Пример #1
0
def presslat(ifile, varkey, options, before='', after=''):
    import matplotlib.pyplot as plt
    from matplotlib.colors import Normalize, LogNorm
    outpath = getattr(options, 'outpath', '.')
    vert = cu.getpresbnds(ifile)
    lat, latunit = cu.getlatbnds(ifile)
    lat = np.append(lat.squeeze()[..., :2].mean(1),
                    lat.squeeze()[-1, 2:].mean(0))
    var = ifile.variables[varkey]
    dims = [(k, l) for l, k in zip(var[:].shape, var.dimensions) if l > 1]
    if len(dims) > 2:
        raise ValueError(
            'Press-lat can have 2 non-unity dimensions; got %d - %s' %
            (len(dims), str(dims)))
    if options.logscale:
        norm = LogNorm()
    else:
        norm = Normalize()
    exec(before)
    ax = plt.gca()
    print(varkey, end='')
    patches = ax.pcolor(lat, vert, var[:].squeeze(), norm=norm)
    # ax.set_xlabel(X.units.strip())
    # ax.set_ylabel(Y.units.strip())
    cbar = plt.colorbar(patches)
    vunit = getattr(var, 'units', 'unknown').strip()
    cbar.set_label(varkey + ' (' + vunit + ')')
    cbar.ax.text(.5,
                 1,
                 '%.2g' % var[:].max(),
                 horizontalalignment='center',
                 verticalalignment='bottom')
    cbar.ax.text(.5,
                 0,
                 '%.2g' % var[:].min(),
                 horizontalalignment='center',
                 verticalalignment='top')
    ax.set_ylim(vert.max(), vert.min())
    ax.set_xlim(lat.min(), lat.max())
    fmt = 'png'
    figpath = os.path.join(outpath + '_PRESSLAT_' + varkey + '.' + fmt)
    exec(after)
    plt.savefig(figpath)
    print('Saved fig', figpath)
    return figpath
Пример #2
0
def mapplot(ifile, varkey, options, before='', after=''):
    """
    ifile - a pseudonetcdf file
    varkey - the variable to plot
    options - argparse name space with mapping options
    """
    import matplotlib.pyplot as plt
    from matplotlib.colors import Normalize, LogNorm
    outpath = getattr(options, 'outpath', '.')
    map = cu.getmap(ifile)
    if map.projection == 'cyl':
        latb, latunit = cu.getlatbnds(ifile)[:]
        lonb, lonunit = cu.getlonbnds(ifile)[:]
    else:
        latb, latunit = cu.getybnds(ifile)[:]
        lonb, lonunit = cu.getxbnds(ifile)[:]
    if latb.ndim == lonb.ndim and lonb.ndim == 2:
        LON, LAT = lonb, latb
    else:
        LON, LAT = np.meshgrid(lonb, latb)

