Пример #1
0
    def recalcHist(self, i, postponeToIdle):
        if postponeToIdle:
            self.recalcHist_todo_Set.add(i)
            return
        img = self.data[ tuple(self.zsec) ][i]
        from . import useful as U
        mmms = U.mmms( img )
        self.mmms[i] = mmms
        #time import time
        #time x = time.clock()
        # print mmms

        from . import useful as U
        if self.hist_arr[i] is not None:
            #glSeb  import time
            #glSeb  x = time.clock()
            #         print U.mmms(self.hist_arr[i]),
            U.histogram(img, amin=self.hist_min[i], amax=self.hist_max[i], histArr=self.hist_arr[i])
            #         print U.mmms(self.hist_arr[i])
            self.hist[i].setHist(self.hist_arr[i], self.hist_min[i], self.hist_max[i])
            #glSeb  print "ms: %.2f"% ((time.clock()-x)*1000.0)
            ## FIXME  setHist needs to NOT alloc xArray every time !!!
        else:
            resolution = 10000
    
            a_h = U.histogram(img, resolution, mmms[0], mmms[1])

            self.hist[i].setHist(a_h, mmms[0], mmms[1])
Пример #2
0
    def recalcHist(self, i, postponeToIdle):
        if postponeToIdle:
            self.recalcHist_todo_Set.add(i)
            return
        img = self.data[tuple(self.zsec)][i]
        from . import useful as U
        mmms = U.mmms(img)
        self.mmms[i] = mmms
        #time import time
        #time x = time.clock()
        # print mmms

        from . import useful as U
        if self.hist_arr[i] is not None:
            #glSeb  import time
            #glSeb  x = time.clock()
            #         print U.mmms(self.hist_arr[i]),
            U.histogram(img,
                        amin=self.hist_min[i],
                        amax=self.hist_max[i],
                        histArr=self.hist_arr[i])
            #         print U.mmms(self.hist_arr[i])
            self.hist[i].setHist(self.hist_arr[i], self.hist_min[i],
                                 self.hist_max[i])
            #glSeb  print "ms: %.2f"% ((time.clock()-x)*1000.0)
            ## FIXME  setHist needs to NOT alloc xArray every time !!!
        else:
            resolution = 10000

            a_h = U.histogram(img, resolution, mmms[0], mmms[1])

            self.hist[i].setHist(a_h, mmms[0], mmms[1])
Пример #3
0
    def save(self, baseFn=None):
        """save Mosaic size/pos/scale info in baseFn.txt
           save all images into baseFn_xx.mrc
        """
        from Priithon.all import Mrc, U

        if baseFn is None:
            from .usefulX import FN
            baseFn = FN(1)
            if not baseFn:
                return
        a = N.concatenate((self.m_imgPosArr,
                          self.m_imgSizeArr,
                          N.array(self.m_imgRotArr,)[:,N.newaxis],
                          self.m_imgScaleMM), 1)

        U.writeArray(a, baseFn + '.txt')
        n = len(self.m_imgSizeArr)
        for i in range( n ):
            # Mrc.save(self.m_imgArrL[i], "%s_%02d.mrc" % (baseFn, i))
            #20070126 m = Mrc.Mrc("%s_%02d.mrc" % (baseFn, i), "w+", self.m_imgArrL[i] )
            #20070126 m.calcMMM()
            #20070126 m.hdr('d')[:] =    tuple(self.m_imgSizeArr[i] / N.array((self.m_imgArrL[i].shape))[::1]) + (1,)
            #20070126 m.hdr('zxy0')[:] = (0,) + tuple(self.m_imgPosArr[i]) 
            #20070126 m.hdr('mmm1')[:] = tuple(self.m_imgScaleMM[i]) + (1,)
            #20070126 m.flush()
            #20070126 m.close()
            d    = tuple(self.m_imgSizeArr[i] / N.array((self.m_imgArrL[i].shape), dtype=N.float32)[::1]) + (1,)
            zxy0 = (0,) + tuple(self.m_imgPosArr[i]) 
            Mrc.save(self.m_imgArrL[i],
                     "%s_%02d.mrc" % (baseFn, i),
                     hdrEval='''hdr.d = d; hdr.zxy0 = zxy0'''
                     )
Пример #4
0
def findBestRefZs(ref, sigma=1):
    """
    PSF spread along the Z axis is often tilted in the Y or X axis.
    Thus simple maximum intensity projection may lead to the wrong answer to estimate rotation and magnification.
    On the other hands, taking a single section may also contain out of focus flare from neighboring sections that are tilted.
    Therefore, here sections with high complexity are selected and projected.

    ref: 3D array
    return z idx at the focus
    """
    nz = ref.shape[0]
    if ref.ndim == 2:
        return [0]
    elif nz <= 3:
        return range(nz)

    # Due to the roll up after FFT, the edge sections in Z may contain different information among the channels. Thus these sections are left unused.
    ms = N.zeros((nz - 2, ), N.float32)
    for z in range(1, nz - 1):
        arr = ref[z]
        ms[z - 1] = N.prod(U.mmms(arr)[-2:])  # mean * std

    mi, ma, me, st = U.mmms(ms)
    thr = me + st * sigma

    ids = [idx for idx in range(1, nz - 1) if ms[idx - 1] > thr]
    if not ids:
        ids = range(1, nz - 1)

    return ids
Пример #5
0
def rotateIndices2DNew(shape, rot, orig=None, dtype=N.float64):
    """
    shape: 2D
    rot:   anti-clockwise
    orig:  (y, x)

    return: yi, xi
    """
    # FIX ME Rot is something wrong!! 081027

    shape = N.asarray(shape, N.int)

    if orig is None:
        y, x = shape / 2.
    else:
        y, x = orig

    print(y, x)
    if not rot:
        yi, xi = N.indices(shape, dtype=N.float64)
        yi -= y - 0.5  # remove pix center
        xi -= x - 0.5
        return yi, xi

    # twice as large window

# mo = N.abs(N.mod(shape, 2) + [-1,-1])
    s2 = shape * 2  #+ mo  # always odd for even shape, even for odd shape

    yi, xi = N.indices(s2, dtype=N.float32)

    mm = N.ceil(shape / 2.)  #(s2 -1 - shape)//2 # offset always int
    yi -= mm[0]
    xi -= mm[1]

    pxc = imgGeo.RotateXY((0.5, 0.5), rot)  # remove pix center
    yi += pxc[0]
    xi += pxc[1]

    y0, x0 = shape / 2.  #N.ceil(shape / 2) # img center
    yc = y0 - y  # delta rotation center
    xc = x0 - x

    yi = U.trans2d(yi, None, (xc, yc, rot, 1, 0, 1))
    xi = U.trans2d(xi, None, (xc, yc, rot, 1, 0, 1))
    yi = U.trans2d(yi, None, (-xc, -yc, 0, 1, 0, 1))
    xi = U.trans2d(xi, None, (-xc, -yc, 0, 1, 0, 1))

    yi = yi.astype(dtype)
    xi = xi.astype(dtype)

    yi -= y
    xi -= x

    yi = imgFilters.cutOutCenter(yi, shape)
    xi = imgFilters.cutOutCenter(xi, shape)
    return yi, xi
Пример #6
0
def rotateIndices2DNew(shape, rot, orig=None, dtype=N.float64):
    """
    shape: 2D
    rot:   anti-clockwise
    orig:  (y, x)

    return: yi, xi
    """
    # FIX ME Rot is something wrong!! 081027

    shape = N.asarray(shape, N.int)
    
    if orig is None:
        y, x = shape / 2.
    else:
        y, x = orig

    print(y,x)
    if not rot:
        yi,xi = N.indices(shape, dtype=N.float64)
        yi -= y - 0.5 # remove pix center
        xi -= x - 0.5
        return yi,xi

