Пример #1
0
def parallel_transform(comm, image_data):
    rank = comm.Get_rank()
    size = comm.Get_size()
    print "transforming for rank i = ", rank

    # We assume number of processes is a power of 2
    # start and end are row indices
    start = rank * int(IMAGE_SIZE / size)
    end = ((rank+1) * int(IMAGE_SIZE / size))

    # Load partial data
    b = data_transformer(SAMPLE_SIZE, IMAGE_SIZE)
    data = np.zeros((IMAGE_SIZE, IMAGE_SIZE))
    print "about to transform for rank ",rank
    for i in xrange(start, end):
        print "working on row = ",i
        data += b.transform(image_data[i-start], -np.pi/2048*i)
    print "transformed image for rank ",rank
    
    if not (rank == 0):
        print "sending transformed data for rank ",rank
        comm.Send([data, MPI.FLOAT], dest=0)
        print "sent transformed data for rank ",rank
    
    return data
Пример #2
0
def parallel_transform(comm, image_data):
    rank = comm.Get_rank()
    size = comm.Get_size()
    print "transforming for rank i = ", rank

    # We assume number of processes is a power of 2
    # start and end are row indices
    start = rank * int(IMAGE_SIZE / size)
    end = ((rank + 1) * int(IMAGE_SIZE / size))

    # Load partial data
    b = data_transformer(SAMPLE_SIZE, IMAGE_SIZE)
    data = np.zeros((IMAGE_SIZE, IMAGE_SIZE))
    print "about to transform for rank ", rank
    for i in xrange(start, end):
        print "working on row = ", i
        data += b.transform(image_data[i - start], -np.pi / 2048 * i)
    print "transformed image for rank ", rank

    if not (rank == 0):
        print "sending transformed data for rank ", rank
        comm.Send([data, MPI.FLOAT], dest=0)
        print "sent transformed data for rank ", rank

    return data
Пример #3
0
    # Compute partial transformation
    for i in xrange(start, end):
        print 'transforming for row ', i
        print 'process = ', rank
        data += data_trans.transform(image_data[i - start],
                                     -np.pi / IMAGE_SIZE * i)

    # Reduce to root process
    result = comm.reduce(data, op=MPI.SUM, root=p_root)

    return result


if __name__ == '__main__':
    dt = np.dtype('d')
    data_trans = data_transformer(SAMPLE_SIZE, IMAGE_SIZE)
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    size = comm.Get_size()
    im_data = []

    result = np.zeros((IMAGE_SIZE, IMAGE_SIZE))

    start_end = {}
    for i in xrange(size):
        start = i * int(IMAGE_SIZE / size)
        end = ((i + 1) * int(IMAGE_SIZE / size))
        start_end[i] = (start, end)

    print start_end
Пример #4
0
    # Compute partial transformation
    for i in xrange(start, end):
    	print 'transforming for row ',i
    	print 'process = ',rank
        data += data_trans.transform(image_data[i-start], -np.pi/IMAGE_SIZE*i)

    # Reduce to root process
    result = comm.reduce(data, op=MPI.SUM, root=p_root)

    return result

    

if __name__ == '__main__':
    dt = np.dtype('d')
    data_trans = data_transformer(SAMPLE_SIZE, IMAGE_SIZE)
    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    size = comm.Get_size()
    im_data = []

    result = np.zeros((IMAGE_SIZE, IMAGE_SIZE))

    start_end = {}
    for i in xrange(size):
        start = i * int(IMAGE_SIZE / size)
        end = ((i+1) * int(IMAGE_SIZE / size))
        start_end[i] = (start, end)

    print start_end