FileFolder, Parameter=abundance, Assumption='float') #If the abundance was measure store it if Empty_Array[j + 1] == None: All_observed = False if All_observed: Valid_objects.append(array(Empty_Array, copy=True)) return array(Valid_objects) pv = myPickle() dz = Plot_Conf() ct = Cloudy_Tools() diags = pn.Diagnostics() #Define data type and location Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic['Datatype'] + '.fits' #Define figure format dz.FigConf(n_colors=6) #Define script name and location # ScriptFolder = '/home/vital/Dropbox/Astrophysics/Tools/Cloudy/S_Ar_test/Few_Models/' ScriptFolder = '/home/vital/Dropbox/Astrophysics/Tools/Cloudy/S_Ar_test/Complete_Model/' ScriptPrefix = 'S_Ar_test'
for j in range(len(List_Abundances)): abundance = List_Abundances[j] Empty_Array[j + 1] = pv.GetParameter_ObjLog(CodeName, FileFolder, Parameter=abundance, Assumption="float") # If the abundance was measure store it if Empty_Array[j + 1] == None: All_observed = False if All_observed: Valid_objects.append(array(Empty_Array, copy=True)) return array(Valid_objects) pv = myPickle() dz = Plot_Conf() ct = Cloudy_Tools() diags = pn.Diagnostics() # Define data type and location Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic["Datatype"] + ".fits" # Define figure format dz.FigConf(n_colors=6) # Define script name and location # ScriptFolder = '/home/vital/Dropbox/Astrophysics/Tools/Cloudy/S_Ar_test/Few_Models/' ScriptFolder = "/home/vital/Dropbox/Astrophysics/Tools/Cloudy/S_Ar_test/Complete_Model/" ScriptPrefix = "S_Ar_test"
from CodeTools.PlottingManager import myPickle from Plotting_Libraries.dazer_plotter import Plot_Conf from numpy import linspace import seaborn as sns import pyneb as pn #Declare Classes pv = myPickle() dz = Plot_Conf() #Define figure format dz.FigConf() # Atom creation and definition of physical conditions H1 = pn.RecAtom('H',1) HeI = pn.RecAtom('He', 1) #Define physical conditions tem = 10000 tem_range = linspace(10000, 25000, 100) den = 0 den_range = linspace(0, 300, 200) # Comment the second if you want all the lines to be plotted HeI_Lines=[3889.0, 4026.0, 4471.0, 5876.0, 6678.0, 7065.0, 10830.0] print 'Emissivity', HeI.getEmissivity(tem, 1, wave=3889.0) #--------------------------Density case----------------------------------
import uncertainties.unumpy as unumpy from CodeTools.PlottingManager import myPickle from Math_Libraries.FittingTools import NumpyRegression from Math_Libraries.linfit_script import LinfitLinearRegression from ManageFlow import DataToTreat from Astro_Libraries.Reddening_Corrections import ReddeningLaws from numpy import concatenate from Plotting_Libraries.dazer_plotter import Plot_Conf #Declare coding classes pv = myPickle() Reddening = ReddeningLaws() dz = Plot_Conf() #Declare data location and type Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic['Datatype'] + '.fits' DataLog_Extension = '_' + Catalogue_Dic[ 'Datatype'] + '_LinesLog_v3.txt' #/First batch process for untreated spectra #Define figure format dz.FigConf(FigWidth=16, FigHeight=9) #Find and organize files from terminal command or .py file FilesList = pv.Folder_Explorer(Pattern, Catalogue_Dic['Obj_Folder'], CheckComputer=False) Object_Giving_errors = [] # Loop through files
from numpy import linspace, ones, log10 from collections import OrderedDict from Plotting_Libraries.dazer_plotter import Plot_Conf import pyneb as pn #Declare Classes dz = Plot_Conf() #Define figure format dz.FigConf() #Atom creation and definition of physical conditions HI = pn.RecAtom('H', 1) S3 = pn.Atom('O', 3) #Define lines: Wave_dict = OrderedDict() Wave_dict['Hbeta'] = '4_2' Wave_dict['O3_4959A'] = 4959 Wave_dict['O3_5007A'] = 5007 #Define physical conditions tem = 10000 tem_range = linspace(5000, 25000, 1000) den = 100 #Emissivities ranges Hbeta_emis = HI.getEmissivity(tem = tem_range, den = den, label = Wave_dict['Hbeta']) S3_9069A_emis = S3.getEmissivity(tem = tem_range, den = den, wave = Wave_dict['O3_4959A']) S3_9531A_emis = S3.getEmissivity(tem = tem_range, den = den, wave = Wave_dict['O3_5007A']) t4_range = tem_range/10000