    # twice as large window
   # mo = N.abs(N.mod(shape, 2) + [-1,-1])
    s2 = shape * 2 #+ mo  # always odd for even shape, even for odd shape

    yi, xi = N.indices(s2, dtype=N.float32)

    mm = N.ceil(shape / 2.)#(s2 -1 - shape)//2 # offset always int
    yi -= mm[0]
    xi -= mm[1]

    pxc = imgGeo.RotateXY((0.5,0.5), rot) # remove pix center
    yi += pxc[0]
    xi += pxc[1]

    y0, x0 = shape / 2. #N.ceil(shape / 2) # img center
    yc = y0 - y # delta rotation center
    xc = x0 - x

    yi = U.trans2d(yi, None, (xc,yc,rot,1,0,1))
    xi = U.trans2d(xi, None, (xc,yc,rot,1,0,1))
    yi = U.trans2d(yi, None, (-xc,-yc,0,1,0,1))
    xi = U.trans2d(xi, None, (-xc,-yc,0,1,0,1))

    yi = yi.astype(dtype)
    xi = xi.astype(dtype)

    yi -= y
    xi -= x

    yi = imgFilters.cutOutCenter(yi, shape)
    xi = imgFilters.cutOutCenter(xi, shape)
    return yi, xi
Пример #7
0
def yCos(parm, r=0):
    """
    parm: (amp,freq,phase,mean)
    amp * N.sin(freq*r + phase(deg)) + mean
    r:    degree (not radian!!)
    """
    a, b, c, d = parm
    r = U.deg2rad(r)
    c = U.deg2rad(c)
    return a * N.cos(b * r + c) + d
Пример #8
0
def yCos(parm, r=0):
    """
    parm: (amp,freq,phase,mean)
    amp * N.sin(freq*r + phase(deg)) + mean
    r:    degree (not radian!!)
    """
    a, b, c, d = parm
    r = U.deg2rad(r)
    c = U.deg2rad(c)
    return  a * N.cos(b*r + c) + d
Пример #9
0
def fitSkew1D(img, ts=None, sigma=0.5, exp=0):
    """
    img: 1D array containg one skewd gaussian peak
    """
    mi, ma, me, sd = U.mmms(img)
    ma, _1, _2, t = U.findMax(img)
    if ts is not None:
        t = ts[t]
        img = list(zip(ts, img))

    return U.fitAny(ySkew, (mi, ma - mi, t, sigma, exp), img, warning=None)
Пример #10
0
def fitSkew1D(img, ts=None, sigma=0.5, exp=0):
    """
    img: 1D array containg one skewd gaussian peak
    """
    mi, ma, me, sd = U.mmms(img)
    ma, _1, _2, t = U.findMax(img)
    if ts is not None:
        t = ts[t]
        img = list(zip(ts, img))

    return U.fitAny(ySkew, (mi, ma-mi, t, sigma, exp), img, warning=None)
    def onMove(self, xEff, yEff, ev):
        #self.oldOnMouse(xEff, yEff, xyEffVal) # show label info
        
        self.yx1 = y1,x1 = int(round(yEff)), int(round(xEff))
        y0,x0 = self.yx0
        dy = y1-y0
        dx = x1-x0

        from Priithon.all import U

        # even size
        if ev.AltDown():
            dy2 = int(dy / 2) * 2
            dx2 = int(dx / 2) * 2

            y1 = y0 + dy2
            x1 = x0 + dx2
            self.yx1 = (y1,x1)
            dy = y1-y0
            dx = x1-x0
            
        #power of two
        if ev.ShiftDown() and ev.ControlDown():
            ddy = N.log(abs(dy)) / log2
            dy2 = 2 ** int(ddy+.5)
            ddx = N.log(abs(dx)) / log2
            dx2 = 2 ** int(ddx+.5)

            y1 = y0 + dy2 *   U.sgn(dy)
            x1 = x0 + dx2 *   U.sgn(dx)
            self.yx1 = (y1,x1)
            dy = y1-y0
            dx = x1-x0

        #square 
        elif ev.ShiftDown() or ev.ControlDown():
            if abs(dx) < abs(dy):
                x1 = x0 + abs(dy) *   U.sgn(dx)
                self.yx1 = (y1,x1)
            elif abs(dy) < abs(dx):
                y1 = y0 + abs(dx) *   U.sgn(dy)
                self.yx1 = (y1,x1)
            dx = x1-x0
            dy = y1-y0
            
        if self.splitND is not None:
            self.splitND.label.SetLabel("h,w: %3d %3d" % (abs(dy),abs(dx)))


        self.gfxUpdate()

        #self.viewer.updateGlList( self.my_defGlList )
        self.doThisAlsoOnMove()
Пример #12
0
    def OnSaveScreenShort(self, event=None):
        '''always flipY'''
        from Priithon.all import U, FN
        fn = FN(1, verbose=0)
        if not fn:
            return

        flipY=1
        if flipY:
            U.saveImg(self.readGLviewport(copy=1)[:, ::-1], fn)
        else:
            U.saveImg(self.readGLviewport(copy=1), fn)
Пример #13
0
    def OnSaveScreenShort(self, event=None):
        '''always flipY'''
        from Priithon.all import U, FN
        fn = FN(1, verbose=0)
        if not fn:
            return

        flipY = 1
        if flipY:
            U.saveImg(self.readGLviewport(copy=1)[:, ::-1], fn)
        else:
            U.saveImg(self.readGLviewport(copy=1), fn)
Пример #14
0
    def onMove(self, xEff, yEff, ev):
        #self.oldOnMouse(xEff, yEff, xyEffVal) # show label info

        self.yx1 = y1, x1 = int(round(yEff)), int(round(xEff))
        y0, x0 = self.yx0
        dy = y1 - y0
        dx = x1 - x0

        from Priithon.all import U

        # even size
        if ev.AltDown():
            dy2 = int(dy / 2) * 2
            dx2 = int(dx / 2) * 2

            y1 = y0 + dy2
            x1 = x0 + dx2
            self.yx1 = (y1, x1)
            dy = y1 - y0
            dx = x1 - x0

        #power of two
        if ev.ShiftDown() and ev.ControlDown():
            ddy = N.log(abs(dy)) / log2
            dy2 = 2**int(ddy + .5)
            ddx = N.log(abs(dx)) / log2
            dx2 = 2**int(ddx + .5)

            y1 = y0 + dy2 * U.sgn(dy)
            x1 = x0 + dx2 * U.sgn(dx)
            self.yx1 = (y1, x1)
            dy = y1 - y0
            dx = x1 - x0