    ax = plt.gca()
    if options.logscale:
        norm = LogNorm()
    else:
        norm = Normalize()
    var = ifile.variables[varkey]
    exec(before)
    ax = plt.gca()
    vunit = getattr(var, 'units', 'unknown').strip()
    print(varkey, end='')
    try:
        if options.coastlines:
            map.drawcoastlines(ax=ax)
        if options.countries:
            map.drawcountries(ax=ax)
        if options.states:
            map.drawstates(ax=ax)
        if options.counties:
            map.drawcounties(ax=ax)
    except Exception:
        print('nomap')
        pass
    patches = map.pcolor(LON, LAT, var[:].squeeze(), norm=norm, ax=ax)
    if lonunit == 'x (LCC m)':
        ax.xaxis.get_major_formatter().set_scientific(True)
        ax.xaxis.get_major_formatter().set_powerlimits((-3, 3))
    if latunit == 'y (LCC m)':
        ax.yaxis.get_major_formatter().set_scientific(True)
        ax.yaxis.get_major_formatter().set_powerlimits((-3, 3))
    ax.set_xlabel(lonunit)
    ax.set_ylabel(latunit)
    height = LAT.max() - LAT.min()
    width = LON.max() - LON.min()
    if width > height:
        orientation = 'horizontal'
    else:
        orientation = 'vertical'
    cbar = plt.gcf().colorbar(patches, orientation=orientation)
    cbar.set_label(varkey + ' (' + vunit + ')')
    if orientation == 'vertical':
        cbar.ax.text(.5, 1, '%.2g' % var[:].max(
        ), horizontalalignment='center', verticalalignment='bottom')
        cbar.ax.text(.5, 0, '%.2g' % var[:].min(
        ), horizontalalignment='center', verticalalignment='top')
    else:
        cbar.ax.text(1, .5, '%.2g' % var[:].max(
        ), verticalalignment='center', horizontalalignment='left')
        cbar.ax.text(0, .5, '%.2g' % var[:].min(
        ), verticalalignment='center', horizontalalignment='right')
    try:
        cbar.formatter.set_scientific(True)
        cbar.formatter.set_powerlimits((-3, 3))
    except Exception:
        pass
    cbar.update_ticks()
    fmt = 'png'
    figpath = os.path.join(outpath + '_map_' + varkey + '.' + fmt)
    exec(after)
    plt.savefig(figpath)
    print('Saved fig', figpath)
    return figpath
Пример #3
0
def makemaps(args):
    ifiles = args.ifiles
    cbar = None
    ifile = ifiles[0]
    if args.iter != []:
        ifile, = ifiles
        ifiles = []
        for dimk in args.iter:
            ifiles += [
                slice_dim(getvarpnc(ifile, None), '%s,%d' % (dimk, i))
                for i in range(len(ifile.dimensions[dimk]))
            ]
    ax = plt.gca()
    map = getmap(ifile, resolution=args.resolution)
    if args.coastlines:
        map.drawcoastlines(ax=ax)
    if args.countries:
        map.drawcountries(ax=ax)
    if args.states:
        map.drawstates(ax=ax)
    if args.counties:
        map.drawcounties(ax=ax)
    for si, shapefile in enumerate(args.shapefiles):
        shapeopts = shapefile.split(',')
        shapepath = shapeopts[0]
        shapeoptdict = eval('dict(' + ','.join(shapeopts[1:]) + ')')
        shapename = os.path.basename(shapepath)[:-3] + str(si)
        map.readshapefile(shapepath, shapename, ax=ax, **shapeoptdict)
    args.map = map
    fig = plt.gcf()
    if len(args.figure_keywords) > 0:
        plt.setp(fig, **args.figure_keywords)

    ax = plt.gca()
    if len(args.axes_keywords) > 0:
        plt.setp(ax, **args.axes_keywords)

    map = args.map
    nborders = len(ax.collections)
    for fi, ifile in enumerate(ifiles):
        if map.projection in ('lcc', 'merc'):
            lat = ifile.variables['latitude']
            lon = ifile.variables['longitude']
            latb, latunit = getybnds(ifile)[:]
            lonb, lonunit = getxbnds(ifile)[:]
        else:
            lat = ifile.variables['latitude']
            lon = ifile.variables['longitude']
            latb, latunit = getlatbnds(ifile)[:]
            lonb, lonunit = getlonbnds(ifile)[:]

        if latb.ndim == lonb.ndim and lonb.ndim == 2:
            LON, LAT = lonb, latb
        else:
            LON, LAT = np.meshgrid(lonb.view(np.ndarray),
                                   latb.view(np.ndarray))

        variables = args.variables
        if variables is None:

            def isgeo(var):
                geo2d = set(['latitude', 'longitude'])
                vard = getattr(var, 'coordinates', '').split()
                hasgeo2d = len(geo2d.intersection(vard)) == 2
                return hasgeo2d

            variables = [
                key for key, var in ifile.variables.items() if isgeo(var)
            ]
        if len(variables) == 0:
            raise ValueError('Unable to heuristically determin plottable ' +
                             'variables; use -v to specify variables for ' +
                             'plotting')
        for varkey in variables:
            ax = plt.gca()

            if not args.overlay:
                del ax.collections[nborders:]
            var = ifile.variables[varkey]
            if args.squeeze:
                vals = var[:].squeeze()
            else:
                vals = var[:]
            vmin, vmax = vals.min(), vals.max()
            if args.normalize is None:
                from scipy.stats import normaltest
                if normaltest(vals.ravel())[1] < 0.001:
                    cvals = np.ma.compressed(vals)
                    boundaries = np.percentile(cvals, np.arange(0, 110, 10))
                    warn('Autoselect deciles colormap of %s; override ' +
                         'width --norm' % varkey)
                else:
                    boundaries = np.linspace(vmin, vmax, num=11)
                    warn(('Autoselect linear colormap of %s; override ' +
                          'width --norm') % varkey)
                ordermag = (boundaries.max() /
                            np.ma.masked_values(boundaries, 0).min())
                if (ordermag) > 10000:
                    formatter = LogFormatter(labelOnlyBase=False)
                else:
                    formatter = None
                norm = BoundaryNorm(boundaries, ncolors=256)
            else:
                norm = eval(args.normalize)
                formatter = None
            if args.colorbarformatter is not None:
                try:
                    formatter = eval(args.colorbarformatter)
                except Exception:
                    formatter = args.colorbarformatter