x_combine = hstack([x_combine, x[indices_list[i]]]) y_combine = hstack([y_combine, y[indices_list[i]]]) Lineal_parameters = lineal_mod.guess(y_combine, x=x_combine) x_lineal = linspace(np_min(x_combine), np_max(x_combine), 100) y_lineal = Lineal_parameters[ 'lineal_slope'].value * x_lineal + Lineal_parameters[ 'lineal_intercept'].value return x_lineal, y_lineal, Lineal_parameters #Import the classes pv = myPickle() dz = Plot_Conf() #Define figure format dz.FigConf() #Declare the data FilesFolder = '/home/vital/Dropbox/Astrophysics/Tools/Cloudy/S_Ar_test/Total_Grid_with_continua/' File_con = 'S_Ar_Test_age5.0_zStar-2.4_zGas0.1_u-1.5.con' File_trans_punch = 'S_Ar_Test_age5.0_zStar-2.4_zGas0.31_u-1.5.transContinuum' File_inci_punch = 'S_Ar_Test_age5.0_zStar-2.4_zGas0.31_u-1.5.inciContinuum' #Importing the .con columns lambda_angs, incident, trans, diff_Out, net_trans, reflc, total = loadtxt( FilesFolder + File_con, skiprows=0, usecols=(0, 1, 2, 3, 4, 5, 6),
from CodeTools.PlottingManager import myPickle from Plotting_Libraries.dazer_plotter import Plot_Conf from numpy import array, power, savetxt, transpose, unique, where, zeros,ones from Math_Libraries import sigfig from Scientific_Lib.IrafMethods import Pyraf_Workflow from collections import OrderedDict from os import mkdir #Declare Classes pv = myPickle() dz = Plot_Conf() py_w = Pyraf_Workflow('WHT') # #-----------------------------------------STARBURST EQUIVALENT WIDTH EVOLUTION---------------------------------------- FilesFolder = '/home/vital/Dropbox/Astrophysics/Data/Starburst_Spectra_z0.004/' FilesPattern = '_txt_LinesLog_v3.txt' #Locate files on hard drive FilesList = pv.Folder_Explorer(FilesPattern, FilesFolder, CheckComputer=False) # #Define figure format dz.FigConf() #Lines to plot # H_Lines = ['H1_3970A','H1_4102A','H1_4340A', 'H1_4861A', 'H1_6563A'] H_Lines = ['He1_3188A','He1_4026A','He1_4471A','He2_4686A','He1_5016A','He1_5876A','He1_6678A'] #Define dictionary to store the data Age_dict = OrderedDict() Eqw_dict = OrderedDict()
x_axis = nplog10(S2_S3_ratio) y_axis = nplog10(Ar2_Ar3_ratio) if (x_axis < threshold): print 'values', x_axis, y_axis return x_axis, y_axis else: return None, None dz = Plot_Conf() ct = Cloudy_Tools() #Declare the number of colors dz.FigConf(n_colors=7) #Define script name and location ScriptFolder = '/home/vital/Dropbox/Astrophysics/Tools/Cloudy/S_Ar_test/Total_Grid_SAL2/' #Orion nebula has a metallicity of 2/3 solar Grid_Values = OrderedDict() Grid_Values['age'] = [ '5.0', '5.25', '5.5', '5.75', '6.0', '6.25', '6.5', '6.75', '7.0', '7.5' ] Grid_Values['zStars'] = ['-2.1']
from astropy.coordinates import EarthLocation from pytz import timezone from astroplan import Observer from astropy.coordinates import SkyCoord from astroplan import FixedTarget from astropy.time import Time from astroplan.plots import plot_airmass import matplotlib.pyplot as plt from astropy import coordinates as coords favoured_objects = ['72', '44', 'IZw18_b', '20', '43', '67', '59', '65', '48', '51', '62', '39', '66', '54', 'Mrk475'] #Generate dazer object pv = myPickle() dz = Plot_Conf() #Define figure format dz.FigConf(n_colors = 2) cmap = dz.cmap_pallete() #Define operation Catalogue_Dic = DataToTreat('WHT_CandiatesObjects_2016A') Pattern = '_log' FilesList = pv.Folder_Explorer(Pattern, Catalogue_Dic['Obj_Folder'], CheckComputer=False) Hbeta_values, Flux_values, names, sn_values, z_values = [], [], [], [], [] g_mags, r_mags = [], [] Declination_values = [] for i in range(len(FilesList)):