        #square
        elif ev.ShiftDown() or ev.ControlDown():
            if abs(dx) < abs(dy):
                x1 = x0 + abs(dy) * U.sgn(dx)
                self.yx1 = (y1, x1)
            elif abs(dy) < abs(dx):
                y1 = y0 + abs(dx) * U.sgn(dy)
                self.yx1 = (y1, x1)
            dx = x1 - x0
            dy = y1 - y0

        if self.splitND is not None:
            self.splitND.label.SetLabel("h,w: %3d %3d" % (abs(dy), abs(dx)))

        self.gfxUpdate()

        #self.viewer.updateGlList( self.my_defGlList )
        self.doThisAlsoOnMove()
Пример #15
0
    def recalcHist(self, triggeredFromIdle):
        if not triggeredFromIdle:
            self.recalcHist_todo_Set.add(0)
            return

        #CHECK img = self.viewer.m_imgArr
        img = self.img
        from . import useful as U
        mmms = U.mmms( img )
        self.mmms = mmms
            #time import time
            #time x = time.clock()
            # print mmms

        if self.hist_arr is not None:
            #glSeb  import time
            #glSeb  x = time.clock()
            if sys.platform.startswith('linux'): # 20180712 win SIM error
                wx.Yield() # 20180406 dileptus linux
            U.histogram(img, amin=self.hist_min, amax=self.hist_max, histArr=self.hist_arr)
            self.hist.setHist(self.hist_arr, self.hist_min, self.hist_max)
            #glSeb  print "ms: %.2f"% ((time.clock()-x)*1000.0)
            ## FIXME  setHist needs to NOT alloc xArray every time !!!
        else:
        
            #          self.viewer.m_imgChanged = True
            #          self.viewer.Refresh(False)
    
            #20040915(OverflowError: float too large to convert)            resolution = int(mmms[1]-mmms[0]+2)
            #20040915if resolution > 10000:
            #20040915   resolution = 10000
            #20040915elif resolution < 1000: #CHECK
            #20040915   resolution = 10000 # CHECK
            resolution = 10000
    
            a_h = U.histogram(img, resolution, mmms[0], mmms[1])

            #    self.hist.setHist(a_h, mmms[0], mmms[1])
            self.recalcHist__a_h = a_h
            self.recalcHist__Done = 1
            #time print "recalcHist ms: %.2f"% ((time.clock()-x)*1000.0)
            #20171225 py2to3
            if wx.VERSION[0] <= 3:
                mainthread = wx.Thread_IsMain()
            elif wx.VERSION[0] >= 4:
                mainthread = wx.IsMainThread()
            if mainthread:#wx.IsMainThread():#Thread_IsMain():
                self.hist.setHist(self.recalcHist__a_h,
                                  self.mmms[0],
                                  self.mmms[1])
            else:
                wx.PostEvent(self.frame, self.__class__.ResultEvent(None))
Пример #16
0
    def OnSave(self, event=None):
        from Priithon.all import Mrc, U, Y
        fn = Y.FN(1)  #, verbose=0)
        if not fn:
            return
        if fn[-4:] in [".mrc", ".dat"]:
            Mrc.save(self.m_imgArr, fn)
        elif fn[-5:] in [".fits"]:
            U.saveFits(self.m_imgArr, fn)
        else:
            U.saveImg8(self.m_imgArr, fn)

        Y.shellMessage("### section saved to '%s'\n" % fn)
Пример #17
0
    def OnSave(self, event=None):
        from Priithon.all import Mrc, U, Y
        fn = Y.FN(1)#, verbose=0)
        if not fn:
            return
        if fn[-4:] in [ ".mrc",  ".dat" ]:
            Mrc.save(self.m_imgArr, fn)
        elif fn[-5:] in [ ".fits" ]:
            U.saveFits(self.m_imgArr, fn)
        else:
            U.saveImg8(self.m_imgArr, fn)

        Y.shellMessage("### section saved to '%s'\n"%fn)
Пример #18
0
    def OnSaveScreenShort(self, event=None):
        """always flipY"""
        from Priithon.all import U, FN, Y
        fn = FN(1)#, verbose=0)
        if not fn:
            return

        flipY=1
        if flipY:
            U.saveImg(self.readGLviewport(copy=1)[:, ::-1], fn)
        else:
            U.saveImg(self.readGLviewport(copy=1), fn)
        
        Y.shellMessage("### screenshot saved to '%s'\n"%fn)
Пример #19
0
    def OnSaveScreenShort(self, event=None):
        """always flipY"""
        from Priithon.all import U, FN, Y
        fn = FN(1)  #, verbose=0)
        if not fn:
            return

        flipY = 1
        if flipY:
            U.saveImg(self.readGLviewport(copy=1)[:, ::-1], fn)
        else:
            U.saveImg(self.readGLviewport(copy=1), fn)

        Y.shellMessage("### screenshot saved to '%s'\n" % fn)
Пример #20
0
    def recalcHist(self, triggeredFromIdle):
        if not triggeredFromIdle:
            self.recalcHist_todo_Set.add(0)
            return

        #CHECK img = self.viewer.m_imgArr
        img = self.img
        from . import useful as U
        mmms = U.mmms(img)
        self.mmms = mmms
        #time import time
        #time x = time.clock()
        # print mmms

        if self.hist_arr is not None:
            #glSeb  import time
            #glSeb  x = time.clock()
            wx.Yield()  # 20180406 dileptus
            U.histogram(img,
                        amin=self.hist_min,
                        amax=self.hist_max,
                        histArr=self.hist_arr)
            self.hist.setHist(self.hist_arr, self.hist_min, self.hist_max)
            #glSeb  print "ms: %.2f"% ((time.clock()-x)*1000.0)
            ## FIXME  setHist needs to NOT alloc xArray every time !!!
        else:

            #          self.viewer.m_imgChanged = True
            #          self.viewer.Refresh(False)

            #20040915(OverflowError: float too large to convert)            resolution = int(mmms[1]-mmms[0]+2)
            #20040915if resolution > 10000:
            #20040915   resolution = 10000
            #20040915elif resolution < 1000: #CHECK
            #20040915   resolution = 10000 # CHECK
            resolution = 10000

            a_h = U.histogram(img, resolution, mmms[0], mmms[1])

            #    self.hist.setHist(a_h, mmms[0], mmms[1])
            self.recalcHist__a_h = a_h
            self.recalcHist__Done = 1
            #time print "recalcHist ms: %.2f"% ((time.clock()-x)*1000.0)
            #20171225 py2to3
            if wx.IsMainThread():  #Thread_IsMain():
                self.hist.setHist(self.recalcHist__a_h, self.mmms[0],
                                  self.mmms[1])
            else:
                wx.PostEvent(self.frame, self.__class__.ResultEvent(None))
Пример #21
0
    def findBestChannel(self, t=0):
        """
        the reference wavelength is determined from the wavelength and intensity
        
        set self.refwave (in index)
        """
        if self.refwave is not None:
            self.refwave = self.img.getWaveIdx(self.refwave)
        else:
            # if time laplse
            if self.img.nt > 1:
                # how large the object is...
                arrs = [self.img.get3DArr(w=w, t=t).ravel() for w in range(self.img.nw)]
                modes = [imgFilters.mode(a[::50]) for a in arrs]
                fpxls = [N.where(a > modes[i])[0].size/float(a.size) for i, a in enumerate(arrs)]
                # bleach half time
                halfs = []
                for w in range(self.nw):
                    mes = [self.img.get3DArr(w=w, t=t).mean() for t in range(self.nt)]
                    parm, check = U.fitDecay(mes)
                    halfs.append(parm[-1] / float(self.nt))

                channels = N.add(fpxls, halfs)
                refwave = N.argmax(channels)
                print('The channel to align is %i' % refwave)

