Пример #1
0
def reconstruction(coefficients):
    # Maximum frequency
    maxFrequencyH = int((len(coefficients) - 1) / 2)
    maxFrequencyW = int((len(coefficients[0]) - 1) / 2)

    height = 2 * maxFrequencyH
    width = 2 * maxFrequencyW

    # Adjust the size of the data to be even
    m = float(width)
    n = float(height)
    if width % 2 == 0:
        m = width + 1
    if height % 2 == 0:
        n = height + 1

    # Fundamental frequency
    ww = (2.0 * pi) / float(m)
    wh = (2.0 * pi) / float(n)

    reconstructionImage = createImageF(m, n)
    for x in range(0, width):
        printProgress(x, width - 1)
        for y in range(0, height):
            for kw,kh in itertools.product(range(-maxFrequencyW, maxFrequencyW + 1),             \
                                           range(-maxFrequencyH, maxFrequencyH + 1)):
                indexInArrayW = kw + maxFrequencyW
                indexInArrayH = kh + maxFrequencyH
                reconstructionImage[y,x] += \
                        (coefficients[indexInArrayH, indexInArrayW][0] / (m*n)) * (cos(x * ww * kw) * cos(y * wh * kh) - sin(x * ww * kw) * sin(y * wh * kh)) + \
                        (coefficients[indexInArrayH, indexInArrayW][1] / (m*n)) * (cos(x * ww * kw) * sin(y * wh * kh) + sin(x * ww * kw) * cos(y * wh * kh))

    return reconstructionImage
Пример #2
0
def computeCoefficients(inputImage):
    height = len(inputImage)
    width = len(inputImage[0])

    # Create coefficients Image. Two floats to represent a complex number
    # Maximum frequency according to sampling
    maxFrequencyW = int(width / 2)
    maxFrequencyH = int(height / 2)
    numCoefficientsW = 1 + 2 * maxFrequencyW
    numCoefficientsH = 1 + 2 * maxFrequencyH
    coefficients = createImageF(numCoefficientsW, numCoefficientsH, 2)

    # Adjust the size of the data to be even
    m = float(width)
    n = float(height)
    if width % 2 == 0:
        m = width + 1
    if height % 2 == 0:
        n = height + 1

    # Fundamental frequency
    ww = (2.0 * pi) / float(m)
    wh = (2.0 * pi) / float(n)

    # Compute values
    for kw in range(-maxFrequencyW, maxFrequencyW + 1):
        printProgress(kw + maxFrequencyW, numCoefficientsW - 1)
        for kh in range(-maxFrequencyH, maxFrequencyH + 1):
            indexInArrayW = kw + maxFrequencyW
            indexInArrayH = kh + maxFrequencyH

            for x, y in itertools.product(range(0, width), range(0, height)):
                coefficients[indexInArrayH,
                             indexInArrayW][0] += inputImage[y, x] * (
                                 cos(x * ww * kw) * cos(y * wh * kh) -
                                 sin(x * ww * kw) * sin(y * wh * kh))
                coefficients[indexInArrayH,
                             indexInArrayW][1] += inputImage[y, x] * (
                                 cos(x * ww * kw) * sin(y * wh * kh) +
                                 sin(x * ww * kw) * cos(y * wh * kh))

    for kw in range(-maxFrequencyW, maxFrequencyW + 1):
        for kh in range(-maxFrequencyH, maxFrequencyH + 1):
            coefficients[indexInArrayH, indexInArrayW][0] /= (m * n)
            coefficients[indexInArrayH, indexInArrayW][1] /= (m * n)

    return coefficients, maxFrequencyW, maxFrequencyH
Пример #3
0
def computePowerfromCoefficients(coefficients):
    # Maximum frequency
    maxFrequencyH = int((len(coefficients) - 1) / 2)
    maxFrequencyW = int((len(coefficients[0]) - 1) / 2)

    # Power
    powerImage = createImageF(1 + 2 * maxFrequencyW, 1 + 2 * maxFrequencyH)

    for kw in range(-maxFrequencyW, maxFrequencyW + 1):
        printProgress(kw + maxFrequencyW, 2 * maxFrequencyW)
        for kh in range(-maxFrequencyH, maxFrequencyH + 1):
            indexInArrayW = kw + maxFrequencyW
            indexInArrayH = kh + maxFrequencyH
            powerImage[indexInArrayH, indexInArrayW] = sqrt(coefficients[indexInArrayH, indexInArrayW][0] * coefficients[indexInArrayH, indexInArrayW][0] + \
                                                            coefficients[indexInArrayH, indexInArrayW][1] * coefficients[indexInArrayH, indexInArrayW][1])

    return powerImage
# Read image into array
inputImage, width, height = imageReadL(pathToDir + imageName)
templateImage, widthTemplate, heightTemplate = imageReadL(pathToDir + templateName)

# Show input image and template
showImageL(inputImage)
showImageL(templateImage)

# Create an accumulator. We look in a reduced size image
accumulator = createImageF(width, height)
  
# Template matching
templateCentreX = int((widthTemplate - 1) / 2)
templateCentreY = int((heightTemplate - 1) / 2)
for x in range(0, width):  
    printProgress(x, width)
    for y in range(0, height):
        for wx,wy in itertools.product(range(0, widthTemplate), range(0, heightTemplate)):
            posY = y + wy - templateCentreY
            posX = x + wx - templateCentreX 
            