#!/usr/bin/env python from numpy import hstack, linspace, vstack, zeros, log10 from CodeTools.PlottingManager import myPickle from ManageFlow import DataToTreat from Astro_Libraries.Nebular_Continuum import NebularContinuumCalculator from Plotting_Libraries.dazer_plotter import Plot_Conf from matplotlib import image from scipy.interpolate import interp1d from matplotlib._png import read_png from matplotlib.offsetbox import OffsetImage, AnnotationBbox #---------------------Spectrum Continuum comparisons------------------------------ pv = myPickle() dz = Plot_Conf() nebCalc = NebularContinuumCalculator() nebCalc.DataRoot = '/home/vital/Dropbox/Astrophysics/Lore/NebularContinuum/' #Define operation Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic['Datatype'] + '_dered.fits' Lineslog_extension = '_' + Catalogue_Dic['Datatype'] + '_dered_LinesLog_v3.txt' #Find and organize files from terminal command or .py file FilesList = pv.Folder_Explorer(Pattern, Catalogue_Dic['Obj_Folder'], CheckComputer=False) #Define figure format dz.FigConf(FigWidth =16 , FigHeight = 9) for i in range(len(FilesList)):
Line_dict['4740.12A'] / Line_dict['4861.36A'] ) + 5.705 + 1.246 / TOIII_4 - 0.156 * nplog10(TOIII_4) - 12 logAr2HI = nplog10( Line_dict['7135A'] / Line_dict['4861.36A'] ) + 6.157 + 0.808 / TSIII_4 - 0.508 * nplog10(TSIII_4) - 12 x_axis = logS2HI - logS3HI y_axis = logAr2HI - logAr3HI indexes = x_axis > 0.0 return x_axis[indexes], y_axis[indexes], TSIII[indexes], TOIII[indexes] pv = myPickle() dz = Plot_Conf() ct = Cloudy_Tools() diags = pn.Diagnostics() #Define data type and location Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic['Datatype'] + '.fits' FilesList = pv.Folder_Explorer(Pattern, Catalogue_Dic['Obj_Folder'], CheckComputer=False) Abundances_Matrix = import_data_from_objLog_triple(FilesList, pv) Objects = Abundances_Matrix[:, 0] ArIII_HII_array = Abundances_Matrix[:, 1]
from collections import OrderedDict from numpy import log10 as nplog10, zeros, min, max, linspace, array, concatenate, isfinite, greater from pandas import Series from Math_Libraries.bces_script import bces from Plotting_Libraries.dazer_plotter import Plot_Conf from cloudy_library.cloudy_methods import Cloudy_Tools dz = Plot_Conf() ct = Cloudy_Tools() #Define script name and location ScriptFolder = '/home/vital/Dropbox/Astrophysics/Tools/Cloudy/S_Ar_test/Ionization_Models_Hbeta_trans/' #Orion nebula has a metallicity of 2/3 solar Grid_Values = OrderedDict() Grid_Values['age'] = ['5.0', '5.5', '6.0', '6.5', '7.0', '7.5'] Grid_Values['zStars'] = ['-2.4', '-2.1', '-1.7', '-1.31'] Grid_Values['zGas'] = ['0.1', '0.31', '0.62'] Grid_Values['u'] = ['-4.0', '-3.5', '-3.0', '-2.5', '-2.0', '-1.5'] #Dictionary of dictionaries Grid_frame = ({k: Series(v) for k, v in Grid_Values.iteritems()}) #Trick to create a frame with different lengths # Grid_frame = DataFrame({k : Series(v) for k, v in Grid_Values.iteritems()}) #Generate the scripts with the lines we want to print the flux ct.lines_to_extract(ScriptFolder)
def fetch_image(RA, DEC, folder, Name): filename = os.path.join(folder + Name) if not os.path.exists(filename): _fetch(filename, RA, DEC) return image.imread(filename) #Generate dazer object pv = myPickle() #Generate dazer object dz = Plot_Conf() #Define figure format dz.FigConf(n_colors=2) #Define operation Catalogue_Dic = DataToTreat('WHT_CandiatesObjects_2016A') #Generate the catalogue folders pv.generate_catalogue_tree(Catalogue_Dic) #Recover objects list Table_Address = Catalogue_Dic['Data_Folder'] + 'WHT_Candidate_Objects_List' Candiates_frame = pd.read_csv(Table_Address, delimiter='; ', header=0,