            # if wavelengths are only 2, then use the channel 0
            elif self.img.nw <= 2:
                refwave = 0

            # take into account for the PSF distortion due to chromatic aberration
            elif self.img.nw > 2:
                pwrs = N.array([self.img.get3DArr(w=w, t=t).mean() for w in range(self.img.nw)])
                # the middle channel should have the intermediate PSF shape
                waves = [self.img.getWaveFromIdx(w) for w in range(self.img.nw)]
                waves.sort()
                candidates = [self.img.getWaveIdx(wave) for wave in waves[1:-1]]

                # remove channels with lots of saturation
                candidates = [w for w in candidates if not self.getSaturation(w=w,t=t)]

                # find out channels with enough signal
                thr = N.mean(pwrs) / 1.25
                bol = N.where(pwrs[candidates] > thr, 1, 0)
                if N.any(bol):
                    ids = N.nonzero(bol)[0]
                    if len(ids) == 1:
                        idx = ids[0]
                    else:
                        candidates = N.array(candidates)[ids]
                        idx = N.argmax(pwrs[candidates])

                    refwave = candidates[idx]
                else:
                    refwave = N.argmax(pwrs)
            self.refwave = refwave

        self.fixAlignParmWithCurrRefWave()

        self.progress()
Пример #22
0
def _fitGaussian2DR(img, LD, y, x, sigma=[2.,2.], mean_max=None, window=5, rot=0, searchRot=None):
    """
    img: already cut out with indy, indx
    """
    if mean_max is None:
        mi, ma, me, sd = U.mmms(img)
        #ma = img[y,x]
    else:
        me, ma = mean_max

    if searchRot:
        param0 = (me, float(ma-me), y, x, float(sigma[0]), float(sigma[1]), rot)
    else:
        param0 = (me, float(ma-me), y, x, float(sigma[0]), float(sigma[1]))

    img = img.flatten()
    def func(p, shape, LD, rot):
        return yGaussian2DR(p, shape, LD, rot).flatten() - img

    from scipy import optimize
    ret, check = optimize.leastsq(func, param0,
                           args=((window,window), LD, rot), warning=None)
    if searchRot and ret[-1] < 0:
        ret[-1] += 90
    ret[4:] = N.abs(ret[4:])
    return ret, check
Пример #23
0
def findMaxWithGFit(img, sigma=0.5, win=11):
    '''
    find sub-pixel peaks from input img using n-dimensional Guassian fitting

    sigma: scaler or [simgaZ,sigmaY..]
    window: a window where the Guassian fit is performed on

    return [v, zyx, sigma]
    '''
    vzyx = N.array(U.findMax(img))
    ndim = img.ndim
    try:
        ret, check = imgFit.fitGaussianND(img, vzyx[-ndim:], sigma, win)
    except IndexError:  # too close to the edge
        imgFit.fitFailedAppend("at %s" % str(vzyx[-ndim:]))
        sigma = imgFit._scalerToSeq(sigma, ndim)
        return vzyx[0:1], vzyx[-ndim:], list(sigma)

    if check == 5 or N.any(ret[2:2 + ndim] > (vzyx[-ndim:] + win)) or N.any(
            ret[2:2 + ndim] < (vzyx[-ndim:] - win)):
        imgFit.fitFailedAppend("at %s, %s, check=%i" %
                               (str(vzyx[-ndim:]), str(ret), check))
        sigma = imgFit._scalerToSeq(sigma, ndim)
        return [vzyx[0:1], vzyx[-ndim:], sigma]
    #x= (vzyx[0:1] + [vzyx[-ndim:]] + [sigma])
    #    print x
    #    return x
    else:
        v = ret[1]
        zyx = ret[2:2 + ndim]
        sigma = ret[2 + ndim:2 + ndim * 2]
        return [v, zyx, sigma]
Пример #24
0
def findMaxWithGFit(img, sigma=0.5, win=11):
    '''
    find sub-pixel peaks from input img using n-dimensional Guassian fitting

    sigma: scaler or [simgaZ,sigmaY..]
    window: a window where the Guassian fit is performed on

    return [v, zyx, sigma]
    '''
    imgFit.fitFailedClear()
    vzyx = U.findMax(img)
    ndim = img.ndim
    try:
        ret, check = imgFit.fitGaussianND(img, vzyx[-ndim:], sigma, win)
    except IndexError: # too close to the edge
        imgFit.fitFailedAppend("at %s" % str(vzyx[-ndim:]))
        sigma = imgFit._scalerToSeq(sigma, ndim)
        return list(vzyx)[0:1] + [vzyx[-ndim:]] + [list(sigma)]

    if check == 5:
        imgFit.fitFailedAppend("at %s, %s, check=%i" % (str(vzyx[-ndim:]), str(ret), check))
        sigma = imgFit._scalerToSeq(sigma, ndim)
        return list(vzyx)[0:1] + [vzyx[-ndim:]] + [sigma]
    else:
        v = ret[1]
        zyx = ret[2:2+ndim]
        sigma = ret[2+ndim:2+ndim*2]
        return [v,zyx,sigma]
Пример #25
0
def findMaxWithGFit(img, sigma=0.5, win=11):
    '''
    find sub-pixel peaks from input img using n-dimensional Guassian fitting

    sigma: scaler or [simgaZ,sigmaY..]
    window: a window where the Guassian fit is performed on

    return [v, zyx, sigma]
    '''
    imgFit.fitFailedClear()
    vzyx = U.findMax(img)
    ndim = img.ndim
    try:
        ret, check = imgFit.fitGaussianND(img, vzyx[-ndim:], sigma, win)
    except IndexError:  # too close to the edge
        imgFit.fitFailedAppend("at %s" % str(vzyx[-ndim:]))
        sigma = imgFit._scalerToSeq(sigma, ndim)
        return list(vzyx)[0:1] + [vzyx[-ndim:]] + [list(sigma)]

    if check == 5:
        imgFit.fitFailedAppend("at %s, %s, check=%i" %
                               (str(vzyx[-ndim:]), str(ret), check))
        sigma = imgFit._scalerToSeq(sigma, ndim)
        return list(vzyx)[0:1] + [vzyx[-ndim:]] + [sigma]
    else:
        v = ret[1]
        zyx = ret[2:2 + ndim]
        sigma = ret[2 + ndim:2 + ndim * 2]
        return [v, zyx, sigma]
Пример #26
0
    def zoomToAll(self):
        if self.m_nImgs < 1:
            return

        posA=N.array(self.m_imgPosArr)
        sizA=N.array(self.m_imgSizeArr)
        a=N.array([N.minimum.reduce(posA),
                   N.maximum.reduce(posA+sizA),
                   ])
        from Priithon.all import U

