def PNN_test(I_MS_LR, I_PAN, inputImg, param, net, path, mode, epochs=0): test_dir_out = path['test_dir_out'] FTnetwork_dir_out = path['ftnetwork_dir_out'] param['L'] = inputImg['L'] param['ratio'] = inputImg['ratio'] if 'inputType' not in param.keys(): param['inputType'] = 'MS_PAN' #fine tuning if epochs != 0: fine_tuning(I_MS_LR, I_PAN, param, epochs, FTnetwork_dir_out) ft_model_path = FTnetwork_dir_out + '/PNN_model.mat' FT_model = sio.loadmat(ft_model_path, squeeze_me=True) from PNN_testing_model import Network, ConvLayer layer = [] for j in range(0, len(FT_model['layers']), 2): layer.append( ConvLayer(FT_model['layers'][j], FT_model['layers'][j + 1])) net = Network(layer) if mode != 'full': I_MS_LR, I_PAN = downgrade_images(I_MS_LR, I_PAN, param['ratio'], param['sensor']) I_PAN = np.expand_dims(I_PAN, axis=0) NDxI_LR = [] mav_value = 2**(np.float32(param['L'])) # compute radiometric indexes if param['inputType'] == 'MS_PAN_NDxI': if I_MS_LR.shape[0] == 8: NDxI_LR = np.stack(((I_MS_LR[4, :, :] - I_MS_LR[7, :, :]) / (I_MS_LR[4, :, :] + I_MS_LR[7, :, :]), (I_MS_LR[0, :, :] - I_MS_LR[7, :, :]) / (I_MS_LR[0, :, :] + I_MS_LR[7, :, :]), (I_MS_LR[2, :, :] - I_MS_LR[3, :, :]) / (I_MS_LR[2, :, :] + I_MS_LR[3, :, :]), (I_MS_LR[5, :, :] - I_MS_LR[0, :, :]) / (I_MS_LR[5, :, :] + I_MS_LR[0, :, :])), axis=0) else: NDxI_LR = np.stack(((I_MS_LR[3, :, :] - I_MS_LR[2, :, :]) / (I_MS_LR[3, :, :] + I_MS_LR[2, :, :]), (I_MS_LR[1, :, :] - I_MS_LR[3, :, :]) / (I_MS_LR[1, :, :] + I_MS_LR[3, :, :])), axis=0) #input preparation if param['typeInterp'] == 'interp23tap': I_MS = interp23(I_MS_LR, param['ratio']) if len(NDxI_LR) != 0: NDxI = interp23(NDxI_LR, param['ratio']) else: sys.exit('interpolation not supported') if param['inputType'] == 'MS': I_in = I_MS.astype('single') / mav_value elif param['inputType'] == 'MS_PAN': I_in = np.vstack((I_MS, I_PAN)).astype('single') / mav_value elif param['inputType'] == 'MS_PAN_NDxI': I_in = np.vstack((I_MS, I_PAN)).astype('single') / mav_value I_in = np.vstack((I_in, NDxI)).astype('single') else: sys.exit('Configuration not supported') print I_in.shape I_in_residual = np.expand_dims(I_in, axis=0) I_in_residual = I_in_residual[:, :I_MS.shape[0], :, :] I_in = np.pad(I_in, ((0, 0), (param['padSize'] / 2, param['padSize'] / 2), (param['padSize'] / 2, param['padSize'] / 2)), mode='edge') I_in = np.expand_dims(I_in, axis=0) #Pansharpening if param['residual']: I_out = net.build(I_in) + I_in_residual[:, :I_MS.shape[0], :, :] else: I_out = net.build(I_in) I_out = I_out * mav_value return np.squeeze(I_out)
def PNN_test_HSMS_ratio_3( I_MS_LR, I_PAN, inputImg, param, net, path, mode, epochs): #iniz è uguale a 0 QUI ERA IL PROBLEMA FACEVA UN OVERRIDE test_dir_out = path['test_dir_out'] FTnetwork_dir_out = path['ftnetwork_dir_out'] # import pdb; pdb.set_trace() # san paolo hs/ms param['L'] = 15 # modifica del 23/04 # param['ratio']=3 param['ratio'] = 3 # modificato il 04/04 param[ 'lr'] = 0.0001 # prec 10e-4 #modificato il 25/04 param['patchSize'] = 33 #preced = 33 # param['padSize'] = 8 # per il debug # import pdb; pdb.set_trace() if 'inputType' not in param.keys(): param['inputType'] = 'MS_PAN' #fine tuning if epochs != 0: # pdb.set_trace() fine_tuning(I_MS_LR, I_PAN, param, epochs, FTnetwork_dir_out) ft_model_path = FTnetwork_dir_out + '/PNN_model.mat' FT_model = sio.loadmat(ft_model_path, squeeze_me=True) #provo25/04 from