            # The threshold is used to accumulate only the edge pixels in an edge template
            # The difference of pixel values is inverted to show the best match as a peak
            if posY > -1 and posY <  height and  posX > -1 and posX <  width and            \
               templateImage[wy,wx] > thresholdVal:
                diff = 1.0 - abs(float(inputImage[posY,posX]) -                             \
                                 float(templateImage[wy, wx])) / 255.0
                
                accumulator[y,x] += diff*diff 
                        
# Show accumulator within a maxima and mininma region
Пример #5
0
    colors = [0, 0, 0]
    npts = 0.0
    for wx,wy in itertools.product(range(rx, rx + regionSide),                       \
                                   range(ry, ry + regionSide)):
        if wy >= 0 and wy < height and wx >= 0 and wx < width:
            if (wy < height and wx < width):
                regionsID[wy, wx] = [y, x]
                colors += inputImage[wy, wx]
                npts += 1
            if npts > 0:
                regionColour[y,x] = [int(colors[0] / npts),                          \
                                     int(colors[1] / npts), int(colors[2] / npts)]

# Modify regions
for itr in range(0, numIter):
    printProgress(itr, numIter)
    # Values for new regions
    newRegionColour = createImageF(regW, regH, 3)
    newRegionPos = createImageUV(regW, regH)
    newRegionSize = createImageF(regW, regH)

    # Per pixel
    for x, y in itertools.product(range(0, width), range(0, height)):
        ry, rx = regionsID[y, x]
        colour = [
            float(inputImage[y, x][0]),
            float(inputImage[y, x][1]),
            float(inputImage[y, x][2])
        ]
        minD = [FLT_MAX, ry, rx]
        for wx, wy in itertools.product(range(rx - 2, rx + 3),
Пример #6
0
# The number of times the region has grown, its size
timeRegions = {}
sizeRegions = {}
incSizeRegions = {}

# Regions
regionsImage = createImageF(width, height)

# Stable regions
resultImage = createImageF(width, height)

# Use a threshold to flood regions
nextRegionID = 1
for threshold in range(startL, endL, incL):
    printProgress(threshold - startL, endL - startL)

    # Init the change in size
    for regionID in incSizeRegions:
        incSizeRegions[regionID] = 0

    # Repeatedly flood the image to grow regions
    flooded = True
    while flooded:
        flooded = False
        growRegion = []
        # For each non-region pixels
        for x, y in itertools.product(range(0, width), range(0, height)):
            if inputImage[y, x] <= threshold and regionsImage[y, x] == 0:

                #  List of neighbours
# Adjust the size of the data to be even
m = float(width)
n = float(height)
if width % 2 == 0:
    m = width + 1.0
if height % 2 == 0:
    n = height + 1.0

# Fundamental frequency
ww = (2.0 * pi) / m
wh = (2.0 * pi) / n

# Compute coefficients
for kw in range(-maxFrequencyW, maxFrequencyW + 1):
    printProgress(kw + maxFrequencyW, numCoefficientsW)
    indexInArrayW = kw + maxFrequencyW
    for kh in range(-maxFrequencyH, maxFrequencyH + 1):
        indexInArrayH = kh + maxFrequencyH
        for x, y in itertools.product(range(0, width), range(0, height)):
            coefficients[indexInArrayH, indexInArrayW][0] +=  inputImage[y,x] *          \
                 (cos(x * ww * kw) * cos(y * wh * kh) -  sin(x * ww * kw) * sin(y * wh * kh))
            coefficients[indexInArrayH, indexInArrayW][1] +=  inputImage[y,x] *           \
                 (cos(x * ww * kw) * sin(y * wh * kh) +  sin(x * ww * kw) * cos(y * wh * kh))

for kw in range(-maxFrequencyW, maxFrequencyW + 1):
    printProgress(kw + maxFrequencyW, numCoefficientsW)
    indexInArrayW = kw + maxFrequencyW
    for kh in range(-maxFrequencyH, maxFrequencyH + 1):
        indexInArrayH = kh + maxFrequencyH
        coefficients[indexInArrayH, indexInArrayW][0] *= m * n
# Adjust the size of the data to be even
m = float(width)
n = float(height)
if width % 2 == 0:
    m = width + 1.0
if height % 2 == 0:
    n = height + 1.0

# Fundamental frequency
ww = (2.0 * pi) / m
wh = (2.0 * pi) / n

# Compute values
for u in range(-maxFreqW, maxFreqW + 1):
    printProgress(u + maxFreqW, numCoeffW)
    entryW = u + maxFreqW
    for v in range(-maxFreqH, maxFreqH + 1):
        entryH = v + maxFreqH
        for x, y in itertools.product(range(0, width), range(0, height)):
            coeff[entryH, entryW] += inputImage[y,x] *                                      \
                 (cos(x * ww * u) + sin(x * ww * u)) * (cos(y * wh * v) + sin(y * wh * v))

# Include scale
for u in range(-maxFreqW, maxFreqW + 1):
    printProgress(u + maxFreqW, numCoeffW)
    entryW = u + maxFreqW
    for v in range(-maxFreqH, maxFreqH + 1):
        entryH = v + maxFreqH
        coeff[entryH, entryW] /= m * n