Пример #1
0
def generate_symm_ops(n, normalized=False, lam=np.array([1]), frac=True):
    '''
    Generates symmetric orthogonal polynomials with respect to a 
        generalized Sobolev inner product. The Gram-Schmidt algorithm 
        is implemented here.

    Args:
        n: Maximum degree of orthogonal polynomial.
        normalized: Boolean representing whether the resulting polynomials 
            should be normalized or monic.
        lam: np.array of lambda values for the generalized Sobolev inner 
            product. The default value is 1 (corresponding to the regular 
            Sobolev inner product). If lam = np.array([0]), 
            this is the L2 inner product.
        frac: Boolean representing whether the coefficients should remain 
            as fractions or should be converted to floating point numbers 
            at the end of all calculations.

    Returns:
        np.array of coefficients of the orthogonal polynomials with 
            respect to the basis {R_0, R_1, ..., R_j}. Each row in 
            this array is a polynomial, and there are n+1 rows and n+1 
            columns.
            If normalized is True, the polynomials will be normalized.
            Otherwise, the polynomials will be monic. If normalized 
            is True, frac must be False to obtain normalized coefficients.
    
    '''

    print('Building Gram Matrix ... this may take some time')
    SGM = zeros_gm(n + 1, n + 1)

    for ind1 in range(n + 1):
        for ind2 in range(n + 1):
            if ind1 <= ind2:
                SGM[ind1, ind2] = inner_rjrk(ind1, ind2, lam)

    SGM = symmetrize(SGM)

    basis_mat = eye_gm(n + 1)
    o_basis_mat = zeros_gm(n + 1, n + 1)

    o_basis_mat[0] = basis_mat[0]

    print('Orthogonalizing Using Gram-Schmidt')
    for r in tqdm.tqdm(range(1, n + 1)):
        u_r = basis_mat[r]
        for i in range(r):
            v_i = o_basis_mat[i]

            proj = Polynomial.fast_inner(u_r, v_i, SGM)
            norm = Polynomial.fast_inner(v_i, v_i, SGM)
            u_r -= (proj / norm) * v_i
        o_basis_mat[r] = u_r

    if frac and normalized:
        print(
            'Normalization requires conversion to float. Please set frac = False.'
        )
        print('Generating non-normalized coefficients now...')
    if not frac:
        if normalized:
            o_basis_arr = np.zeros((n + 1, n + 1))
            print('Normalizing')
            for i in tqdm.tqdm(range(n + 1)):
                norm = Polynomial.fast_inner(o_basis_mat[i], o_basis_mat[i],
                                             SGM)
                o_basis_arr[i] = o_basis_mat[i] / gm.sqrt(norm)
            return o_basis_arr
        return np.array(o_basis_mat, dtype=np.float64)

    return o_basis_mat
Пример #2
0
def sob_ops_recursion(j, k, normalized=False, frac=True, leg_omegas=None):
    '''
        This function uses the three term recursion we developed to generate the first j
        Sobolev orthogonal polynomials.

        Args:
            j: maximum degree of polynomials
            k: family of monomials to use in the construction of the orthogonal polynomials 
                (only k = 2,3 supported currently)
            normalized: Boolean representing whether the resulting polynomials 
                should be normalized or monic.
            frac: Boolean representing whether the coefficients should remain as fractions or should be
                converted to floating point numbers at the end of all calculations
            leg_omegas: array of Legendre coefficient values at the required degree and symmetry or 
                tuple of (filename of .npz/.npy file containing this array , array name key string)

        Returns:
            np.array of coefficients of the Sobolev orthogonal polynomials with 
                respect to the basis {P_0k, P_1k,..., P_jk}. Each row in 
                this array is a polynomial, and there are j+1 rows and j+1 
                columns. If normalized is True, the polynomials will be normalized. 
                Otherwise, the polynomials will be monic. If normalized is True, frac must be False
                to obtain normalized coefficients.
    '''
    if k == 1:
        print('This method is currently only proven for k = 2 or 3.')