            if norm.vmin is not None:
                vmin = norm.vmin
            if norm.vmax is not None:
                vmax = norm.vmax
            varunit = getattr(var, 'units', 'unknown').strip()
            if args.verbose > 0:
                print(varkey, sep='')
            if vals.ndim == 1:
                notmasked = ~(np.ma.getmaskarray(lon[:]) | np.ma.getmaskarray(
                    lat[:]) | np.ma.getmaskarray(vals[:]))
                scatlon = lon[:][notmasked]
                scatlat = lat[:][notmasked]
                scatvals = vals[:][notmasked]
                patches = map.scatter(scatlon[:],
                                      scatlat[:],
                                      c=scatvals,
                                      edgecolors='none',
                                      s=24,
                                      norm=norm,
                                      ax=ax,
                                      zorder=2)
            else:
                if vals.ndim != 2:
                    dimlendictstr = str(dict(zip(var.dimensions, var.shape)))
                    warn('Maps require 2-d data; values right now %s %s' %
                         (str(vals.shape), dimlendictstr))
                patches = map.pcolor(LON, LAT, vals, norm=norm, ax=ax)
            if lonunit == 'x (m)':
                ax.xaxis.get_major_formatter().set_scientific(True)
                ax.xaxis.get_major_formatter().set_powerlimits((-3, 3))
            if latunit == 'y (m)':
                ax.yaxis.get_major_formatter().set_scientific(True)
                ax.yaxis.get_major_formatter().set_powerlimits((-3, 3))
            ax.set_xlabel(lonunit)
            ax.set_ylabel(latunit)
            height = np.abs(np.diff(ax.get_ylim()))
            width = np.abs(np.diff(ax.get_xlim()))
            if width >= height:
                orientation = 'horizontal'
            else:
                orientation = 'vertical'
            if cbar is None:
                cax = None
            else:
                cax = cbar.ax
                cax.cla()

            if vals.max() > vmax and vals.min() < vmin:
                extend = 'both'
            elif vals.max() > vmax:
                extend = 'max'
            elif vals.min() < vmin:
                extend = 'min'
            else:
                extend = 'neither'
            cbar = plt.gcf().colorbar(patches,
                                      orientation=orientation,
                                      cax=cax,
                                      extend=extend,
                                      format=formatter,
                                      spacing='proportional')
            del cbar.ax.texts[:]
            varminmaxtxt = ('; min=%.3g; max=%.3g)' %
                            (var[:].min(), var[:].max()))
            cbar.set_label(varkey + ' (' + varunit + varminmaxtxt)
            # if orientation == 'vertical':
            #     cbar.ax.text(.5, 1.05, '%.3g' % var[:].max(),
            #                  horizontalalignment = 'center',
            #                  verticalalignment = 'bottom')
            #     cbar.ax.text(.5, -.06, '%.3g ' % var[:].min(),
            #                  horizontalalignment = 'center',
            #                  verticalalignment = 'top')
            # else:
            #     cbar.ax.text(1.05, .5, ' %.3g' % var[:].max(),
            #                  verticalalignment = 'center',
            #                  horizontalalignment = 'left')
            #     cbar.ax.text(-.06, .5, '%.3g ' % var[:].min(),
            #                  verticalalignment = 'center',
            #                  horizontalalignment = 'right')
            cbar.update_ticks()
            fmt = args.figformat
            outpath = args.outpath
            if len(ifiles) > 1:
                lstr = str(fi).rjust(len(str(len(ifiles))), '0')
                if args.verbose > 0:
                    print('adding numeric suffix for file', lstr)
            else:
                lstr = ''

