWWidget):
    name = "Discretize"
    description = "Discretize the numeric data features."
    icon = "icons/Discretize.svg"
    inputs = [
        InputSignal("Data",
                    Orange.data.Table,
                    "set_data",
                    doc="Input data table")
    ]
    outputs = [
        OutputSignal("Data",
                     Orange.data.Table,
                     doc="Table with discretized features")
    ]

    settingsHandler = settings.DomainContextHandler()
    saved_var_states = settings.ContextSetting({})

    default_method = settings.Setting(2)
    default_k = settings.Setting(3)
    autosend = settings.Setting(True)

    #: Discretization methods
    Default, Leave, MDL, EqualFreq, EqualWidth, Remove, Custom = range(7)

    want_main_area = False
    resizing_enabled = False

    def __init__(self):
        super().__init__()

        #: input data
        self.data = None
        #: Current variable discretization state
        self.var_state = {}
        #: Saved variable discretization settings (context setting)
        self.saved_var_states = {}

        self.method = 0
        self.k = 5

        box = gui.vBox(self.controlArea, self.tr("Default Discretization"))
        self.default_bbox = rbox = gui.radioButtons(
            box, self, "default_method", callback=self._default_disc_changed)
        rb = gui.hBox(rbox)
        self.left = gui.vBox(rb)
        right = gui.vBox(rb)
        rb.layout().setStretch(0, 1)
        rb.layout().setStretch(1, 1)
        options = self.options = [
            self.tr("Default"),
            self.tr("Leave numeric"),
            self.tr("Entropy-MDL discretization"),
            self.tr("Equal-frequency discretization"),
            self.tr("Equal-width discretization"),
            self.tr("Remove numeric variables")
        ]

        for opt in options[1:]:
            t = gui.appendRadioButton(rbox, opt)
            # This condition is ugly, but it keeps the same order of
            # options for backward compatibility of saved schemata
            [right, self.left][opt.startswith("Equal")].layout().addWidget(t)
        gui.separator(right, 18, 18)

        def _intbox(widget, attr, callback):
            box = gui.indentedBox(widget)
            s = gui.spin(box,
                         self,
                         attr,
                         minv=2,
                         maxv=10,
                         label="Num. of intervals:",
                         callback=callback)
            s.setMaximumWidth(60)
            s.setAlignment(Qt.AlignRight)
            gui.rubber(s.box)
            return box.box

        self.k_general = _intbox(self.left, "default_k",
                                 self._default_disc_changed)
        self.k_general.layout().setContentsMargins(0, 0, 0, 0)
        vlayout = QHBoxLayout()
        box = gui.widgetBox(self.controlArea,
                            "Individual Attribute Settings",
                            orientation=vlayout,
                            spacing=8)

        # List view with all attributes
        self.varview = QListView(selectionMode=QListView.ExtendedSelection)
        self.varview.setItemDelegate(DiscDelegate())
        self.varmodel = itemmodels.VariableListModel()
        self.varview.setModel(self.varmodel)
        self.varview.selectionModel().selectionChanged.connect(
            self._var_selection_changed)

        vlayout.addWidget(self.varview)
        # Controls for individual attr settings
        self.bbox = controlbox = gui.radioButtons(
            box, self, "method", callback=self._disc_method_changed)
        vlayout.addWidget(controlbox)

        for opt in options[:5]:
            gui.appendRadioButton(controlbox, opt)

        self.k_specific = _intbox(controlbox, "k", self._disc_method_changed)

        gui.appendRadioButton(controlbox, "Remove attribute")

        gui.rubber(controlbox)
        controlbox.setEnabled(False)

        self.controlbox = controlbox

        box = gui.auto_commit(self.controlArea,
                              self,
                              "autosend",
                              "Apply",
                              orientation=Qt.Horizontal,
                              checkbox_label="Apply automatically")
        box.layout().insertSpacing(0, 20)
        box.layout().insertWidget(0, self.report_button)
        self._update_spin_positions()

    def set_data(self, data):
        self.closeContext()
        self.data = data
        if self.data is not None:
            self._initialize(data)
            self.openContext(data)
            # Restore the per variable discretization settings
            self._restore(self.saved_var_states)
            # Complete the induction of cut points
            self._update_points()
        else:
            self._clear()
        self.unconditional_commit()

    def _initialize(self, data):
        # Initialize the default variable states for new data.
        self.class_var = data.domain.class_var
        cvars = [var for var in data.domain if var.is_continuous]
        self.varmodel[:] = cvars

        class_var = data.domain.class_var
        has_disc_class = data.domain.has_discrete_class

        self.default_bbox.buttons[self.MDL - 1].setEnabled(has_disc_class)
        self.bbox.buttons[self.MDL].setEnabled(has_disc_class)

        # If the newly disabled MDL button is checked then change it
        if not has_disc_class and self.default_method == self.MDL - 1:
            self.default_method = 0
        if not has_disc_class and self.method == self.MDL:
            self.method = 0

        # Reset (initialize) the variable discretization states.
        self._reset()

    def _restore(self, saved_state):
        # Restore variable states from a saved_state dictionary.
        def_method = self._current_default_method()
        for i, var in enumerate(self.varmodel):
            key = variable_key(var)
            if key in saved_state:
                state = saved_state[key]
                if isinstance(state.method, Default):
                    state = DState(Default(def_method), None, None)
                self._set_var_state(i, state)

    def _reset(self):
        # restore the individual variable settings back to defaults.
        def_method = self._current_default_method()
        self.var_state = {}
        for i in range(len(self.varmodel)):
            state = DState(Default(def_method), None, None)
            self._set_var_state(i, state)

    def _set_var_state(self, index, state):
        # set the state of variable at `index` to `state`.
        self.var_state[index] = state
        self.varmodel.setData(self.varmodel.index(index), state, Qt.UserRole)

    def _clear(self):
        self.data = None
        self.varmodel[:] = []
        self.var_state = {}
        self.saved_var_states = {}
        self.default_bbox.buttons[self.MDL - 1].setEnabled(True)
        self.bbox.buttons[self.MDL].setEnabled(True)

    def _update_points(self):
        """
        Update the induced cut points.
        """
        if self.data is None or not len(self.data):
            return

        def induce_cuts(method, data, var):
            dvar = _dispatch[type(method)](method, data, var)
            if dvar is None:
                # removed
                return [], None
            elif dvar is var:
                # no transformation took place
                return None, var
            elif is_discretized(dvar):
                return dvar.compute_value.points, dvar
            else:
                assert False