    # this is so the indices match
    o_basis_mat = np.empty((j + 1, j + 1), dtype=object)
    print('Using Gram-Schmidt to generate initial Sobolev Polynomials')
    with HiddenPrints():
        first_mat = generate_op_GS(1, k, normalized=False, frac=frac)
    const = gm.mpz(0) if frac else 0
    first_mat = np.pad(first_mat, ((0, 0), (0, j - 1)),
                       'constant',
                       constant_values=(const, ))
    o_basis_mat[:2] = first_mat

    if k == 3: func_array = gamma_array
    if k == 2: func_array = beta_array
    if k == 1: func_array = alpha_array

    print('Generating values for f_n')
    func_arr = func_array(j + 2)
    print('Building Gram Matrix for inner product caluclation.')
    Polynomial.build_condensed_GM(j + 1, k, np.array([1]))
    GM = Polynomial.GM[lis2str(np.array([1]))][:j + 1, :j + 1]

    if leg_omegas is None:
        print('Generating Legendre Polynomials to use in recursion')
        leg_omegas = leg_ops_recursion(j, k, frac=frac, normalized=False)
    elif isinstance(leg_omegas, tuple):
        print('Using preloaded Legendre Polynomials')
        filename, arr = leg_omegas
        leg_omegas = np.load(filename, allow_pickle=frac)[arr]

    print('Using recursion to generate the rest of the Sobolev Polynomials')

    for ind in tqdm.tqdm(range(1, j), file=sys.stdout):
        func_vec = func_arr[1:ind + 2]
        omega_vec = leg_omegas[ind, :ind + 1]
        zeta_ind = gm.mpq(-1, func_arr[0]) * func_vec.dot(omega_vec)
        f_ind = np.insert(omega_vec, 0, zeta_ind)
        a_ind = Polynomial.fast_inner(f_ind, o_basis_mat[ind, :ind + 2],
                                      GM[:ind + 2, :ind + 2])
        b_ind = Polynomial.fast_inner(f_ind, o_basis_mat[ind - 1, :ind + 2],
                                      GM[:ind + 2, :ind + 2])
        a_ind = gm.mpq(
            a_ind,
            Polynomial.fast_inner(o_basis_mat[ind, :ind + 1],
                                  o_basis_mat[ind, :ind + 1],
                                  GM[:ind + 1, :ind + 1]))
        b_ind = gm.mpq(
            b_ind,
            Polynomial.fast_inner(o_basis_mat[ind - 1, :ind],
                                  o_basis_mat[ind - 1, :ind], GM[:ind, :ind]))
        new_vec = f_ind - a_ind * o_basis_mat[
            ind, :ind + 2] - b_ind * o_basis_mat[ind - 1, :ind + 2]

        o_basis_mat[ind + 1] = np.pad(new_vec, (0, j - ind - 1),
                                      'constant',
                                      constant_values=(const, ))

    if frac and normalized:
        print(
            'Normalization requires conversion to float. Please set frac = False.'
        )
        print('Generating non-normalized coefficients now...')
    if not frac:
        if normalized:
            o_basis_arr = np.zeros((j + 1, j + 1))
            print('Normalizing')
            for i in tqdm.tqdm(range(j + 1), file=sys.stdout):
                norm = Polynomial.fast_inner(o_basis_mat[i], o_basis_mat[i],
                                             GM)
                o_basis_arr[i] = o_basis_mat[i] / gm.sqrt(norm)
            return o_basis_arr
        return np.array(o_basis_mat, dtype=np.float64)

    return o_basis_mat
Пример #3
0
def leg_ops_recursion(j, k, normalized=False, frac=True, return_f=False):
    '''
        This function uses the three term recursion from the Kasso Tuley paper to generate the first j
        Legendre orthogonal polynomials.