        MC = N.array([0.5, 0.5]) # mosaic viewer's center (0.5, 0.5)
        a -= MC
        hypot = N.array((N.hypot(a[0][0], a[0][1]),
                         N.hypot(a[1][0], a[1][1])))
        theta = N.array((N.arctan2(a[0][1], a[0][0]),
                         N.arctan2(a[1][1], a[1][0]))) # radians
        phi = theta + U.deg2rad(self.m_rot)
        mimXY = N.array((hypot[0]*N.cos(phi[0]), hypot[0]*N.sin(phi[0])))
        maxXY = N.array((hypot[1]*N.cos(phi[1]), hypot[1]*N.sin(phi[1])))
        a = N.array((mimXY, maxXY))
        a.sort(0)
        if self.m_aspectRatio == -1:
            a = N.array(([a[0][0],-a[1][1]],[a[1][0],-a[0][1]]))

        self.zoomToRect(x0=a[0][0], y0=a[0][1],
                        x1=a[-1][0],y1=a[-1][1])
Пример #27
0
def _fitGaussian2D(img, indy, indx, y, x, sigma=[2.,2.], mean_max=None):
    """
    img: already cut out with indy, indx
    """
    if mean_max is None:
        mi, ma, me, sd = U.mmms(img)
        #ma = img[y,x]
    else:
        me, ma = mean_max

    try:
        sigma, sigma2 = sigma
        param0 = (me, float(ma-me), y, x, float(sigma), float(sigma2))
       # func = _gaussian2D_ellipse
    except (ValueError, TypeError):
        try: 
            len(sigma)
            sigma = [0]
        except TypeError:
            pass
        param0 = (me, float(ma-me), y, x, float(sigma))
        #func = _gaussian2D

    img = img.flatten()
    def func(p, indy, indx):
        return yGaussian2D(p, indy, indx) - img

    from scipy import optimize
    ret, check = optimize.leastsq(func, param0,
                           args=(indy.flatten(), indx.flatten()), warning=None)
    ret[2:4] += 0.5 # use pixel center
    ret[4:] = N.abs(ret[4:])
    return ret, check
Пример #28
0
def findMaxWithGFit(img, sigma=0.5, win=11):
    '''
    find sub-pixel peaks from input img using n-dimensional Guassian fitting

    sigma: scaler or [simgaZ,sigmaY..]
    window: a window where the Guassian fit is performed on

    return [v, zyx, sigma]
    '''
    vzyx = N.array(U.findMax(img))
    ndim = img.ndim
    try:
        ret, check = imgFit.fitGaussianND(img, vzyx[-ndim:], sigma, win)
    except IndexError: # too close to the edge
        imgFit.fitFailedAppend("at %s" % str(vzyx[-ndim:]))
        sigma = imgFit._scalerToSeq(sigma, ndim)
        return vzyx[0:1], vzyx[-ndim:], list(sigma)

    if check == 5 or N.any(ret[2:2+ndim] > (vzyx[-ndim:] + win)) or  N.any(ret[2:2+ndim] < (vzyx[-ndim:] - win)):
        imgFit.fitFailedAppend("at %s, %s, check=%i" % (str(vzyx[-ndim:]), str(ret), check))
        sigma = imgFit._scalerToSeq(sigma, ndim)
        return [vzyx[0:1], vzyx[-ndim:], sigma]
    #x= (vzyx[0:1] + [vzyx[-ndim:]] + [sigma])
    #    print x
    #    return x
    else:
        v = ret[1]
        zyx = ret[2:2+ndim]
        sigma = ret[2+ndim:2+ndim*2]
        return [v,zyx,sigma]
Пример #29
0
def findMaxWithGFitAll(img, thre=0, sigma_peak=0.5, win=11, mask_npxls=3):
    """
    find peaks until either
    1. any pxls becomes below thre
    2. the same peak was found as the maximum

    mask_npxls: number of pixels to mask when Gaussian fitting failed

    return poslist
    """
    img = img.copy()
    imgFit.fitFailedClear()
    ndim = img.ndim
    sigma_peak = imgFit._scalerToSeq(sigma_peak, ndim)

    poses = []
    vzyx = U.findMax(img)
    while vzyx[0] > thre:
        prev = vzyx
        try:
            ret, check = imgFit.fitGaussianND(img, vzyx[-ndim:], sigma_peak, win)
        except IndexError: # too close to the edge
            imgFit.fitFailedAppend("at %s" % str(vzyx[-ndim:]))
            mask_value(img, vzyx[-ndim:], r=mask_npxls, value=img.min())
            poses.append(list(vzyx)[0:1] + [vzyx[-ndim:]] + [list(sigma_peak)])

        if check == 5:
            imgFit.fitFailedAppend("at %s, %s, check=%i" % (str(vzyx[-ndim:]), str(ret), check))
            mask_value(img, vzyx[-ndim:], r=mask_npxls, value=img.min())
            poses.append(list(vzyx)[0:1] + [vzyx[-ndim:]] + [sigma_peak])
        else:
            v = ret[1]
            zyx = ret[2:2+ndim]
            if N.any(N.abs(zyx - vzyx[1:]) > win/2.):#zyx < 0 or zyx > img.shape or ):
                mask_value(img, vzyx[-ndim:], r=mask_npxls, value=img.min())
                poses.append(list(vzyx)[0:1] + [vzyx[-ndim:]] + [sigma_peak])
            else:
                sigma = ret[2+ndim:2+ndim*2]
                mask_gaussianND(img, zyx, v, sigma)
                poses.append([v,zyx,sigma])

        vzyx = U.findMax(img)
        if N.all(vzyx == prev):
            break
        
    return poses#, img
Пример #30
0
    def findBestChannel(self, t=0):
        """
        the reference wavelength is determined from the wavelength and intensity
        
        set self.refwave (in index)
        """
        # if time laplse
        if self.img.nt > 1:
            # how large the object is...
            arrs = [self.img.get3DArr(w=w, t=t).ravel() for w in range(self.img.nw)]
            modes = [imgFilters.mode(a[::50]) for a in arrs]
            fpxls = [N.where(a > modes[i])[0].size/float(a.size) for i, a in enumerate(arrs)]
            # bleach half time
            halfs = []
            for w in range(self.nw):
                mes = [self.img.get3DArr(w=w, t=t).mean() for t in range(self.nt)]
                parm, check = U.fitDecay(mes)
                halfs.append(parm[-1] / float(self.nt))

            channels = N.add(fpxls, halfs)
            refwave = N.argmax(channels)
            print('The channel to align is %i' % refwave)
        
        # if wavelengths are only 2, then use the channel 0
        elif self.img.nw <= 2:
            refwave = 0

        # take into account for the PSF distortion due to chromatic aberration
        elif self.img.nw > 2:
            pwrs = N.array([self.img.get3DArr(w=w, t=t).mean() for w in range(self.img.nw)])
            # the middle channel should have the intermediate PSF shape
            waves = [self.img.getWaveFromIdx(w) for w in range(self.img.nw)]
            waves.sort()
            candidates = [self.img.getWaveIdx(wave) for wave in waves[1:-1]]

            # remove channels with lots of saturation
            candidates = [w for w in candidates if not self.getSaturation(w=w,t=t)]
            