        for i, var in enumerate(self.varmodel):
            state = self.var_state[i]
            if state.points is None and state.disc_var is None:
                points, dvar = induce_cuts(state.method, self.data, var)
                new_state = state._replace(points=points, disc_var=dvar)
                self._set_var_state(i, new_state)

    def _method_index(self, method):
        return METHODS.index((type(method), ))

    def _current_default_method(self):
        method = self.default_method + 1
        k = self.default_k
        if method == OWDiscretize.Leave:
            def_method = Leave()
        elif method == OWDiscretize.MDL:
            def_method = MDL()
        elif method == OWDiscretize.EqualFreq:
            def_method = EqualFreq(k)
        elif method == OWDiscretize.EqualWidth:
            def_method = EqualWidth(k)
        elif method == OWDiscretize.Remove:
            def_method = Remove()
        else:
            assert False
        return def_method

    def _current_method(self):
        if self.method == OWDiscretize.Default:
            method = Default(self._current_default_method())
        elif self.method == OWDiscretize.Leave:
            method = Leave()
        elif self.method == OWDiscretize.MDL:
            method = MDL()
        elif self.method == OWDiscretize.EqualFreq:
            method = EqualFreq(self.k)
        elif self.method == OWDiscretize.EqualWidth:
            method = EqualWidth(self.k)
        elif self.method == OWDiscretize.Remove:
            method = Remove()
        elif self.method == OWDiscretize.Custom:
            method = Custom(self.cutpoints)
        else:
            assert False
        return method

    def _update_spin_positions(self):
        self.k_general.setDisabled(self.default_method not in [2, 3])
        if self.default_method == 2:
            self.left.layout().insertWidget(1, self.k_general)
        elif self.default_method == 3:
            self.left.layout().insertWidget(2, self.k_general)

        self.k_specific.setDisabled(self.method not in [3, 4])
        if self.method == 3:
            self.bbox.layout().insertWidget(4, self.k_specific)
        elif self.method == 4:
            self.bbox.layout().insertWidget(5, self.k_specific)

    def _default_disc_changed(self):
        self._update_spin_positions()
        method = self._current_default_method()
        state = DState(Default(method), None, None)
        for i, _ in enumerate(self.varmodel):
            if isinstance(self.var_state[i].method, Default):
                self._set_var_state(i, state)
        self._update_points()
        self.commit()

    def _disc_method_changed(self):
        self._update_spin_positions()
        indices = self.selected_indices()
        method = self._current_method()
        state = DState(method, None, None)
        for idx in indices:
            self._set_var_state(idx, state)
        self._update_points()
        self.commit()

    def _var_selection_changed(self, *args):
        indices = self.selected_indices()
        # set of all methods for the current selection
        methods = [self.var_state[i].method for i in indices]
        mset = set(methods)
        self.controlbox.setEnabled(len(mset) > 0)
        if len(mset) == 1:
            method = mset.pop()
            self.method = self._method_index(method)
            if isinstance(method, (EqualFreq, EqualWidth)):
                self.k = method.k
            elif isinstance(method, Custom):
                self.cutpoints = method.points
        else:
            # deselect the current button
            self.method = -1
            bg = self.controlbox.group
            button_group_reset(bg)
        self._update_spin_positions()

    def selected_indices(self):
        rows = self.varview.selectionModel().selectedRows()
        return [index.row() for index in rows]

    def discretized_var(self, source):
        index = list(self.varmodel).index(source)
        state = self.var_state[index]
        if state.disc_var is None:
            return None
        elif state.disc_var is source:
            return source
        elif state.points == []:
            return None
        else:
            return state.disc_var

    def discretized_domain(self):
        """
        Return the current effective discretized domain.
        """
        if self.data is None:
            return None

        def disc_var(source):
            if source and source.is_continuous:
                return self.discretized_var(source)
            else:
                return source

        attributes = [disc_var(v) for v in self.data.domain.attributes]
        attributes = [v for v in attributes if v is not None]

        class_var = disc_var(self.data.domain.class_var)

        domain = Orange.data.Domain(attributes,
                                    class_var,
                                    metas=self.data.domain.metas)
        return domain

    def commit(self):
        output = None
        if self.data is not None and len(self.data):
            domain = self.discretized_domain()
            output = self.data.transform(domain)
        self.send("Data", output)

    def storeSpecificSettings(self):
        super().storeSpecificSettings()
        self.saved_var_states = {
            variable_key(var): self.var_state[i]._replace(points=None,
                                                          disc_var=None)
            for i, var in enumerate(self.varmodel)
        }

    def send_report(self):
        self.report_items(
            (("Default method", self.options[self.default_method + 1]), ))
        if self.varmodel:
            self.report_items(
                "Thresholds",
                [(var.name, DiscDelegate.cutsText(self.var_state[i])
                  or "leave numeric") for i, var in enumerate(self.varmodel)])
Пример #2
0
class OWDistributions(widget.OWWidget):
    name = "Distributions"
    description = "Display value distributions of a data feature in a graph."
    icon = "icons/Distribution.svg"
    priority = 100
    inputs = [
        InputSignal("Data",
                    Orange.data.Table,
                    "set_data",
                    doc="Set the input data set")
    ]

    settingsHandler = settings.DomainContextHandler()
    #: Selected variable index
    variable_idx = settings.ContextSetting(-1)
    #: Selected group variable
    groupvar_idx = settings.ContextSetting(0)

    Hist, ASH, Kernel = 0, 1, 2
    #: Continuous variable density estimation method
    cont_est_type = settings.Setting(ASH)
    relative_freq = settings.Setting(False)

    def __init__(self, parent=None):
        super().__init__(parent)
        self.data = None

        self.distributions = None
        self.contingencies = None
        self.var = self.cvar = None
        varbox = gui.widgetBox(self.controlArea, "Variable")

        self.varmodel = itemmodels.VariableListModel()
        self.groupvarmodel = itemmodels.VariableListModel()

        self.varview = QtGui.QListView(
            selectionMode=QtGui.QListView.SingleSelection)
        self.varview.setSizePolicy(QtGui.QSizePolicy.Minimum,
                                   QtGui.QSizePolicy.Expanding)
        self.varview.setModel(self.varmodel)
        self.varview.setSelectionModel(
            itemmodels.ListSingleSelectionModel(self.varmodel))
        self.varview.selectionModel().selectionChanged.connect(
            self._on_variable_idx_changed)
        varbox.layout().addWidget(self.varview)
        gui.separator(varbox, 8, 8)
        gui.comboBox(varbox,
                     self,
                     "cont_est_type",
                     label="Show continuous variables by",
                     valueType=int,
                     items=[
                         "Histograms", "Average shifted histograms",
                         "Kernel density estimators"
                     ],
                     callback=self._on_cont_est_type_changed)

