def meta_val(x_pred, y_real, x_exp, data, x_prob, a, setting, lower_bound, upper_bound): if len(a) == 0: setting['exp_x'] = x_exp setting['exp_y'] = data[:, 2] setting['bounds'] = [(lower_bound, upper_bound), (lower_bound, upper_bound), (lower_bound, upper_bound)] model = createKriging.createKriging(setting) y_kriging, ci_kriging, var_kriging = createKriging.predictor( x_pred, model, setting) y_pred = y_kriging y_Real = y_real[:, 2] rmse, nrmse = utilPCE.validation(y_Real, y_pred) else: rmse = npy.zeros(len(a)) nrmse = npy.zeros(len(a)) for i in xrange(0, len(a)): setting['exp_x'] = x_exp setting['exp_y'] = data[i * len(x_exp):(i + 1) * len(x_exp), 2] setting['bounds'] = [(lower_bound, upper_bound), (lower_bound, upper_bound)] model = createKriging.createKriging(setting) y_kriging, ci_kriging, var_kriging = createKriging.predictor( x_pred, model, setting) y_pred = y_kriging y_Real = y_real[i * len(x_pred):(i + 1) * len(x_pred), 2] rmse[i], nrmse[i] = utilPCE.validation(y_Real, y_pred) return rmse, nrmse
def meta_gen(x_pred, x_exp, data, x_prob, a, setting, lower_bound, upper_bound): if len(a) == 0: setting['exp_x'] = x_exp setting['exp_y'] = data[:, 2] setting['bounds'] = [(lower_bound, upper_bound), (lower_bound, upper_bound), (lower_bound, upper_bound)] model = createKriging.createKriging(setting) y_kriging, ci_kriging, var_kriging = createKriging.predictor(x_pred, model, setting) y_pred = y_kriging.reshape(len(x_pred), 1) y_pred[y_pred < 0.0001] = min(y_pred[y_pred > 0.0001]) index = npy.arange(1, len(x_pred) + 1) index.shape = (len(x_pred), 1) x_a = x_pred[:, 0].reshape(len(x_pred), 1) data_meta = npy.concatenate((index, x_a, y_pred), axis=1) else: data_meta = npy.zeros((len(a) * len(x_pred), 3)) for i in xrange(0, len(a)): setting['exp_x'] = x_exp setting['exp_y'] = data[i * len(x_exp):(i + 1) * len(x_exp), 2] setting['bounds'] = [(lower_bound, upper_bound), (lower_bound, upper_bound)] model = createKriging.createKriging(setting) y_kriging, ci_kriging, var_kriging = createKriging.predictor(x_pred, model, setting) y_pred = y_kriging.reshape(len(x_pred), 1) y_pred[y_pred < 0.0001] = min(y_pred[y_pred > 0.0001]) index = npy.arange(1, len(x_pred) + 1) index.shape = (len(x_pred), 1) data_meta[i * len(x_pred):(i + 1) * len(x_pred), :] = npy.concatenate( (index, a[i] * npy.ones((len(x_pred), 1)), y_pred), axis=1) data = data_meta[data_meta[:, 2] > min(data_meta[:, 2])] return data
def sobol_gen(a, x_prob, dim, n_exp, x_mix, *args): x_exp1 = args[0] x_exp2 = args[1] x_exp = args[2] data = args[3] setting = args[4] upper_bound = args[5] lower_bound = args[6] y = npy.zeros((n_exp, dim)) y1 = npy.zeros((n_exp, 1)) y2 = npy.zeros((n_exp, 1)) setting['exp_x'] = x_exp setting['exp_y'] = data[:, 2] if len(a) == 0: setting['bounds'] = [(lower_bound, upper_bound), (lower_bound, upper_bound), (lower_bound, upper_bound)] else: setting['bounds'] = [(lower_bound, upper_bound), (lower_bound, upper_bound)] model = createKriging.createKriging(setting) y1, ci_kriging, var_kriging = createKriging.predictor( x_exp1, model, setting) y2, ci_kriging, var_kriging = createKriging.predictor( x_exp2, model, setting) for i in xrange(0, dim): x_mix[:, :] = x_exp1 x_mix[:, i] = x_exp2[:, i] y[:, i], ci_kriging, var_kriging = createKriging.predictor( x_mix, model, setting) return y1, y2, y
def sobol_gen(a, x_prob, dim, n_exp, x_mix, *args): x_exp1 = args[0] x_exp2 = args[1] n_deg = args[2] x_exp = args[3] data = args[4] setting = args[5] upper_bound = args[6] lower_bound = args[7] y = npy.zeros((n_exp, dim)) y1 = npy.zeros((n_exp, 1)) y2 = npy.zeros((n_exp, 1)) setting['exp_x'] = x_exp setting['exp_y'] = data[:,2] y_exp = data[:,2] PCE_lars = calPCE.collocation(n_deg, x_prob, x_exp, y_exp, 'LARS') if len(a) == 0: setting['bounds'] = [(lower_bound, upper_bound), (lower_bound, upper_bound), (lower_bound, upper_bound)] else: setting['bounds'] = [(lower_bound, upper_bound), (lower_bound, upper_bound)] model = createKriging.createKriging(setting, PCE_lars) PCE_pred_1, y_PCE_pred = utilPCE.predictor(PCE_lars, x_exp1) y1, ci_kriging, var_kriging = createKriging.predictor(x_exp1, model, setting, PCE_lars, PCE_pred_1) PCE_pred_2, y_PCE_pred = utilPCE.predictor(PCE_lars, x_exp2) y2, ci_kriging, var_kriging = createKriging.predictor(x_exp2, model, setting, PCE_lars, PCE_pred_2) for i in xrange(0, dim): x_mix[:,:] = x_exp1 x_mix[:,i] = x_exp2[:,i] PCE_pred, y_PCE_pred = utilPCE.predictor(PCE_lars, x_mix) y[:,i], ci_kriging, var_kriging = createKriging.predictor(x_mix, model, setting, PCE_lars, PCE_pred) return y1, y2, y