            # find out channels with enough signal
            thr = N.mean(pwrs) / 1.25
            bol = N.where(pwrs[candidates] > thr, 1, 0)
            if N.any(bol):
                ids = N.nonzero(bol)[0]
                if len(ids) == 1:
                    idx = ids[0]
                else:
                    candidates = N.array(candidates)[ids]
                    idx = N.argmax(pwrs[candidates])

                refwave = candidates[idx]
            else:
                refwave = N.argmax(pwrs)
        self.refwave = refwave

        self.fixAlignParmWithCurrRefWave()

        self.progress()
Пример #31
0
def findMaxWithGFitAll(img, thre=0, sigma_peak=0.5, win=11, mask_npxls=3):
    """
    find peaks until either
    1. any pxls becomes below thre
    2. the same peak was found as the maximum

    mask_npxls: number of pixels to mask when Gaussian fitting failed

    return poslist
    """
    img = img.copy()
    imgFit.fitFailedClear()
    ndim = img.ndim
    sigma_peak = imgFit._scalerToSeq(sigma_peak, ndim)

    poses = []
    vzyx = U.findMax(img)
    while vzyx[0] > thre:
        prev = vzyx
        try:
            ret, check = imgFit.fitGaussianND(img, vzyx[-ndim:], sigma_peak,
                                              win)
        except IndexError:  # too close to the edge
            imgFit.fitFailedAppend("at %s" % str(vzyx[-ndim:]))
            mask_value(img, vzyx[-ndim:], r=mask_npxls, value=img.min())
            poses.append(list(vzyx)[0:1] + [vzyx[-ndim:]] + [list(sigma_peak)])

        if check == 5:
            imgFit.fitFailedAppend("at %s, %s, check=%i" %
                                   (str(vzyx[-ndim:]), str(ret), check))
            mask_value(img, vzyx[-ndim:], r=mask_npxls, value=img.min())
            poses.append(list(vzyx)[0:1] + [vzyx[-ndim:]] + [sigma_peak])
        else:
            v = ret[1]
            zyx = ret[2:2 + ndim]
            sigma = ret[2 + ndim:2 + ndim * 2]
            mask_gaussianND(img, zyx, v, sigma)
            poses.append([v, zyx, sigma])

        vzyx = U.findMax(img)
        if N.all(vzyx == prev):
            break

    return poses  #, img
Пример #32
0
def paddingMed(img, shape, shift=None, smooth=10):
    """
    pad with median
    see doc for paddingValue
    """
    try:
        med = N.median(img, axis=None)
    except TypeError: # numpy version < 1.1
        med = U.median(img)
    return paddingValue(img, shape, med, shift, smooth)
Пример #33
0
def paddingMed(img, shape, shift=None, smooth=10):
    """
    pad with median
    see doc for paddingValue
    """
    try:
        med = N.median(img, axis=None)
    except TypeError:  # numpy version < 1.1
        med = U.median(img)
    return paddingValue(img, shape, med, shift, smooth)
Пример #34
0
def maskEdgeWithValue2D(arr, val=None):
    """
    overwrite 2D image edge (s[:-2,2:]) with value **in place**
    
    if val is None, use median
    """
    if not val:
        val = U.median(arr[:-2, 2:])
    arr[-2:] = val
    arr[:, :2] = val
    return arr
Пример #35
0
def maskEdgeWithValue2D(arr, val=None):
    """
    overwrite 2D image edge (s[:-2,2:]) with value **in place**
    
    if val is None, use median
    """
    if not val:
        val = U.median(arr[:-2,2:])
    arr[-2:] = val
    arr[:,:2] = val
    return arr
Пример #36
0
def _findMaxXcor(c, win, gFit=True, niter=2):
    if gFit:
        for i in range(niter):
            v, zyx, s = findMaxWithGFit(c, win=win + (i * 2))
            if v:
                if N.any(zyx > N.array(c.shape)) or N.any(zyx < 0):
                    vzyx = N.array(U.findMax(c))  #continue
                    v = vzyx[0]
                    zyx = vzyx[-c.ndim:] + 0.5  # pixel center
                    s = 2.5
                else:
                    break

        if not v:
            v = U.findMax(c)[0]
    else:
        vzyx = U.findMax(c)
        v = vzyx[0]
        zyx = N.array(vzyx[-c.ndim:]) + 0.5  # pixel center
        s = 2.5
    return v, zyx, s
Пример #37
0
def _findMaxXcor(c, win, gFit=True, niter=2):
    if gFit:
        for i in range(niter):
            v, zyx, s = findMaxWithGFit(c, win=win+(i*2))
            if v:
                if N.any(zyx > N.array(c.shape)) or N.any(zyx < 0):
                    vzyx = N.array(U.findMax(c))#continue
                    v = vzyx[0]
                    zyx = vzyx[-c.ndim:] + 0.5 # pixel center
                    s = 2.5
                else:
                    break

        if not v:
            v = U.findMax(c)[0]
    else:
        vzyx = U.findMax(c)
        v = vzyx[0]
        zyx = N.array(vzyx[-c.ndim:]) + 0.5 # pixel center
        s = 2.5
    return v, zyx, s
Пример #38
0
def _doBilinear2D(a2d, tyx=(0,0), r=0, mag=1, anismag=1, dyx=(0,0), mr=0, b2d=None):
    if b2d is None:
        b2d = N.empty_like(a2d)
    else:
        b2d = N.ascontiguousarray(b2d)
    a2d = a2d.copy() # otherwise, the following code will mess up the input

    if N.any(dyx[-2:]) or mr:
        temp = b2d
        target = a2d
        U.trans2d(target, temp, (dyx[-1], dyx[-2], mr, 1, 0, 1))
    else:
        temp = a2d
        target = b2d

    # rot mag first to make consistent with affine
    magaxis = 1 # only this axis works
    if r or mag != 1 or anismag != 1:
        U.trans2d(temp, target, (0, 0, r, mag, magaxis, anismag))
    else:
        target[:] = temp[:]

    # then translate
    tyx2 = N.array(tyx) # copy
    tyx2[-2:] -= dyx[-2:]
    if N.any(tyx2[-2:]) or mr:
        U.trans2d(target, temp, (tyx2[-1], tyx2[-2], -mr, 1, 0, 1))
    else:
        temp[:] = target[:]
    #a[z] = temp[:]
    return temp
Пример #39
0
def _doBilinear2D(a2d, tyx=(0,0), r=0, mag=1, anismag=1, dyx=(0,0), mr=0, b2d=None):
    if b2d is None:
        b2d = N.empty_like(a2d)
    else:
        b2d = N.ascontiguousarray(b2d)
    a2d = a2d.copy() # otherwise, the following code will mess up the input

    if N.any(dyx[-2:]) or mr:
        temp = b2d
        target = a2d
        U.trans2d(target, temp, (dyx[-1], dyx[-2], mr, 1, 0, 1))
    else:
        temp = a2d
        target = b2d

    # rot mag first to make consistent with affine
    magaxis = 1 # only this axis works
    if r or mag != 1 or anismag != 1:
        U.trans2d(temp, target, (0, 0, r, mag, magaxis, anismag))
    else:
        target[:] = temp[:]

    # then translate
    tyx2 = N.array(tyx) # copy
    tyx2[-2:] -= dyx[-2:]
    if N.any(tyx2[-2:]) or mr:
        U.trans2d(target, temp, (tyx2[-1], tyx2[-2], -mr, 1, 0, 1))
    else:
        temp[:] = target[:]
    #a[z] = temp[:]
    return temp
Пример #40
0
def roughRotMag(a, b, yxrm, idx, step=0.02, nstep=20):
    guess = yxrm[idx]