        Args:
            j: maximum degree of polynomials
            k: family of monomials to use in the construction of the orthogonal polynomials 
                (only k = 2,3 supported currently)
            normalized: Boolean representing whether the resulting polynomials 
                should be normalized or monic.
            frac: Boolean representing whether the coefficients should remain as fractions or should be
                converted to floating point numbers at the end of all calculations
            return_f: Boolean representing whether the f polynomials should also be returned

        Returns:
            np.array of coefficients of the Legendre orthogonal polynomials with 
                respect to the basis {P_0k, P_1k,..., P_jk}. Each row in 
                this array is a polynomial, and there are j+1 rows and j+1 
                columns. If normalized is True, the polynomials will be normalized. 
                Otherwise, the polynomials will be monic. If normalized is True, frac must be False
                to obtain normalized coefficients. If return_f is True, a tuple containing the Legendre 
                coefficients and the f polynomial coefficients is returned.
    '''

    if k == 1:
        print('This method is currently only proven for k = 2 or 3.')

    # this is so the indices match

    if return_f: f_mat = np.empty((j + 1, j + 1), dtype=object)

    o_basis_mat = np.empty((j + 1, j + 1), dtype=object)
    print(
        'Using Gram-Schmidt to get the initial Legendre polynomials for recursion'
    )
    with HiddenPrints():
        first_mat = generate_op_GS(1,
                                   k,
                                   normalized=False,
                                   lam=np.array([0]),
                                   frac=frac)
    const = gm.mpz(0) if frac else 0
    first_mat = np.pad(first_mat, ((0, 0), (0, j - 1)),
                       'constant',
                       constant_values=(const, ))
    o_basis_mat[:2] = first_mat

    if k == 3: func_array = gamma_array
    if k == 2: func_array = beta_array
    if k == 1: func_array = alpha_array

    print('Generating values for f_n')
    func_arr = func_array(j + 2)
    print('Building Gram Matrix for inner product caluclation.')
    Polynomial.build_condensed_GM(j + 1, k, np.array([0]))
    GM = Polynomial.GM[lis2str(np.array([0]))][:j + 1, :j + 1]

    print('Using recursion to generate the rest of the Legendre Poynomials')

    if return_f:
        f_mat[0] = zeros_gm(1, f_mat.shape[1])
        func_vec = func_arr[1:2]
        omega_vec = o_basis_mat[0, :1]
        zeta_ind = gm.mpq(-1, func_arr[0]) * func_vec.dot(omega_vec)
        f_ind = np.insert(omega_vec, 0, zeta_ind)
        f_mat[1] = np.pad(f_ind, (0, j - 1),
                          'constant',
                          constant_values=(const, ))

    for ind in tqdm.tqdm(range(1, j), file=sys.stdout):
        func_vec = func_arr[1:ind + 2]
        omega_vec = o_basis_mat[ind, :ind + 1]
        zeta_ind = gm.mpq(-1, func_arr[0]) * func_vec.dot(omega_vec)
        f_ind = np.insert(omega_vec, 0, zeta_ind)
        d_ind2 = gm.mpq(
            1,
            Polynomial.fast_inner(o_basis_mat[ind, :ind + 1],
                                  o_basis_mat[ind, :ind + 1],
                                  GM[:ind + 1, :ind + 1]))
        d_indm2 = gm.mpq(
            1,
            Polynomial.fast_inner(o_basis_mat[ind - 1, :ind],
                                  o_basis_mat[ind - 1, :ind], GM[:ind, :ind]))
        b_ind = d_ind2 * Polynomial.fast_inner(
            f_ind, o_basis_mat[ind, :ind + 2], GM[:ind + 2, :ind + 2])
        c_ind = gm.mpq(d_indm2, d_ind2)

        new_vec = f_ind - b_ind * o_basis_mat[
            ind, :ind + 2] - c_ind * o_basis_mat[ind - 1, :ind + 2]