            figpath = os.path.join(outpath + varkey + lstr + '.' + fmt)
            if args.interactive:
                csl = PNCConsole(locals=globals())
                csl.interact()
            for cmd in args.plotcommands:
                exec(cmd)
            plt.savefig(figpath)
            if args.verbose > 0:
                print('Saved fig', figpath)
Пример #4
0
def makemap(ifiles, options):
    fig = pl.gcf()
    ax = pl.gca()
    map = options.map
    nborders = len(ax.collections)
    for fi, ifile in enumerate(ifiles):
        if map.projection == 'lcc':
            lat = ifile.variables['latitude']
            lon = ifile.variables['longitude']
            latb, latunit = getybnds(ifile)[:]
            lonb, lonunit = getxbnds(ifile)[:]
        else:
            lat = ifile.variables['latitude']
            lon = ifile.variables['longitude']
            latb, latunit = getlatbnds(ifile)[:]
            lonb, lonunit = getlonbnds(ifile)[:]
        
        if latb.ndim == lonb.ndim and lonb.ndim == 2:
            LON, LAT = lonb, latb
        else:
            LON, LAT = np.meshgrid(lonb, latb)
    
        variables = options.variables
        if variables is None:
            variables = [key for key, var in ifile.variables.items() if len(set(['latitude', 'longitude']).intersection(getattr(var, 'coordinates', '').split())) == 2]
        if len(variables) == 0:
            raise ValueError('Unable to heuristically determin plottable variables; use -v to specify variables for plotting')
        for varkey in variables:
            ax = pl.gca()
                    
            if not options.overlay:
                del ax.collections[nborders:]
            var = ifile.variables[varkey]
            vals = var[:].squeeze()
            vmin, vmax = vals.min(), vals.max()
            if options.normalize is None:
                from scipy.stats import normaltest
                if normaltest(vals.ravel())[1] < 0.05:
                    cvals = np.ma.compressed(vals)
                    boundaries = np.percentile(cvals, np.arange(0, 110, 10))
                    warn('Autoselect deciles colormap of %s; override width --norm' % varkey)
                else:
                    boundaries = np.linspace(vmin, vmax, num = 11)
                    warn('Autoselect linear colormap of %s; override width --norm' % varkey)
                if (boundaries.max() / np.ma.masked_values(boundaries, 0).min()) > 10000:
                    formatter = LogFormatter(labelOnlyBase = False)
                else:
                    formatter = None
                norm = BoundaryNorm(boundaries, ncolors = 256)
            else:
                norm = eval(options.normalize)
                formatter = None
            if not options.colorbarformatter is None:
                try:
                    formatter = eval(options.colorbarformatter)
                except:
                    formatter = options.colorbarformatter

                
            vmin, vmax = norm.vmin, norm.vmax
            varunit = getattr(var, 'units', 'unknown').strip()
            print(varkey, sep = '')
            if vals.ndim == 1:
                patches = map.scatter(lon[:], lat[:], c = vals, s = 24, norm = norm, ax = ax)
            else:
                patches = map.pcolor(LON, LAT, vals, norm = norm, ax = ax)
            if lonunit == 'x (LCC m)':
                ax.xaxis.get_major_formatter().set_scientific(True)
                ax.xaxis.get_major_formatter().set_powerlimits((-3, 3))
            if latunit == 'y (LCC m)':
                ax.yaxis.get_major_formatter().set_scientific(True)
                ax.yaxis.get_major_formatter().set_powerlimits((-3, 3))
            ax.set_xlabel(lonunit)
            ax.set_ylabel(latunit)
            height = LAT.max() - LAT.min()
            width = LON.max() - LON.min()
            if width >= height:
                orientation = 'horizontal'
            else:
                orientation = 'vertical'
            try:
                cax = cbar.ax
                cax.cla()
            except:
                cax = None
            if vals.max() > vmax and vals.min() < vmin:
                extend = 'both'
            elif vals.max() > vmax:
                extend = 'max'
            elif vals.min() < vmin:
                extend = 'min'
            else:
                extend = 'neither'
            cbar = pl.gcf().colorbar(patches, orientation = orientation, cax = cax, extend = extend, format = formatter)
            del cbar.ax.texts[:]
            cbar.set_label(varkey + ' (' + varunit + '; min=%.3g; max=%.3g)' % (var[:].min(), var[:].max()))
 #           if orientation == 'vertical':
 #               cbar.ax.text(.5, 1.05, '%.3g' % var[:].max(), horizontalalignment = 'center', verticalalignment = 'bottom')
#                cbar.ax.text(.5, -.06, '%.3g ' % var[:].min(), horizontalalignment = 'center', verticalalignment = 'top')
#            else:
#                cbar.ax.text(1.05, .5, ' %.3g' % var[:].max(), verticalalignment = 'center', horizontalalignment = 'left')
#                cbar.ax.text(-.06, .5, '%.3g ' % var[:].min(), verticalalignment = 'center', horizontalalignment = 'right')
            cbar.update_ticks()
            fmt = 'png'
            outpath = options.outpath
            if len(ifiles) > 1:
                