Empty_Array[0] = CodeName for j in range(len(List_Abundances)): abundance = List_Abundances[j] Empty_Array[j+1] = pv.GetParameter_ObjLog(CodeName, FileFolder, Parameter = abundance, Assumption = 'float') #If the abundance was measure store it if Empty_Array[j+1] == None: All_observed = False if All_observed: Valid_objects.append(array(Empty_Array, copy=True)) return array(Valid_objects) pv = myPickle() dz = Plot_Conf() ct = Cloudy_Tools() #Define figure format dz.FigConf(n_colors=6) #Define data type and location Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic['Datatype'] + '.fits' #Define script name and location ScriptFolder = '/home/vital/Dropbox/Astrophysics/Tools/Cloudy/S_Ar_test/' ScriptPrefix = 'S_Ar_test' #4 metallicities 0.004, 0.008, 0.02, 0.05 #5 ages 5.0, 5.5, 6.0, 6.5, 7.0, 7.5
return p_1, conv_curFit def Emissivity_parametrization_backup(Temp_Range, A, B, C): return 12 + A + B/Temp_Range + C * log10(Temp_Range) # SULFUR III 9069-------------------------------- A_0 = -6.5768 B_0 = - 0.6293 C_0 = + 0.6463 #Declare Classes dz = Plot_Conf() #Define figure format dz.FigConf() print 'Tell me the files', pn.atomicData.getAllAvailableFiles('S4') #Line codes to solve the slow pyneb issue pn.atomicData.setDataFile('h_i_rec_SH95.hdf5', 'H1', 'rec') pn.atomicData.setDataFile('he_ii_rec_SH95.hdf5', 'He2', 'rec') #Change atomic data for Sulfur # pn.atomicData.includeFitsPath() pn.atomicData.setDataFile('s_iii_coll_HRS12.dat') #Atom creation and definition of physical conditions
from CodeTools.PlottingManager import myPickle from Plotting_Libraries.dazer_plotter import Plot_Conf from numpy import linspace import seaborn as sns import pyneb as pn # pn.atomicData.setDataFile('h_i_rec_SH95.hdf5', 'H1', 'rec') # pn.atomicData.setDataFile('he_ii_rec_SH95.hdf5', 'He2', 'rec') #Declare Classes pv = myPickle() dz = Plot_Conf() #Define figure format dz.FigConf() # Atom creation and definition of physical conditions S4 = pn.Atom('S', 4) #Define physical conditions tem = 10000 tem_range = linspace(10000, 25000, 100) den = 100 den_range = linspace(10, 300, 100) # Comment the second if you want all the lines to be plotted # S_Lines=[105100, 1404.81, 1423.84, 1398.04, 1416.89, 290100.0, 1387.46, 1406.02, 112300, 183200] # S_Lines=[1404.81, 1423.84, 1416.89, 1406.02, 112300] S_Lines=[105000]
from CodeTools.PlottingManager import myPickle from Plotting_Libraries.dazer_plotter import Plot_Conf from numpy import array, power, savetxt, transpose, unique, where, zeros, ones from Math_Libraries import sigfig from Scientific_Lib.IrafMethods import Pyraf_Workflow from collections import OrderedDict from os import mkdir #Declare Classes pv = myPickle() dz = Plot_Conf() py_w = Pyraf_Workflow('WHT') # #-----------------------------------------STARBURST EQUIVALENT WIDTH EVOLUTION---------------------------------------- FilesFolder = '/home/vital/Dropbox/Astrophysics/Data/Starburst_Spectra_z0.004/' FilesPattern = '_txt_LinesLog_v3.txt' #Locate files on hard drive FilesList = pv.Folder_Explorer(FilesPattern, FilesFolder, CheckComputer=False) # #Define figure format dz.FigConf() #Lines to plot # H_Lines = ['H1_3970A','H1_4102A','H1_4340A', 'H1_4861A', 'H1_6563A'] H_Lines = [ 'He1_3188A', 'He1_4026A', 'He1_4471A', 'He2_4686A', 'He1_5016A', 'He1_5876A', 'He1_6678A' ] #Define dictionary to store the data