        box = gui.widgetBox(self.controlArea, "Group by")
        self.groupvarview = QtGui.QListView(
            selectionMode=QtGui.QListView.SingleSelection)
        self.groupvarview.setFixedHeight(100)
        self.groupvarview.setSizePolicy(QtGui.QSizePolicy.Minimum,
                                        QtGui.QSizePolicy.Preferred)
        self.groupvarview.setModel(self.groupvarmodel)
        self.groupvarview.selectionModel().selectionChanged.connect(
            self._on_groupvar_idx_changed)
        box.layout().addWidget(self.groupvarview)
        self.cb_rel_freq = gui.checkBox(
            box,
            self,
            "relative_freq",
            "Show relative frequencies",
            callback=self._on_relative_freq_changed)

        plotview = pg.PlotWidget(background=None)
        self.mainArea.layout().addWidget(plotview)
        w = QtGui.QLabel()
        w.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Fixed)
        self.mainArea.layout().addWidget(w, Qt.AlignCenter)

        self.plot = pg.PlotItem()
        #         self.plot.getViewBox().setMouseEnabled(False, False)
        self.plot.getViewBox().setMenuEnabled(False)
        plotview.setCentralItem(self.plot)

        pen = QtGui.QPen(self.palette().color(QtGui.QPalette.Text))
        for axis in ("left", "bottom"):
            self.plot.getAxis(axis).setPen(pen)

    def set_data(self, data):
        self.closeContext()
        self.clear()
        self.data = data
        if self.data is not None:
            domain = self.data.domain
            self.varmodel[:] = list(domain)
            self.groupvarmodel[:] = \
                ["(None)"] + [var for var in domain if var.is_discrete]
            if domain.has_discrete_class:
                self.groupvar_idx = \
                    list(self.groupvarmodel).index(domain.class_var)
            self.openContext(domain)
            self.variable_idx = min(max(self.variable_idx, 0),
                                    len(self.varmodel) - 1)
            self.groupvar_idx = min(max(self.groupvar_idx, 0),
                                    len(self.groupvarmodel) - 1)
            itemmodels.select_row(self.groupvarview, self.groupvar_idx)
            itemmodels.select_row(self.varview, self.variable_idx)
            self._setup()

    def clear(self):
        self.plot.clear()
        self.varmodel[:] = []
        self.groupvarmodel[:] = []
        self.variable_idx = -1
        self.groupvar_idx = 0

    def _setup(self):
        self.plot.clear()
        varidx = self.variable_idx
        self.var = self.cvar = None
        if varidx >= 0:
            self.var = self.varmodel[varidx]
        if self.groupvar_idx > 0:
            self.cvar = self.groupvarmodel[self.groupvar_idx]
        self.set_left_axis_name()
        self.enable_disable_rel_freq()
        if self.var is None:
            return
        if self.cvar:
            self.contingencies = \
                contingency.get_contingency(self.data, self.var, self.cvar)
            self.display_contingency()
        else:
            self.distributions = \
                distribution.get_distribution(self.data, self.var)
            self.display_distribution()

    def _density_estimator(self):
        if self.cont_est_type == OWDistributions.Hist:

            def hist(dist):
                h, edges = numpy.histogram(dist[0, :],
                                           bins=10,
                                           weights=dist[1, :])
                return edges, h

            return hist
        elif self.cont_est_type == OWDistributions.ASH:
            return lambda dist: ash_curve(dist, m=5)
        elif self.cont_est_type == OWDistributions.Kernel:
            return rect_kernel_curve

    def display_distribution(self):
        dist = self.distributions
        var = self.var
        assert len(dist) > 0
        self.plot.clear()

        bottomaxis = self.plot.getAxis("bottom")
        bottomaxis.setLabel(var.name)

        self.set_left_axis_name()
        if var and var.is_continuous:
            bottomaxis.setTicks(None)
            curve_est = self._density_estimator()
            edges, curve = curve_est(dist)
            item = pg.PlotCurveItem()
            item.setData(edges,
                         curve,
                         antialias=True,
                         stepMode=True,
                         fillLevel=0,
                         brush=QtGui.QBrush(Qt.gray),
                         pen=QtGui.QColor(Qt.white))
            self.plot.addItem(item)
        else:
            bottomaxis.setTicks([list(enumerate(var.values))])
            for i, w in enumerate(dist):
                geom = QtCore.QRectF(i - 0.33, 0, 0.66, w)
                print(w, list(enumerate(var.values)))
                item = DistributionBarItem(geom, [1.0],
                                           [QtGui.QColor(128, 128, 128)])
                self.plot.addItem(item)

    def _on_relative_freq_changed(self):
        self.set_left_axis_name()
        if self.cvar and self.cvar.is_discrete:
            self.display_contingency()
        else:
            self.display_distribution()

    def display_contingency(self):
        """
        Set the contingency to display.
        """
        cont = self.contingencies
        var, cvar = self.var, self.cvar
        assert len(cont) > 0
        self.plot.clear()

        bottomaxis = self.plot.getAxis("bottom")
        bottomaxis.setLabel(var.name)

        palette = colorpalette.ColorPaletteGenerator(len(cvar.values))
        colors = [palette[i] for i in range(len(cvar.values))]

        if var and var.is_continuous:
            bottomaxis.setTicks(None)

            weights = numpy.array([numpy.sum(W) for _, W in cont])
            weights /= numpy.sum(weights)

            curve_est = self._density_estimator()
            curves = [curve_est(dist) for dist in cont]
            curves = [(X, Y * w) for (X, Y), w in zip(curves, weights)]

            cum_curves = [curves[0]]
            for X, Y in curves[1:]:
                cum_curves.append(sum_rect_curve(X, Y, *cum_curves[-1]))

            for (X, Y), color in reversed(list(zip(cum_curves, colors))):
                item = pg.PlotCurveItem()
                pen = QtGui.QPen(QtGui.QBrush(Qt.white), 0.5)
                pen.setCosmetic(True)
                item.setData(X,
                             Y,
                             antialias=True,
                             stepMode=True,
                             fillLevel=0,
                             brush=QtGui.QBrush(color.lighter()),
                             pen=pen)
                self.plot.addItem(item)