    Range = (guess - (step * nstep), guess + (step * nstep), step)
    xs = N.arange(*Range)
    yxrms = N.empty((len(xs), ) + yxrm.shape, yxrm.dtype.type)
    yxrms[:] = yxrm
    yxrms[:, idx] = xs
    #for r in Range:
    #    yxrm2 = N.copy(yxrm)
    #    yxrm2[idx] = r
    #    yxrms.append(yxrm2)

    pp = ppro.pmap(_compCost, yxrms, ppro.NCPU, a, b)
    #pp = [_compCost(yx, a, b) for yx in yxrms]
    xi = N.argmin(pp)
    pmin = pp[xi]

    base = max(pp)
    if pmin == base:  # failed to get the curve for some reason
        # usually this happens if one used ndimage.zoom() in scipy
        # ndimage.zoom only interpolate pixel-wise.
        # no subpixel interpolation is done...
        x = int(idx >= 3)
        check = 5
    else:  # go ahead and fit poly
        x = xs[xi]
        data = zip(xs, pp)
        fit, check = U.fitPoly(data, p=(1, 1, 1, 1, 1, 1, 1))

    if check == 5:
        answer = x
    else:
        xx = U.nd.zoom(xs, 100)
        yy = U.yPoly(fit, xx)
        ii = N.argmin(yy)
        answer = xx[ii]

    return answer
Пример #41
0
def prepImg4AffineZ(fn, w=None, phaseContrast=True):
    an = aligner.Chromagnon(fn)
    an.findBestChannel()
    an.setRefImg()

    ref = an.img.get3DArr(w=an.refwave, t=0)
    prefyx = U.project(ref)
    #prefyz = U.project(ref, -1)

    if w is None:
        waves = range(an.img.nw)
        waves.remove(an.refwave)
        w = waves[0]
    img = an.img.get3DArr(w=w, t=0)

    pimgyx = U.project(img)
    #pimgyz = U.project(img, -1)

    #yz, c = xcorr.Xcorr(prefyz, pimgyz, phaseContrast=phaseContrast)
    yx, c = xcorr.Xcorr(prefyx, pimgyx, phaseContrast=phaseContrast)

    xs = N.round_(an.refxs - yx[1]).astype(N.int)
    if xs.max() >= an.img.nx:
        xsbool = (xs < an.img.nx)
        xsinds = N.nonzero(xsbool)[0]
        xs = xs[xsinds]

    imgyz = alignfuncs.prep2D(img.T, zs=xs)

    a1234 = alignfuncs.chopImg(an.refyz)
    b1234 = alignfuncs.chopImg(imgyz)

    ab = zip(a1234, b1234)

    yxcs = [xcorr.Xcorr(a, b, phaseContrast=phaseContrast) for a, b in ab]
    yxs = [yx for yx, c in yxcs]
    cqs = [c.max() - c[c.shape[0] // 4].std() for yx, c in yxcs]

    return ab, cqs, [c for yx, c in yxcs], yxs, an
Пример #42
0
def arr_normalize(a, normalize_with='intens'):
    """
    normalize_with: intens or std
    """
    choices = ('intens', 'std')
    mi, ma, me, sd = U.mmms(a)
    if normalize_with == choices[0]:
        a = (a - mi) / (ma - mi)
    elif normalize_with == choices[1]:
        a = (a - me) / sd
    else:
        raise ValueError('normalize only with %s' % choices)
    return a
Пример #43
0
def chopYX(shapeYX, ncpu=8):
    """
    return axis, YXmmlist
    """
    n, _1, _2, axis = U.findMax(shapeYX)
    n0 = n // ncpu
    mms = []
    pixel = 0
    for cpu in range(ncpu):
        mms += [[pixel, pixel + n0]]
        pixel += n0
    mms[-1][-1] = n
    return axis, mms
Пример #44
0
def arr_normalize(a, normalize_with='intens'):
    """
    normalize_with: intens or std
    """
    choices = ('intens', 'std')
    mi, ma, me, sd = U.mmms(a)
    if normalize_with == choices[0]:
        a = (a-mi) / (ma-mi)
    elif normalize_with == choices[1]:
        a = (a - me) / sd
    else:
        raise ValueError('normalize only with %s' % choices)
    return a
Пример #45
0
def chopYX(shapeYX, ncpu=8):
    """
    return axis, YXmmlist
    """
    n, _1, _2, axis = U.findMax(shapeYX)
    n0 = n // ncpu
    mms = []
    pixel = 0
    for cpu in range(ncpu):
        mms += [[pixel, pixel + n0]]
        pixel += n0
    mms[-1][-1] = n
    return axis, mms
Пример #46
0
    def writeSec(self, arr, i=0, singleOutFn=None):
        if self._rescaleTo8bit:
            if self._rescaleTo8bit is True:
                self.rescaleTo8bit(arr)
            arr = (arr-self._rescaleTo8bit[0])*255./self._rescaleTo8bit[1]

        # astype changes byteorder as well
        arr = arr.astype(self.dtype)
        
        img = U.array2image(arr, rgbOrder=self.rgbOrder)

        if not singleOutFn:
            singleOutFn = self.outfn
        img.save(singleOutFn, **self.saveOptions)
Пример #47
0
    def OnMenuSaveND(self, ev=None):
        if self.data.dtype.type in (N.complex64, N.complex128):
            dat = self.dataCplx
            datX = abs(self.data)  #CHECK
        else:
            dat = datX = self.data

        from Priithon.all import Mrc, U, FN, Y
        fn = FN(1, 0)
        if not fn:
            return
        if fn[-4:] in [".mrc", ".dat"]:
            Mrc.save(dat, fn)
        elif fn[-5:] in [".fits"]:
            U.saveFits(dat, fn)
        else:
            # save as sequence of image files
            # if fn does contain something like '%0d' auto-insert '_%0NNd'
            #      with NN to just fit the needed number of digits
            datX = datX.view()
            datX.shape = (-1, ) + datX.shape[-2:]
            U.saveImg8_seq(datX, fn)
        Y.shellMessage("### Y.vd(%d) saved to '%s'\n" % (self.id, fn))
Пример #48
0
    def OnMenuSaveND(self, ev=None):
        if self.data.dtype.type in (N.complex64, N.complex128):
            dat = self.dataCplx
            datX = abs(self.data) #CHECK 
        else:
            dat = datX = self.data

        from Priithon.all import Mrc, U, FN, Y
        fn = FN(1,0)
        if not fn:
            return
        if fn[-4:] in [ ".mrc",  ".dat" ]:
            Mrc.save(dat, fn)
        elif fn[-5:] in [ ".fits" ]:
            U.saveFits(dat, fn)
        else:
            # save as sequence of image files
            # if fn does contain something like '%0d' auto-insert '_%0NNd'
            #      with NN to just fit the needed number of digits
            datX = datX.view()
            datX.shape = (-1,)+datX.shape[-2:]
            U.saveImg8_seq(datX, fn)
        Y.shellMessage("### Y.vd(%d) saved to '%s'\n"%(self.id, fn))
Пример #49
0
def rot2D(img2D, yx, sigma, rlist, mean_max=None, win=11):
    y, x = yx
    yi, xi, LD = _indLD(win, y, x)
    imgP = img2D[yi, xi]
    if mean_max is None:
        mi, ma, me, sd = U.mmms(imgP)
    else:
        me, ma = mean_max

    yy = []
    for r in rlist:
        ret, check = _fitGaussian2DR(imgP, LD, y, x, sigma, [me, ma], win, r)
        syx = ret[4] / ret[5]  # width y / x
        yy.append(syx)
    return yy
Пример #50
0
    def writeSec(self, arr, i=0, singleOutFn=None):
        if self._rescaleTo8bit:
            if self._rescaleTo8bit is True:
                self.rescaleTo8bit(arr)
            arr = (arr -
                   self._rescaleTo8bit[0]) * 255. / self._rescaleTo8bit[1]