den=NSII_2, wave=105000., Hbeta=Line_dict['4861.36A']) #Calculate the logaritmic axis for the plot x_axis = nplog10(Ar4_abund / Ar3_abund) y_axis = nplog10(S4_abund / S3_abund) if (isinf(x_axis) == False) & (isinf(y_axis) == False): return x_axis, y_axis else: return None, None dz = Plot_Conf() ct = Cloudy_Tools() diags = pn.Diagnostics() #Set atomic data and objects pn.atomicData.setDataFile('s_iii_coll_HRS12.dat') diags = pn.Diagnostics() Ar3 = pn.Atom('Ar', 3) Ar4 = pn.Atom('Ar', 4) S3 = pn.Atom('S', 3) S4 = pn.Atom('S', 4) colors_list = [ '#0072B2', '#009E73', '#D55E00', '#CC79A7', '#F0E442', '#56B4E9', '#bcbd22', '#7f7f7f', '#FFB5B8' ]
Empty_Array[0] = CodeName for j in range(len(List_Abundances)): abundance = List_Abundances[j] Empty_Array[j+1] = pv.GetParameter_ObjLog(CodeName, FileFolder, Parameter = abundance, Assumption = 'float') #If the abundance was measure store it if Empty_Array[j+1] == None: All_observed = False if All_observed: Valid_objects.append(array(Empty_Array, copy=True)) return array(Valid_objects) pv = myPickle() dz = Plot_Conf() ct = Cloudy_Tools() diags = pn.Diagnostics() #Define data type and location Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic['Datatype'] + '.fits' #Define figure format dz.FigConf(n_colors=3) print 'Colors initial' print dz.ColorVector[2], len(dz.ColorVector[2]) #Define script name and location # ScriptFolder = '/home/vital/Dropbox/Astrophysics/Tools/Cloudy/S_Ar_test/Few_Models/'
#!/usr/bin/env python from numpy import hstack, linspace, vstack, zeros, log10 from CodeTools.PlottingManager import myPickle from ManageFlow import DataToTreat from Astro_Libraries.Nebular_Continuum import NebularContinuumCalculator from Plotting_Libraries.dazer_plotter import Plot_Conf from matplotlib import image from scipy.interpolate import interp1d from matplotlib._png import read_png from matplotlib.offsetbox import OffsetImage, AnnotationBbox #---------------------Spectrum Continuum comparisons------------------------------ pv = myPickle() dz = Plot_Conf() nebCalc = NebularContinuumCalculator() nebCalc.DataRoot = '/home/vital/Dropbox/Astrophysics/Lore/NebularContinuum/' #Define operation Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic['Datatype'] + '_dered.fits' Lineslog_extension = '_' + Catalogue_Dic['Datatype'] + '_dered_LinesLog_v3.txt' #Find and organize files from terminal command or .py file FilesList = pv.Folder_Explorer(Pattern, Catalogue_Dic['Obj_Folder'], CheckComputer=False) #Define figure format dz.FigConf(FigWidth=16, FigHeight=9)
import uncertainties.unumpy as unumpy from CodeTools.PlottingManager import myPickle from Math_Libraries.FittingTools import NumpyRegression from Math_Libraries.linfit_script import LinfitLinearRegression from ManageFlow import DataToTreat from Astro_Libraries.Reddening_Corrections import ReddeningLaws from numpy import concatenate from Plotting_Libraries.dazer_plotter import Plot_Conf #Declare coding classes pv = myPickle() Reddening = ReddeningLaws() dz = Plot_Conf() #Declare data location and type Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic['Datatype'] + '.fits' DataLog_Extension = '_' + Catalogue_Dic['Datatype'] + '_LinesLog_v3.txt' #/First batch process for untreated spectra #Define figure format dz.FigConf(FigWidth =16 , FigHeight = 9) #Find and organize files from terminal command or .py file FilesList = pv.Folder_Explorer(Pattern, Catalogue_Dic['Obj_Folder'], CheckComputer=False) Object_Giving_errors = [] # Loop through files for i in range(len(FilesList)):