#             # XXX: sum the individual curves and not the distributions.
#             # The conditional distributions might be 'smoother' than
#             # the cumulative one
#             cum_dist = [cont[0]]
#             for dist in cont[1:]:
#                 cum_dist.append(dist_sum(dist, cum_dist[-1]))
#
#             curves = [rect_kernel_curve(dist) for dist in cum_dist]
#             colors = [Qt.blue, Qt.red, Qt.magenta]
#             for (X, Y), color in reversed(list(zip(curves, colors))):
#                 item = pg.PlotCurveItem()
#                 item.setData(X, Y, antialias=True, stepMode=True,
#                              fillLevel=0, brush=QtGui.QBrush(color))
#                 item.setPen(QtGui.QPen(color))
#                 self.plot.addItem(item)
        elif var and var.is_discrete:
            bottomaxis.setTicks([list(enumerate(var.values))])

            cont = numpy.array(cont)
            for i, (value, dist) in enumerate(zip(var.values, cont.T)):
                dsum = sum(dist)
                geom = QtCore.QRectF(i - 0.333, 0, 0.666,
                                     100 if self.relative_freq else dsum)
                item = DistributionBarItem(geom, dist / dsum, colors)
                self.plot.addItem(item)

    def set_left_axis_name(self):
        set_label = self.plot.getAxis("left").setLabel
        if (self.var and self.var.is_continuous
                and self.cont_est_type != OWDistributions.Hist):
            set_label("Density")
        else:
            set_label(["Frequency",
                       "Relative frequency"][self.cvar is not None
                                             and self.relative_freq])

    def enable_disable_rel_freq(self):
        self.cb_rel_freq.setDisabled(self.var is None or self.cvar is None
                                     or self.var.is_continuous)

    def _on_variable_idx_changed(self):
        self.variable_idx = selected_index(self.varview)
        self._setup()

    def _on_groupvar_idx_changed(self):
        self.groupvar_idx = selected_index(self.groupvarview)
        self._setup()

    def _on_cont_est_type_changed(self):
        self.set_left_axis_name()
        if self.data is not None:
            self._setup()

    def onDeleteWidget(self):
        self.plot.clear()
        super().onDeleteWidget()
Пример #3
0
class OWDistributions(widget.OWWidget):
    name = "Distributions"
    description = "Display value distributions of a data feature in a graph."
    icon = "icons/Distribution.svg"
    priority = 100
    inputs = [
        InputSignal("Data",
                    Orange.data.Table,
                    "set_data",
                    doc="Set the input data set")
    ]

    settingsHandler = settings.DomainContextHandler(
        match_values=settings.DomainContextHandler.MATCH_VALUES_ALL)
    #: Selected variable index
    variable_idx = settings.ContextSetting(-1)
    #: Selected group variable
    groupvar_idx = settings.ContextSetting(0)

    relative_freq = settings.Setting(False)
    disc_cont = settings.Setting(False)

    smoothing_index = settings.Setting(5)
    show_prob = settings.ContextSetting(0)

    graph_name = "plot"

    ASH_HIST = 50

    bins = [2, 3, 4, 5, 8, 10, 12, 15, 20, 30, 50]
    smoothing_facs = list(
        reversed([0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 4, 6, 10]))

    def __init__(self):
        super().__init__()
        self.data = None

        self.distributions = None
        self.contingencies = None
        self.var = self.cvar = None
        varbox = gui.widgetBox(self.controlArea, "Variable")

        self.varmodel = itemmodels.VariableListModel()
        self.groupvarmodel = []

        self.varview = QtGui.QListView(
            selectionMode=QtGui.QListView.SingleSelection)
        self.varview.setSizePolicy(QtGui.QSizePolicy.Minimum,
                                   QtGui.QSizePolicy.Expanding)
        self.varview.setModel(self.varmodel)
        self.varview.setSelectionModel(
            itemmodels.ListSingleSelectionModel(self.varmodel))
        self.varview.selectionModel().selectionChanged.connect(
            self._on_variable_idx_changed)
        varbox.layout().addWidget(self.varview)

        box = gui.widgetBox(self.controlArea, "Precision")

        gui.separator(self.controlArea, 4, 4)

        box2 = gui.widgetBox(box, orientation="horizontal")
        self.l_smoothing_l = gui.widgetLabel(box2, "Smooth")
        gui.hSlider(box2,
                    self,
                    "smoothing_index",
                    minValue=0,
                    maxValue=len(self.smoothing_facs) - 1,
                    callback=self._on_set_smoothing,
                    createLabel=False)
        self.l_smoothing_r = gui.widgetLabel(box2, "Precise")

        self.cb_disc_cont = gui.checkBox(
            gui.indentedBox(box, sep=4),
            self,
            "disc_cont",
            "Bin continuous variables",
            callback=self._on_groupvar_idx_changed,
            tooltip="Show continuous variables as discrete.")

        box = gui.widgetBox(self.controlArea, "Group by")
        self.icons = gui.attributeIconDict
        self.groupvarview = gui.comboBox(
            box,
            self,
            "groupvar_idx",
            callback=self._on_groupvar_idx_changed,
            valueType=str,
            contentsLength=12)
        box2 = gui.indentedBox(box, sep=4)
        self.cb_rel_freq = gui.checkBox(
            box2,
            self,
            "relative_freq",
            "Show relative frequencies",
            callback=self._on_relative_freq_changed,
            tooltip=
            "Normalize probabilities so that probabilities for each group-by value sum to 1."
        )
        gui.separator(box2)
        self.cb_prob = gui.comboBox(
            box2,
            self,
            "show_prob",
            label="Show probabilities",
            orientation="horizontal",
            callback=self._on_relative_freq_changed,
            tooltip=
            "Show probabilities for a chosen group-by value (at each point probabilities for all group-by values sum to 1)."
        )

        self.plotview = pg.PlotWidget(background=None)
        self.plotview.setRenderHint(QtGui.QPainter.Antialiasing)
        self.mainArea.layout().addWidget(self.plotview)
        w = QtGui.QLabel()
        w.setSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Fixed)
        self.mainArea.layout().addWidget(w, Qt.AlignCenter)
        self.ploti = pg.PlotItem()
        self.plot = self.ploti.vb
        self.ploti.hideButtons()
        self.plotview.setCentralItem(self.ploti)