PNN_testing_model import Network, ConvLayer layer = [] for j in range(0, len(FT_model['layers']), 2): layer.append( ConvLayer(FT_model['layers'][j], FT_model['layers'][j + 1])) net = Network(layer) # layer=[] # for j in range(0,len(param['layers']),2): # layer.append(ConvLayer(param['layers'][j], param['layers'][j+1])) # net=Network(layer) # pdb.set_trace() if mode != 'full': I_MS_LR, I_PAN = downgrade_images(I_MS_LR, I_PAN, param['ratio'], param['sensor']) I_PAN = np.expand_dims(I_PAN, axis=0) NDxI_LR = [] mav_value = 2**(np.float32(param['L'])) # compute radiometric indexes if param['inputType'] == 'MS_PAN_NDxI': if I_MS_LR.shape[0] == 8: NDxI_LR = np.stack(((I_MS_LR[4, :, :] - I_MS_LR[7, :, :]) / (I_MS_LR[4, :, :] + I_MS_LR[7, :, :]), (I_MS_LR[0, :, :] - I_MS_LR[7, :, :]) / (I_MS_LR[0, :, :] + I_MS_LR[7, :, :]), (I_MS_LR[2, :, :] - I_MS_LR[3, :, :]) / (I_MS_LR[2, :, :] + I_MS_LR[3, :, :]), (I_MS_LR[5, :, :] - I_MS_LR[0, :, :]) / (I_MS_LR[5, :, :] + I_MS_LR[0, :, :])), axis=0) else: NDxI_LR = np.stack(((I_MS_LR[3, :, :] - I_MS_LR[2, :, :]) / (I_MS_LR[3, :, :] + I_MS_LR[2, :, :]), (I_MS_LR[1, :, :] - I_MS_LR[3, :, :]) / (I_MS_LR[1, :, :] + I_MS_LR[3, :, :])), axis=0) # %input preparation if param['typeInterp'] == 'interp23tap': # import pdb; pdb.set_trace() I_MS = interp23(I_MS_LR, param['ratio']) # if len(NDxI_LR)!=0: # NDxI = interp23(NDxI_LR, param['ratio']) # else: # sys.exit('interpolation not supported') if param['inputType'] == 'MS': I_in = I_MS.astype('single') / mav_value elif param['inputType'] == 'MS_PAN': # import pdb; pdb.set_trace() I_in = np.vstack((I_MS, I_PAN)).astype('single') / mav_value elif param['inputType'] == 'MS_PAN_NDxI': I_in = np.vstack((I_MS, I_PAN)).astype('single') / mav_value I_in = np.vstack((I_in, NDxI)).astype('single') else: sys.exit('Configuration not supported') print(I_in.shape) # import pdb; pdb.set_trace() I_in_residual = np.expand_dims(I_in, axis=0) I_in_residual = I_in_residual[:, :I_MS.shape[0], :, :] import pdb pdb.set_trace() I_in = np.pad(I_in, ((0, 0), (param['padSize'] / 2, param['padSize'] / 2), (param['padSize'] / 2, param['padSize'] / 2)), mode='edge') I_in = np.expand_dims(I_in, axis=0) #Pansharpening MODIFICA 17/04 # param['residual'] = 'false' # I_MS_residual = np.expand_dims(I_MS,axis=0) if param['residual'] == 'true' or param['residual'] == 1: I_out = net.build(I_in) + I_in_residual[:, :I_MS.shape[0], :, :] # I_out = net.build(I_in) + I_MS_residual else: I_out = net.build(I_in) I_out = I_out * mav_value return np.squeeze(I_out)
from PNN_testing_model import Network, ConvLayer from PNN_test import PNN_test from others import parser_xml, export2 model = parser_xml('config_testing_' + sensor + '.xml') """ in case of testing/finetuning on more images all the following lines have to be included in the loop, in order to avoid the overwriting of the pre-trained model """ execfile('copy_xml_fields_testing.py') layer = [] for i in xrange(0, len(PNN_model['layers']), 2): layer.append(ConvLayer(PNN_model['layers'][i], PNN_model['layers'][i + 1])) net = Network(layer) #%% Pansharpening #load images inputImg = sio.loadmat(testset_path) I_MS_LR = np.array(inputImg['I_MS'], dtype='double').transpose(2, 0, 1) I_PAN = np.array(inputImg['I_PAN'], dtype='double') #Testing I_MS_HR = PNN_test(I_MS_LR, I_PAN, inputImg, PNN_model, net, path, mode, epochs) #%% save data export2(I_MS_HR, test_dir_out)