Пример #1
0
class LogisticRegression:
    def __init__(self):
        self.prfrm_oprtns = Operations()
        self.model = ProvideModels()

    def perform_logistic_regression(self, features_train, labels_train,
                                    features_test, labels_test, algo_name):
        print "------------ performing logistic regression ---------------------"
        penalties = ['l2', 'l1']
        best_accuracy = None
        best_f1Score = None
        model = None

        if algo_name == Constants.logisticRegression:
            clf = self.model.get_logisticRegression()
        elif algo_name == Constants.logisticRegressionSGD:
            clf = self.model.get_SGDClassifier()
        for curr_penalty in penalties:
            clf.set_params(penalty=curr_penalty)
            accuracy, f1score, pred = self.prfrm_oprtns.perform_operations(
                features_train, labels_train, features_test, labels_test, clf)
            print "accuracy with penalty", curr_penalty, "is", accuracy
            print "f1score with penalty", curr_penalty, "is", f1score

            if accuracy > best_accuracy:
                best_accuracy = accuracy
            if f1score > best_f1Score:
                best_f1Score = f1score
                model = clf

        return (model, accuracy, f1score, pred)
Пример #2
0
class SVM:
    def __init__(self):
        self.prfrm_oprtns = Operations()
        self.model = ProvideModels()

    def perform_svm_SVC(self, features_train, labels_train, features_test,
                        labels_test):

        print "------------ performing SVM --------------------"
        clf = self.model.get_LinearSVM()
        accuracy, f1score, pred = self.prfrm_oprtns.perform_operations(
            features_train, labels_train, features_test, labels_test, clf)
        return (clf, accuracy, f1score, pred)
Пример #3
0
class GradientBoosting:
    def __init__(self):
        self.prfrm_oprtns = Operations()
        self.model = ProvideModels()

    def perform_gradient_boosting(self,
                                  features_train,
                                  labels_train,
                                  features_test,
                                  labels_test,
                                  algo_name,
                                  learning_rates=[0.3],
                                  features=[0.7],
                                  depths=[9]):

        print "--------------- performing gradient boosting ----------------------"
        if algo_name == Constants.gbmClassifier:
            clf = self.model.get_GBMClassifier(len(features_train.columns))
        elif algo_name == Constants.gbmRegressor:
            clf = self.model.get_GBMRegressor(len(features_train.columns))

        best_accuracy = None
        model = None
        best_f1score = None

        for depth in depths:
            for feature in features:
                for curr_learning_rate in learning_rates:
                    clf.set_params(learning_rate=curr_learning_rate,
                                   max_depth=depth,
                                   max_features=feature)
                    accuracy, f1score, pred = self.prfrm_oprtns.perform_operations(
                        features_train, labels_train, features_test,
                        labels_test, clf)
                    print " accuracy with learning rate ", curr_learning_rate, "max_fatures ", feature, "and depth ", depth, "is ", accuracy
                    print " f1score with learning rate ", curr_learning_rate, "max_fatures ", feature, "and depth ", depth, "is ", f1score

                    if accuracy > best_accuracy:
                        best_accuracy = accuracy
                    if f1score > best_f1score:
                        best_f1score = f1score
                        model = clf
        return (model, accuracy, f1score, pred)
Пример #4
0
class NaiveBayes:
    def __init__(self):
        self.prfrm_oprtns = Operations()
        self.model = ProvideModels()

    def perform_naive_bayes(self, features_train, labels_train, features_test,
                            labels_test, algo_name):

        print "-------------- performing naive bayes ---------------"
        if algo_name == Constants.gaussianNB:
            clf = self.model.get_GaussianNB()
        elif algo_name == Constants.multnomialNB:
            clf = self.model.get_MultinomialNB()
        elif algo_name == Constants.bernoulliNB:
            clf = self.model.get_BernoulliNB()

        accuracy, f1score, pred = self.prfrm_oprtns.perform_operations(
            features_train, labels_train, features_test, labels_test, clf)
        return (clf, accuracy, f1score, pred)
Пример #5
0
class RandomForest:
    def __init__(self):
        self.prfrm_oprtns = Operations()
        self.model = ProvideModels()

    def perform_random_forest(self,
                              features_train,
                              labels_train,
                              features_test,
                              labels_test,
                              algo_name,
                              depths=[6, 10, 14, 18, 22, 26]):

        print "-------------- performing random forest --------------------"
        if algo_name == Constants.randomForestClassifier:
            clf = self.model.get_RandomForestClassifier(
                len(features_train.columns))
        elif algo_name == Constants.randomForestRegressor:
            clf = self.model.get_RandomForestRegressor(
                len(features_train.columns))

        best_accuracy = None
        best_f1Score = None
        model = None

        for depth in depths:
            clf.set_params(max_depth=depth)
            accuracy, f1score, pred = self.prfrm_oprtns.perform_operations(
                features_train, labels_train, features_test, labels_test, clf)
            print "accuracy with depth ", depth, "is", accuracy
            print "f1score with depth", depth, "is", f1score

            if accuracy > best_accuracy:
                best_accuracy = accuracy
            if f1score > best_f1Score:
                best_f1Score = f1score
                model = clf

        return (model, accuracy, f1score, pred)
Пример #6
0
class DecisionTree:
    def __init__(self):
        self.prfrm_oprtns = Operations()
        self.model = ProvideModels()

    def perform_decision_tree(self,
                              features_train,
                              labels_train,
                              features_test,
                              labels_test,
                              algo_name,
                              depths=[6, 8, 10, 12]):

        print "------------- performing decision tree -------------------------"
        if algo_name == Constants.decisionTreeClassifier:
            clf = self.model.get_DecisionTreeClassifier()
        elif algo_name == Constants.decisionTreeRegressor:
            clf = self.model.get_DecisionTreeRegressor()

        best_accuracy = None
        model = None
        best_f1Score = None

        for depth in depths:
            clf.set_params(max_depth=depth)
            accuracy, f1score, pred = self.prfrm_oprtns.perform_operations(
                features_train, labels_train, features_test, labels_test, clf)
            print "accuracy with depth ", depth, " is", accuracy
            print "f1Score with depth ", depth, " is", f1score

            if accuracy > best_accuracy:
                best_accuracy = accuracy
            if f1score > best_f1Score:
                best_f1Score = f1score
                model = clf
        return (model, accuracy, f1score, pred)
Пример #7
0
 def __init__(self):
     self.prfrm_oprtns = Operations()
     self.model = ProvideModels()