        self.plot_prob = pg.ViewBox()
        self.ploti.hideAxis('right')
        self.ploti.scene().addItem(self.plot_prob)
        self.ploti.getAxis("right").linkToView(self.plot_prob)
        self.ploti.getAxis("right").setLabel("Probability")
        self.plot_prob.setZValue(10)
        self.plot_prob.setXLink(self.ploti)
        self.update_views()
        self.ploti.vb.sigResized.connect(self.update_views)
        self.plot_prob.setRange(yRange=[0, 1])

        self.inline_graph_report()

        def disable_mouse(plot):
            plot.setMouseEnabled(False, False)
            plot.setMenuEnabled(False)

        disable_mouse(self.plot)
        disable_mouse(self.plot_prob)

        self.tooltip_items = []
        self.plot.scene().installEventFilter(
            HelpEventDelegate(self.help_event, self))

        pen = QtGui.QPen(self.palette().color(QtGui.QPalette.Text))
        for axis in ("left", "bottom"):
            self.ploti.getAxis(axis).setPen(pen)

        self._legend = LegendItem()
        self._legend.setParentItem(self.plot)
        self._legend.hide()
        self._legend.anchor((1, 0), (1, 0))

    def update_views(self):
        self.plot_prob.setGeometry(self.plot.sceneBoundingRect())
        self.plot_prob.linkedViewChanged(self.plot, self.plot_prob.XAxis)

    def set_data(self, data):
        self.closeContext()
        self.clear()
        self.data = data
        if self.data is not None:
            domain = self.data.domain
            self.varmodel[:] = list(domain)

            self.groupvarview.clear()
            self.groupvarmodel = \
                ["(None)"] + [var for var in domain if var.is_discrete]
            self.groupvarview.addItem("(None)")
            for var in self.groupvarmodel[1:]:
                self.groupvarview.addItem(self.icons[var], var.name)
            if domain.has_discrete_class:
                self.groupvar_idx = \
                    self.groupvarmodel[1:].index(domain.class_var) + 1
            self.openContext(domain)
            self.variable_idx = min(max(self.variable_idx, 0),
                                    len(self.varmodel) - 1)
            self.groupvar_idx = min(max(self.groupvar_idx, 0),
                                    len(self.groupvarmodel) - 1)
            itemmodels.select_row(self.varview, self.variable_idx)
            self._setup()

    def clear(self):
        self.plot.clear()
        self.plot_prob.clear()
        self.varmodel[:] = []
        self.groupvarmodel = []
        self.variable_idx = -1
        self.groupvar_idx = 0
        self._legend.clear()
        self._legend.hide()

    def _setup_smoothing(self):
        if not self.disc_cont and self.var and self.var.is_continuous:
            self.cb_disc_cont.setText("Bin continuous variables")
            self.l_smoothing_l.setText("Smooth")
            self.l_smoothing_r.setText("Precise")
        else:
            self.cb_disc_cont.setText(
                "Bin continuous variables into {} bins".format(
                    self.bins[self.smoothing_index]))
            self.l_smoothing_l.setText(" " + str(self.bins[0]))
            self.l_smoothing_r.setText(" " + str(self.bins[-1]))

    def _setup(self):
        self.plot.clear()
        self.plot_prob.clear()
        self._legend.clear()
        self._legend.hide()

        varidx = self.variable_idx
        self.var = self.cvar = None
        if varidx >= 0:
            self.var = self.varmodel[varidx]
        if self.groupvar_idx > 0:
            self.cvar = self.groupvarmodel[self.groupvar_idx]
            self.cb_prob.clear()
            self.cb_prob.addItem("(None)")
            self.cb_prob.addItems(self.cvar.values)
            self.cb_prob.addItem("(All)")
            self.show_prob = min(max(self.show_prob, 0),
                                 len(self.cvar.values) + 1)
        data = self.data
        self._setup_smoothing()
        if self.var is None:
            return
        if self.disc_cont:
            data = self.data[:,
                             (self.var, self.cvar) if self.cvar else self.var]
            disc = Orange.preprocess.discretize.EqualWidth(
                n=self.bins[self.smoothing_index])
            data = Orange.preprocess.Discretize(data,
                                                method=disc,
                                                remove_const=False)
            self.var = data.domain[0]
        self.set_left_axis_name()
        self.enable_disable_rel_freq()
        if self.cvar:
            self.contingencies = \
                contingency.get_contingency(data, self.var, self.cvar)
            self.display_contingency()
        else:
            self.distributions = \
                distribution.get_distribution(data, self.var)
            self.display_distribution()
        self.plot.autoRange()

    def help_event(self, ev):
        in_graph_coor = self.plot.mapSceneToView(ev.scenePos())
        ctooltip = []
        for vb, item in self.tooltip_items:
            if isinstance(item,
                          pg.PlotCurveItem) and item.mouseShape().contains(
                              vb.mapSceneToView(ev.scenePos())):
                ctooltip.append(item.tooltip)
            elif isinstance(
                    item,
                    DistributionBarItem) and item.boundingRect().contains(
                        vb.mapSceneToView(ev.scenePos())):
                ctooltip.append(item.tooltip)
        if ctooltip:
            QToolTip.showText(ev.screenPos(),
                              "\n\n".join(ctooltip),
                              widget=self.plotview)
            return True
        return False

    def display_distribution(self):
        dist = self.distributions
        var = self.var
        assert len(dist) > 0
        self.plot.clear()
        self.plot_prob.clear()
        self.ploti.hideAxis('right')
        self.tooltip_items = []

        bottomaxis = self.ploti.getAxis("bottom")
        bottomaxis.setLabel(var.name)
        bottomaxis.resizeEvent()

        self.set_left_axis_name()
        if var and var.is_continuous:
            bottomaxis.setTicks(None)
            if not len(dist[0]):
                return
            edges, curve = ash_curve(
                dist,
                None,
                m=OWDistributions.ASH_HIST,
                smoothing_factor=self.smoothing_facs[self.smoothing_index])
            edges = edges + (edges[1] - edges[0]) / 2
            edges = edges[:-1]
            item = pg.PlotCurveItem()
            pen = QtGui.QPen(QtGui.QBrush(Qt.white), 3)
            pen.setCosmetic(True)
            item.setData(edges,
                         curve,
                         antialias=True,
                         stepMode=False,
                         fillLevel=0,
                         brush=QtGui.QBrush(Qt.gray),
                         pen=pen)
            self.plot.addItem(item)
            item.tooltip = "Density"
            self.tooltip_items.append((self.plot, item))
        else:
            bottomaxis.setTicks([list(enumerate(var.values))])
            for i, w in enumerate(dist):
                geom = QtCore.QRectF(i - 0.33, 0, 0.66, w)
                item = DistributionBarItem(geom, [1.0],
                                           [QtGui.QColor(128, 128, 128)])
                self.plot.addItem(item)
                item.tooltip = "Frequency for %s: %r" % (var.values[i], w)
                self.tooltip_items.append((self.plot, item))