Ar4_abund = Ar4_atom.getIonAbundance(int_ratio = Line_dict['4740.12A'] + Line_dict['4711.26A'], tem=TOIII, den=NSII_2, to_eval = 'L(4740) + L(4711)', Hbeta = Line_dict['4861.36A']) S3_abund = S3_atom.getIonAbundance(int_ratio = (Line_dict['9068.62A'] + Line_dict['9532A']), tem=TSIII, den=NSII, to_eval = 'L(9069)+L(9531)', Hbeta = Line_dict['4861.36A']) S4_abund = S4_atom.getIonAbundance(int_ratio = (Line_dict['10.51m']), tem=TOIII, den=NSII_2, wave = 105000., Hbeta = Line_dict['4861.36A']) #Calculate the logaritmic axis for the plot x_axis = nplog10(Ar4_abund/Ar3_abund) y_axis = nplog10(S4_abund/S3_abund) if (isinf(x_axis) == False) & (isinf(y_axis) == False): return x_axis, y_axis else: return None, None dz = Plot_Conf() ct = Cloudy_Tools() diags = pn.Diagnostics() #Set atomic data and objects pn.atomicData.setDataFile('s_iii_coll_HRS12.dat') diags = pn.Diagnostics() Ar3 = pn.Atom('Ar', 3) Ar4 = pn.Atom('Ar', 4) S3 = pn.Atom('S', 3) S4 = pn.Atom('S', 4) #Declare the number of colors dz.FigConf(n_colors = 7) #Define script name and location
Empty_Array[0] = CodeName for j in range(len(List_Abundances)): abundance = List_Abundances[j] Empty_Array[j+1] = pv.GetParameter_ObjLog(CodeName, FileFolder, Parameter = abundance, Assumption = 'float') #If the abundance was measure store it if Empty_Array[j+1] == None: All_observed = False if All_observed: Valid_objects.append(array(Empty_Array, copy=True)) return array(Valid_objects) pv = myPickle() dz = Plot_Conf() ct = Cloudy_Tools() #Define data type and location Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic['Datatype'] + '.fits' #Define figure format dz.FigConf(n_colors=6) #Define script name and location ScriptFolder = '/home/vital/Dropbox/Astrophysics/Tools/Cloudy/S_Ar_test/Few_Models/' ScriptPrefix = 'S_Ar_test' #4 metallicities 0.004, 0.008, 0.02, 0.05 #5 ages 5.0, 5.5, 6.0, 6.5, 7.0, 7.5
from CodeTools.PlottingManager import myPickle from Math_Libraries.bces_script import bces from Plotting_Libraries.dazer_plotter import Plot_Conf from scipy.odr import * from scipy import stats def Linear_Func(p, x): m, c = p return m*x + c # Create a model for fitting. linear_model = Model(Linear_Func) #Generate dazer object pv = myPickle() dz = Plot_Conf() #Define figure format dz.FigConf(n_colors=7) #Define data type and location Catalogue_Dic = DataToTreat() Pattern = Catalogue_Dic['Datatype'] + '.fits' database_extension = '_extandar_30000_5000_10_Revision3' globalfile_extension = '_global_30000_5000_10_Revision3.csv' Method_index = 3 #Import the plots format Titles_wording, colors_dict = import_plots_wording(pv) #Set the log file
from CodeTools.PlottingManager import myPickle from Plotting_Libraries.dazer_plotter import Plot_Conf from numpy import linspace import seaborn as sns import pyneb as pn # pn.atomicData.setDataFile('h_i_rec_SH95.hdf5', 'H1', 'rec') # pn.atomicData.setDataFile('he_ii_rec_SH95.hdf5', 'He2', 'rec') #Declare Classes pv = myPickle() dz = Plot_Conf() #Define figure format dz.FigConf() # Atom creation and definition of physical conditions S4 = pn.Atom('S', 4) #Define physical conditions tem = 10000 tem_range = linspace(10000, 25000, 100) den = 100 den_range = linspace(10, 300, 100) # Comment the second if you want all the lines to be plotted # S_Lines=[105100, 1404.81, 1423.84, 1398.04, 1416.89, 290100.0, 1387.46, 1406.02, 112300, 183200] # S_Lines=[1404.81, 1423.84, 1416.89, 1406.02, 112300] S_Lines = [105000]
from astroplan import Observer from astropy.coordinates import SkyCoord from astroplan import FixedTarget from astropy.time import Time from astroplan.plots import plot_airmass import matplotlib.pyplot as plt from astropy import coordinates as coords favoured_objects = [ '72', '44', 'IZw18_b', '20', '43', '67', '59', '65', '48', '51', '62', '39', '66', '54', 'Mrk475' ] #Generate dazer object pv = myPickle() dz = Plot_Conf() #Define figure format dz.FigConf(n_colors=2) cmap = dz.cmap_pallete() #Define operation Catalogue_Dic = DataToTreat('WHT_CandiatesObjects_2016A') Pattern = '_log' FilesList = pv.Folder_Explorer(Pattern, Catalogue_Dic['Obj_Folder'], CheckComputer=False) Hbeta_values, Flux_values, names, sn_values, z_values = [], [], [], [], [] g_mags, r_mags = [], [] Declination_values = []