        # astype changes byteorder as well
        arr = arr.astype(self.dtype)

        img = U.array2image(arr, rgbOrder=self.rgbOrder)

        if not singleOutFn:
            singleOutFn = self.outfn
        img.save(singleOutFn, **self.saveOptions)
Пример #51
0
def rot2D(img2D, yx, sigma, rlist, mean_max=None, win=11):
    y, x = yx
    yi, xi, LD = _indLD(win, y, x)
    imgP = img2D[yi,xi]
    if mean_max is None:
        mi, ma, me, sd = U.mmms(imgP)
    else:
        me, ma = mean_max

    yy = []
    for r in rlist:
        ret, check = _fitGaussian2DR(imgP, LD, y, x, sigma, [me,ma], win, r)
        syx = ret[4] / ret[5] # width y / x
        yy.append(syx)
    return yy
Пример #52
0
def testCorrelation(arr, win=64):
    from Priithon.all import U
    half = win / 2.
    arr = arr.copy()
    for i in range(10):
        v, z, y, x = U.findMax(arr)
        if y - half >= 0 and y + half < arr.shape[
                0] and x - half >= 0 and x + half < arr.shape[1]:
            a = arr[y - half:y + half, x - half:x + half]
            break
        else:
            arr[y, x] = 0
    b = a.copy()
    yx, c = xcorr.Xcorr(a, b, phaseContrast=True)
    cme = c[:c.shape[0] // 4].mean()
    return c.max() - cme
Пример #53
0
    def setupHistArr(self, i):
        self.hist_arr[i] = None
        img = self.data[tuple(self.zsec)][i]

        if img.dtype.type == N.uint8:
            self.hist_min[i], self.hist_max[i] = 0, (1 << 8) - 1
        elif img.dtype.type == N.uint16:
            self.hist_min[i], self.hist_max[i] = 0, (1 << 16) - 1
        elif img.dtype.type == N.int16:
            self.hist_min[i], self.hist_max[i] = 0 - (1 << 15), (1 << 15) - 1
        from Priithon.all import U
        self.hist[i].hist_min, self.hist[i].hist_max = U.mm(img)  #self.img)

        if img.dtype.type in (N.uint8, N.int16, N.uint16):
            self.hist_range[i] = self.hist_max[i] - self.hist_min[i] + 1
            self.hist_arr[i] = N.zeros(shape=self.hist_range[i], dtype=N.int32)
Пример #54
0
 def onViewSeq(self, ev):
     from Priithon.all import Y,U
     try:
         Y.view( U.loadImg_seq( self.fn_or_fns ) )
     except:
         if NO_SPECIAL_GUI_EXCEPT:
             raise
         import sys
         e = sys.exc_info()
         wx.MessageBox("Error when loading image sequence: %s - %s" %\
                       (str(e[0]), str(e[1]) ),
                       "Non consistent image shapes  !?",
                       style=wx.ICON_ERROR)
     else:
         s = "Y.view( U.loadImg_seq(<fileslist>) )"
         Y.shellMessage("###  %s\n"% s)
Пример #55
0
def rotND(img, zyx, sigma, rlist, mean_max=None, win=10):
   # y, x = yx
   # yi, xi, LD = _indLD(win, y, x)
    slices = imgGeo.nearbyRegion(img.shape, zyx, win)
    imgP = img[slices]
    if mean_max is None:
        mi, ma, me, sd = U.mmms(imgP)
    else:
        me, ma = mean_max

    yy = []
    for r in rlist:
        ret, check = fitGaussianND(img, zyx, sigma, win, [me, ma], r)#_fitGaussian2DR(imgP, LD, y, x, sigma, [me,ma], win, r)
        syx = ret[4] / ret[5] # width y / x
        yy.append(syx)
    return yy
Пример #56
0
 def onViewSeq(self, ev):
     from Priithon.all import Y,U
     try:
         Y.view( U.loadImg_seq( self.fn_or_fns ) )
     except:
         if NO_SPECIAL_GUI_EXCEPT:
             raise
         import sys
         e = sys.exc_info()
         wx.MessageBox("Error when loading image sequence: %s - %s" %\
                       (str(e[0]), str(e[1]) ),
                       "Non consistent image shapes  !?",
                       style=wx.ICON_ERROR)
     else:
         s = "Y.view( U.loadImg_seq(<fileslist>) )"
         Y.shellMessage("###  %s\n"% s)
Пример #57
0
 def setupHistArr(self,i):
     self.hist_arr[i] = None
     img = self.data[ tuple(self.zsec) ][i]
     
     if   img.dtype.type == N.uint8:
         self.hist_min[i], self.hist_max[i] = 0, (1<<8)-1
     elif img.dtype.type == N.uint16:
         self.hist_min[i], self.hist_max[i] = 0, (1<<16)-1
     elif img.dtype.type == N.int16:
         self.hist_min[i], self.hist_max[i] = 0-(1<<15), (1<<15)-1
     from Priithon.all import U
     self.hist[i].hist_min,self.hist[i].hist_max = U.mm(img)#self.img)
          
     if   img.dtype.type in (N.uint8, N.int16, N.uint16):
         self.hist_range[i] = self.hist_max[i] - self.hist_min[i] + 1
         self.hist_arr[i] = N.zeros(shape=self.hist_range[i], dtype=N.int32)
Пример #58
0
    def setupHistArr(self):
        self.hist_arr = None

        if self.img.dtype.type == N.uint8:
            self.hist_min, self.hist_max = 0, (1<<8)-1
        elif self.img.dtype.type ==  N.uint16:
            self.hist_min, self.hist_max = 0, (1<<16)-1
        elif self.img.dtype.type == N.int16:
            self.hist_min, self.hist_max = 0-(1<<15), (1<<15)-1
        from Priithon.all import U
        self.hist.hist_min,self.hist.hist_max = U.mm(self.img)#self.hist_min
        #if self.hist.m_histPlotArray is not None:
        #    self.hist.m_histPlotArray[0,0],self.hist.m_histPlotArray[-1,0] = U.mm(self.img)
        #    print self.hist.m_histPlotArray[0,0],self.hist.m_histPlotArray[-1,0]

        if self.img.dtype.type in (N.uint8, N.int16, N.uint16):
            self.hist_range = self.hist_max - self.hist_min + 1
            self.hist_arr = N.zeros(shape=self.hist_range, dtype=N.int32)