    def _on_relative_freq_changed(self):
        self.set_left_axis_name()
        if self.cvar and self.cvar.is_discrete:
            self.display_contingency()
        else:
            self.display_distribution()
        self.plot.autoRange()

    def display_contingency(self):
        """
        Set the contingency to display.
        """
        cont = self.contingencies
        var, cvar = self.var, self.cvar
        assert len(cont) > 0
        self.plot.clear()
        self.plot_prob.clear()
        self._legend.clear()
        self.tooltip_items = []

        if self.show_prob:
            self.ploti.showAxis('right')
        else:
            self.ploti.hideAxis('right')

        bottomaxis = self.ploti.getAxis("bottom")
        bottomaxis.setLabel(var.name)
        bottomaxis.resizeEvent()

        cvar_values = cvar.values
        colors = [QtGui.QColor(*col) for col in cvar.colors]

        if var and var.is_continuous:
            bottomaxis.setTicks(None)

            weights, cols, cvar_values, curves = [], [], [], []
            for i, dist in enumerate(cont):
                v, W = dist
                if len(v):
                    weights.append(numpy.sum(W))
                    cols.append(colors[i])
                    cvar_values.append(cvar.values[i])
                    curves.append(
                        ash_curve(dist,
                                  cont,
                                  m=OWDistributions.ASH_HIST,
                                  smoothing_factor=self.smoothing_facs[
                                      self.smoothing_index]))
            weights = numpy.array(weights)
            sumw = numpy.sum(weights)
            weights /= sumw
            colors = cols
            curves = [(X, Y * w) for (X, Y), w in zip(curves, weights)]
            ncval = len(cvar_values)

            curvesline = []  #from histograms to lines
            for (X, Y) in curves:
                X = X + (X[1] - X[0]) / 2
                X = X[:-1]
                X = numpy.array(X)
                Y = numpy.array(Y)
                curvesline.append((X, Y))

            for t in ["fill", "line"]:
                for (X, Y), color, w, cval in reversed(
                        list(zip(curvesline, colors, weights, cvar_values))):
                    item = pg.PlotCurveItem()
                    pen = QtGui.QPen(QtGui.QBrush(color), 3)
                    pen.setCosmetic(True)
                    color = QtGui.QColor(color)
                    color.setAlphaF(0.2)
                    item.setData(X,
                                 Y / (w if self.relative_freq else 1),
                                 antialias=True,
                                 stepMode=False,
                                 fillLevel=0 if t == "fill" else None,
                                 brush=QtGui.QBrush(color),
                                 pen=pen)
                    self.plot.addItem(item)
                    if t == "line":
                        item.tooltip = ("Normalized density " if self.relative_freq else "Density ") \
                            + "\n"+ cvar.name + "=" + cval
                        self.tooltip_items.append((self.plot, item))

            if self.show_prob:
                M_EST = 5  #for M estimate
                all_X = numpy.array(
                    numpy.unique(numpy.hstack([X for X, _ in curvesline])))
                inter_X = numpy.array(
                    numpy.linspace(all_X[0], all_X[-1],
                                   len(all_X) * 2))
                curvesinterp = [
                    numpy.interp(inter_X, X, Y) for (X, Y) in curvesline
                ]
                sumprob = numpy.sum(curvesinterp, axis=0)
                # allcorrection = M_EST/sumw*numpy.sum(sumprob)/len(inter_X)
                legal = sumprob > 0.05 * numpy.max(sumprob)

                i = len(curvesinterp) + 1
                show_all = self.show_prob == i
                for Y, color, cval in reversed(
                        list(zip(curvesinterp, colors, cvar_values))):
                    i -= 1
                    if show_all or self.show_prob == i:
                        item = pg.PlotCurveItem()
                        pen = QtGui.QPen(QtGui.QBrush(color),
                                         3,
                                         style=QtCore.Qt.DotLine)
                        pen.setCosmetic(True)
                        #prob = (Y+allcorrection/ncval)/(sumprob+allcorrection)
                        prob = Y[legal] / sumprob[legal]
                        item.setData(inter_X[legal],
                                     prob,
                                     antialias=True,
                                     stepMode=False,
                                     fillLevel=None,
                                     brush=None,
                                     pen=pen)
                        self.plot_prob.addItem(item)
                        item.tooltip = "Probability that \n" + cvar.name + "=" + cval
                        self.tooltip_items.append((self.plot_prob, item))

        elif var and var.is_discrete:
            bottomaxis.setTicks([list(enumerate(var.values))])

            cont = numpy.array(cont)
            ncval = len(cvar_values)

            maxh = 0  #maximal column height
            maxrh = 0  #maximal relative column height
            scvar = cont.sum(axis=1)
            #a cvar with sum=0 with allways have distribution counts 0,
            #therefore we can divide it by anything
            scvar[scvar == 0] = 1
            for i, (value, dist) in enumerate(zip(var.values, cont.T)):
                maxh = max(maxh, max(dist))
                maxrh = max(maxrh, max(dist / scvar))

            for i, (value, dist) in enumerate(zip(var.values, cont.T)):
                dsum = sum(dist)
                geom = QtCore.QRectF(i - 0.333, 0, 0.666,
                                     maxrh if self.relative_freq else maxh)
                if self.show_prob:
                    prob = dist / dsum
                    ci = 1.96 * numpy.sqrt(prob * (1 - prob) / dsum)
                else:
                    ci = None
                item = DistributionBarItem(
                    geom, dist / scvar /
                    maxrh if self.relative_freq else dist / maxh, colors)
                self.plot.addItem(item)
                tooltip = "\n".join("%s: %.*f" %
                                    (n, 3 if self.relative_freq else 1, v)
                                    for n, v in zip(
                                        cvar_values, dist /
                                        scvar if self.relative_freq else dist))
                item.tooltip = ("Normalized frequency " if self.relative_freq else "Frequency ") \
                    + "(" + cvar.name + "=" + value + "):" \
                    + "\n" + tooltip
                self.tooltip_items.append((self.plot, item))

