def Ionosphere(X):
        binaryCols = {"signal": {"g": 1, "b": 0}}
        X = X.copy()
        X = Processor.removeMissing(X)
        X = X.drop(columns=['col0', 'col1', "col13"])
        X = Processor.toBinaryCol(X, binaryCols)
        Y = X["signal"]
        X = X.iloc[:, :-1]

        return [X, Y]
    def adult(X):
        binaryCols = {
            "sex": {
                "Male": 0,
                "Female": 1
            },
            "salary": {
                ">50K": 0,
                "<=50K": 1
            }
        }
        X = X.copy()
        X = Processor.removeMissing(X)
        X = Processor.toBinaryCol(X, binaryCols)

        X = Processor.normalize(X, ["fnlwgt", "hours-per-week"])
        Y = X["salary"]
        X = X.iloc[:, :-1]
        X = Processor.OHE(X)

        countryCols = [
            "native-country_Cambodia", "native-country_England",
            "native-country_Puerto-Rico", "native-country_Canada",
            "native-country_Outlying-US(Guam-USVI-etc)",
            "native-country_India", "native-country_Japan",
            "native-country_Greece", "native-country_South",
            "native-country_China", "native-country_Cuba",
            "native-country_Iran", "native-country_Honduras",
            "native-country_Italy", "native-country_Poland",
            "native-country_Jamaica", "native-country_Vietnam",
            "native-country_Portugal", "native-country_Ireland",
            "native-country_France", "native-country_Dominican-Republic",
            "native-country_Laos", "native-country_Ecuador",
            "native-country_Taiwan", "native-country_Haiti",
            "native-country_Columbia", "native-country_Hungary",
            "native-country_Guatemala", "native-country_Nicaragua",
            "native-country_Scotland", "native-country_Thailand",
            "native-country_Yugoslavia", "native-country_El-Salvador",
            "native-country_Trinadad&Tobago", "native-country_Peru",
            "native-country_Hong", "native-country_Holand-Netherlands"
        ]

        X = X.drop(columns=(["capital-gain", "capital-loss", "education-num"] +
                            countryCols))

        return [X, Y]