        o_basis_mat[ind + 1] = np.pad(new_vec, (0, j - ind - 1),
                                      'constant',
                                      constant_values=(const, ))
        if return_f:
            f_mat[ind + 1] = np.pad(f_ind, (0, j - ind - 1),
                                    'constant',
                                    constant_values=(const, ))

    if frac and normalized:
        print(
            'Normalization requires conversion to float. Please set frac = False.'
        )
        print('Generating non-normalized coefficients now...')
    if not frac:
        if normalized:
            o_basis_arr = np.zeros((j + 1, j + 1))
            print('Normalizing')
            for i in tqdm.tqdm(range(j + 1), file=sys.stdout):
                norm = Polynomial.fast_inner(o_basis_mat[i], o_basis_mat[i],
                                             GM)
                o_basis_arr[i] = o_basis_mat[i] / gm.sqrt(norm)
            return (o_basis_arr, np.array(
                f_mat, dtype=np.float64)) if return_f else o_basis_arr
        return (np.array(o_basis_mat, dtype=np.float64),
                np.array(f_mat, dtype=np.float64)) if return_f else np.array(
                    o_basis_mat, dtype=np.float64)

    return (o_basis_mat, f_mat) if return_f else o_basis_mat
Пример #4
0
def generate_op_GS(n, k, normalized=False, lam=np.array([1]), frac=True):
    '''
    Generates orthogonal polynomials with respect to a generalized Sobolev 
        inner product. The Gram-Schmidt algorithm is implemented here.

    Args:
        n: Maximum degree of orthogonal polynomial.
        k: family of monomials to use in Gram-Schmidt (k = 1, 2, or 3)
        normalized: Boolean representing whether the resulting polynomials 
            should be normalized or monic.
        lam: np.array of lambda values for the generalized Sobolev inner 
            product. The default value is 1 (corresponding to the regular 
            Sobolev inner product). If lam = np.array([0]), 
            this is the L2 inner product.
        frac: Boolean representing whether the coefficients should remain as fractions or should be
        converted to floating point numbers at the end of all calculations.

    Returns:
        np.array of coefficients of the orthogonal polynomials with 
            respect to the basis {P_0k, P_1k,..., P_nk}. Each row in 
            this array is a polynomial, and there are n+1 rows and n+1 
            columns.
            If normalized is True, the polynomials will be normalized. 
            Otherwise, the polynomials will be monic. If normalized is True, frac must be False
            to obtain normalized coefficients.
    
    '''

    print('Building Gram Matrix ... this may take some time')
    Polynomial.build_condensed_GM(n + 1, k, lam)

    basis_mat = eye_gm(n + 1)
    o_basis_mat = zeros_gm(n + 1, n + 1)

    o_basis_mat[0] = basis_mat[0]
    GM = Polynomial.GM[lis2str(lam)][:n + 1, :n + 1]
    print('Orthogonalizing Using Gram-Schmidt')
    for r in tqdm.tqdm(range(1, n + 1), file=sys.stdout):

        u_r = basis_mat[r]
        for i in range(r):
            v_i = o_basis_mat[i]

            proj = Polynomial.fast_inner(u_r, v_i, GM)
            norm = Polynomial.fast_inner(v_i, v_i, GM)
            u_r -= (proj / norm) * v_i
        o_basis_mat[r] = u_r
    if frac and normalized:
        print(
            'Normalization requires conversion to float. Please set frac = False.'
        )
        print('Generating non-normalized coefficients now...')
    if not frac:
        if normalized:
            o_basis_arr = np.zeros((n + 1, n + 1))
            print('Normalizing')
            for i in tqdm.tqdm(range(n + 1), file=sys.stdout):
                norm = Polynomial.fast_inner(o_basis_mat[i], o_basis_mat[i],
                                             GM)
                o_basis_arr[i] = o_basis_mat[i] / gm.sqrt(norm)
            return o_basis_arr
        return np.array(o_basis_mat, dtype=np.float64)

    return o_basis_mat