                if self.show_prob:
                    item.tooltip += "\n\nProbabilities:"
                    for ic, a in enumerate(dist):
                        if self.show_prob - 1 != ic and \
                                self.show_prob - 1 != len(dist):
                            continue
                        position = -0.333 + ((ic + 0.5) * 0.666 / len(dist))
                        if dsum < 1e-6:
                            continue
                        prob = a / dsum
                        if not 1e-6 < prob < 1 - 1e-6:
                            continue
                        ci = 1.96 * sqrt(prob * (1 - prob) / dsum)
                        item.tooltip += "\n%s: %.3f ± %.3f" % (cvar_values[ic],
                                                               prob, ci)
                        mark = pg.ScatterPlotItem()
                        bar = pg.ErrorBarItem()
                        pen = QtGui.QPen(QtGui.QBrush(QtGui.QColor(0)), 1)
                        pen.setCosmetic(True)
                        bar.setData(x=[i + position],
                                    y=[prob],
                                    bottom=min(numpy.array([ci]), prob),
                                    top=min(numpy.array([ci]), 1 - prob),
                                    beam=numpy.array([0.05]),
                                    brush=QtGui.QColor(1),
                                    pen=pen)
                        mark.setData([i + position], [prob],
                                     antialias=True,
                                     symbol="o",
                                     fillLevel=None,
                                     pxMode=True,
                                     size=10,
                                     brush=QtGui.QColor(colors[ic]),
                                     pen=pen)
                        self.plot_prob.addItem(bar)
                        self.plot_prob.addItem(mark)

        for color, name in zip(colors, cvar_values):
            self._legend.addItem(
                ScatterPlotItem(pen=color, brush=color, size=10, shape="s"),
                escape(name))
        self._legend.show()

    def set_left_axis_name(self):
        leftaxis = self.ploti.getAxis("left")
        set_label = leftaxis.setLabel
        if self.var and self.var.is_continuous:
            set_label(["Density", "Relative density"][self.cvar is not None
                                                      and self.relative_freq])
        else:
            set_label(["Frequency",
                       "Relative frequency"][self.cvar is not None
                                             and self.relative_freq])
        leftaxis.resizeEvent()

    def enable_disable_rel_freq(self):
        self.cb_prob.setDisabled(self.var is None or self.cvar is None)
        self.cb_rel_freq.setDisabled(self.var is None or self.cvar is None)

    def _on_variable_idx_changed(self):
        self.variable_idx = selected_index(self.varview)
        self._setup()

    def _on_groupvar_idx_changed(self):
        self._setup()

    def _on_set_smoothing(self):
        self._setup()

    def onDeleteWidget(self):
        self.plot.clear()
        super().onDeleteWidget()

    def get_widget_name_extension(self):
        if self.variable_idx >= 0:
            return self.varmodel[self.variable_idx]

    def send_report(self):
        if self.variable_idx < 0:
            return
        self.report_plot()
        text = "Distribution of '{}'".format(self.varmodel[self.variable_idx])
        if self.groupvar_idx:
            group_var = self.groupvarmodel[self.groupvar_idx]
            prob = self.cb_prob
            indiv_probs = 0 < prob.currentIndex() < prob.count() - 1
            if not indiv_probs or self.relative_freq:
                text += " grouped by '{}'".format(group_var)
                if self.relative_freq:
                    text += " (relative frequencies)"
            if indiv_probs:
                text += "; probabilites for '{}={}'".format(
                    group_var, prob.currentText())
        self.report_caption(text)
Пример #4
0
class OWDiscretize(widget.OWWidget):
    name = "Discretize"
    description = "Discretize the continuous data features."
    icon = "icons/Discretize.svg"
    inputs = [InputSignal("Data", Orange.data.Table, "set_data",
                          doc="Input data table")]
    outputs = [OutputSignal("Data", Orange.data.Table,
                            doc="Table with discretized features")]

    settingsHandler = settings.DomainContextHandler()
    saved_var_states = settings.ContextSetting({})

    default_method = settings.Setting(2)
    default_k = settings.Setting(3)
    autosend = settings.Setting(True)

    #: Discretization methods
    Default, Leave, MDL, EqualFreq, EqualWidth, Remove, Custom = range(7)

    want_main_area = False

    def  __init__(self):
        super().__init__()

        #: input data
        self.data = None
        #: Current variable discretization state
        self.var_state = {}
        #: Saved variable discretization settings (context setting)
        self.saved_var_states = {}

        self.method = 0
        self.k = 5

        box = gui.widgetBox(
            self.controlArea, self.tr("Default Discretization"))
        self.default_bbox = rbox = gui.radioButtons(
            box, self, "default_method", callback=self._default_disc_changed)

        options = [
            self.tr("Default"),
            self.tr("Leave continuous"),
            self.tr("Entropy-MDL discretization"),
            self.tr("Equal-frequency discretization"),
            self.tr("Equal-width discretization"),
            self.tr("Remove continuous attributes")
        ]

        for opt in options[1:5]:
            gui.appendRadioButton(rbox, opt)

        s = gui.hSlider(gui.indentedBox(rbox),
                        self, "default_k", minValue=2, maxValue=10,
                        label="Num. of intervals:",
                        callback=self._default_disc_changed)
        s.setTracking(False)

        gui.appendRadioButton(rbox, options[-1])

        vlayout = QHBoxLayout()
        box = gui.widgetBox(
            self.controlArea, "Individual Attribute Settings",
            orientation=vlayout, spacing=8
        )

        # List view with all attributes
        self.varview = QListView(selectionMode=QListView.ExtendedSelection)
        self.varview.setItemDelegate(DiscDelegate())
        self.varmodel = itemmodels.VariableListModel()
        self.varview.setModel(self.varmodel)
        self.varview.selectionModel().selectionChanged.connect(
            self._var_selection_changed
        )

        vlayout.addWidget(self.varview)
        # Controls for individual attr settings
        self.bbox = controlbox = gui.radioButtons(
            box, self, "method", callback=self._disc_method_changed
        )
        vlayout.addWidget(controlbox)

        for opt in options[:5]:
            gui.appendRadioButton(controlbox, opt)

        s = gui.hSlider(gui.indentedBox(controlbox),
                        self, "k", minValue=2, maxValue=10,
                        label="Num. of intervals:",
                        callback=self._disc_method_changed)
        s.setTracking(False)

        gui.appendRadioButton(controlbox, "Remove attribute")

        gui.rubber(controlbox)
        controlbox.setEnabled(False)

        self.controlbox = controlbox

        gui.auto_commit(self.controlArea, self, "autosend", "Apply",
                        orientation="horizontal",
                        checkbox_label="Send data after every change")

    def set_data(self, data):
        self.closeContext()
        self.data = data
        if self.data is not None:
            self._initialize(data)
            self.openContext(data)
            # Restore the per variable discretization settings
            self._restore(self.saved_var_states)
            # Complete the induction of cut points
            self._update_points()
        else:
            self._clear()
        self.unconditional_commit()

    def _initialize(self, data):
        # Initialize the default variable states for new data.
        self.class_var = data.domain.class_var
        cvars = [var for var in data.domain if var.is_continuous]
        self.varmodel[:] = cvars

        class_var = data.domain.class_var
        has_disc_class = data.domain.has_discrete_class

        self.default_bbox.buttons[self.MDL - 1].setEnabled(has_disc_class)
        self.bbox.buttons[self.MDL].setEnabled(has_disc_class)

        # If the newly disabled MDL button is checked then change it
        if not has_disc_class and self.default_method == self.MDL - 1:
            self.default_method = 0
        if not has_disc_class and self.method == self.MDL:
            self.method = 0

        # Reset (initialize) the variable discretization states.
        self._reset()

    def _restore(self, saved_state):
        # Restore variable states from a saved_state dictionary.
        def_method = self._current_default_method()
        for i, var in enumerate(self.varmodel):
            key = variable_key(var)
            if key in saved_state:
                state = saved_state[key]
                if isinstance(state.method, Default):
                    state = DState(Default(def_method), None, None)
                self._set_var_state(i, state)

    def _reset(self):
        # restore the individual variable settings back to defaults.
        def_method = self._current_default_method()
        self.var_state = {}
        for i in range(len(self.varmodel)):
            state = DState(Default(def_method), None, None)
            self._set_var_state(i, state)

    def _set_var_state(self, index, state):
        # set the state of variable at `index` to `state`.
        self.var_state[index] = state
        self.varmodel.setData(self.varmodel.index(index), state, Qt.UserRole)

    def _clear(self):
        self.data = None
        self.varmodel[:] = []
        self.var_state = {}
        self.saved_var_states = {}
        self.default_bbox.buttons[self.MDL - 1].setEnabled(True)
        self.bbox.buttons[self.MDL].setEnabled(True)

    def _update_points(self):
        """
        Update the induced cut points.
        """
        def induce_cuts(method, data, var):
            dvar = _dispatch[type(method)](method, data, var)
            if dvar is None:
                # removed
                return [], None
            elif dvar is var:
                # no transformation took place
                return None, var
            elif is_discretized(dvar):
                return dvar.compute_value.points, dvar
            else:
                assert False
        for i, var in enumerate(self.varmodel):
            state = self.var_state[i]
            if state.points is None and state.disc_var is None:
                points, dvar = induce_cuts(state.method, self.data, var)
                new_state = state._replace(points=points, disc_var=dvar)
                self._set_var_state(i, new_state)
        self.commit()

    def _method_index(self, method):
        return METHODS.index((type(method), ))

    def _current_default_method(self):
        method = self.default_method + 1
        k = self.default_k
        if method == OWDiscretize.Leave:
            def_method = Leave()
        elif method == OWDiscretize.MDL:
            def_method = MDL()
        elif method == OWDiscretize.EqualFreq:
            def_method = EqualFreq(k)
        elif method == OWDiscretize.EqualWidth:
            def_method = EqualWidth(k)
        elif method == OWDiscretize.Remove:
            def_method = Remove()
        else:
            assert False
        return def_method

    def _current_method(self):
        if self.method == OWDiscretize.Default:
            method = Default(self._current_default_method())
        elif self.method == OWDiscretize.Leave:
            method = Leave()
        elif self.method == OWDiscretize.MDL:
            method = MDL()
        elif self.method == OWDiscretize.EqualFreq:
            method = EqualFreq(self.k)
        elif self.method == OWDiscretize.EqualWidth:
            method = EqualWidth(self.k)
        elif self.method == OWDiscretize.Remove:
            method = Remove()
        elif self.method == OWDiscretize.Custom:
            method = Custom(self.cutpoints)
        else:
            assert False
        return method

    def _default_disc_changed(self):
        method = self._current_default_method()
        state = DState(Default(method), None, None)
        for i, _ in enumerate(self.varmodel):
            if isinstance(self.var_state[i].method, Default):
                self._set_var_state(i, state)
        self._update_points()

    def _disc_method_changed(self):
        indices = self.selected_indices()
        method = self._current_method()
        state = DState(method, None, None)
        for idx in indices:
            self._set_var_state(idx, state)
        self._update_points()

    def _var_selection_changed(self, *args):
        indices = self.selected_indices()
        # set of all methods for the current selection
        methods = [self.var_state[i].method for i in indices]
        mset = set(methods)
        self.controlbox.setEnabled(len(mset) > 0)
        if len(mset) == 1:
            method = mset.pop()
            self.method = self._method_index(method)
            if isinstance(method, (EqualFreq, EqualWidth)):
                self.k = method.k
            elif isinstance(method, Custom):
                self.cutpoints = method.points
        else:
            # deselect the current button
            self.method = -1
            bg = self.controlbox.group
            button_group_reset(bg)

    def selected_indices(self):
        rows = self.varview.selectionModel().selectedRows()
        return [index.row() for index in rows]

    def discretized_var(self, source):
        index = list(self.varmodel).index(source)
        state = self.var_state[index]
        if state.disc_var is None:
            return None
        elif state.disc_var is source:
            return source
        elif state.points == []:
            return None
        else:
            return state.disc_var

    def discretized_domain(self):
        """
        Return the current effective discretized domain.
        """
        if self.data is None:
            return None

        def disc_var(source):
            if source and source.is_continuous:
                return self.discretized_var(source)
            else:
                return source

        attributes = [disc_var(v) for v in self.data.domain.attributes]
        attributes = [v for v in attributes if v is not None]

        class_var = disc_var(self.data.domain.class_var)

        domain = Orange.data.Domain(
            attributes, class_var,
            metas=self.data.domain.metas
        )
        return domain

    def commit(self):
        output = None
        if self.data is not None:
            domain = self.discretized_domain()
            output = self.data.from_table(domain, self.data)
        self.send("Data", output)

    def storeSpecificSettings(self):
        super().storeSpecificSettings()
        self.saved_var_states = {
            variable_key(var):
                self.var_state[i]._replace(points=None, disc_var=None)
            for i, var in enumerate(self.varmodel)
        }