                outpath += ('_%%0%dd' % len(str(len(ifiles)))) % fi
            figpath = os.path.join(outpath + varkey + '.' + fmt)
            if options.interactive:
                csl = PNCConsole(locals = globals())
                csl.interact()
            
            pl.savefig(figpath)
            print('Saved fig', figpath)
Пример #5
0
def makemap(ifiles, options):
    fig = pl.gcf()
    ax = pl.gca()
    map = options.map
    nborders = len(ax.collections)
    for fi, ifile in enumerate(ifiles):
        if map.projection == 'lcc':
            lat = ifile.variables['latitude']
            lon = ifile.variables['longitude']
            latb, latunit = getybnds(ifile)[:]
            lonb, lonunit = getxbnds(ifile)[:]
        else:
            lat = ifile.variables['latitude']
            lon = ifile.variables['longitude']
            latb, latunit = getlatbnds(ifile)[:]
            lonb, lonunit = getlonbnds(ifile)[:]

        if latb.ndim == lonb.ndim and lonb.ndim == 2:
            LON, LAT = lonb, latb
        else:
            LON, LAT = np.meshgrid(lonb, latb)

        variables = options.variables
        if variables is None:
            variables = [
                key for key, var in ifile.variables.items() if len(
                    set(['latitude', 'longitude']).intersection(
                        getattr(var, 'coordinates', '').split())) == 2
            ]
        if len(variables) == 0:
            raise ValueError(
                'Unable to heuristically determin plottable variables; use -v to specify variables for plotting'
            )
        for varkey in variables:
            ax = pl.gca()

            if not options.overlay:
                del ax.collections[nborders:]
            var = ifile.variables[varkey]
            vals = var[:].squeeze()
            vmin, vmax = vals.min(), vals.max()
            if options.normalize is None:
                from scipy.stats import normaltest
                if normaltest(vals.ravel())[1] < 0.05:
                    cvals = np.ma.compressed(vals)
                    boundaries = np.percentile(cvals, np.arange(0, 110, 10))
                    warn(
                        'Autoselect deciles colormap of %s; override width --norm'
                        % varkey)
                else:
                    boundaries = np.linspace(vmin, vmax, num=11)
                    warn(
                        'Autoselect linear colormap of %s; override width --norm'
                        % varkey)
                if (boundaries.max() /
                        np.ma.masked_values(boundaries, 0).min()) > 10000:
                    formatter = LogFormatter(labelOnlyBase=False)
                else:
                    formatter = None
                norm = BoundaryNorm(boundaries, ncolors=256)
            else:
                norm = eval(options.normalize)
                formatter = None
            if not options.colorbarformatter is None:
                try:
                    formatter = eval(options.colorbarformatter)
                except:
                    formatter = options.colorbarformatter

            vmin, vmax = norm.vmin, norm.vmax
            varunit = getattr(var, 'units', 'unknown').strip()
            print(varkey, sep='')
            if vals.ndim == 1:
                patches = map.scatter(lon[:],
                                      lat[:],
                                      c=vals,
                                      s=24,
                                      norm=norm,
                                      ax=ax)
            else:
                patches = map.pcolor(LON, LAT, vals, norm=norm, ax=ax)
            if lonunit == 'x (LCC m)':
                ax.xaxis.get_major_formatter().set_scientific(True)
                ax.xaxis.get_major_formatter().set_powerlimits((-3, 3))
            if latunit == 'y (LCC m)':
                ax.yaxis.get_major_formatter().set_scientific(True)
                ax.yaxis.get_major_formatter().set_powerlimits((-3, 3))
            ax.set_xlabel(lonunit)
            ax.set_ylabel(latunit)
            height = LAT.max() - LAT.min()
            width = LON.max() - LON.min()
            if width >= height:
                orientation = 'horizontal'
            else:
                orientation = 'vertical'
            try:
                cax = cbar.ax
                cax.cla()
            except:
                cax = None
            if vals.max() > vmax and vals.min() < vmin:
                extend = 'both'
            elif vals.max() > vmax:
                extend = 'max'
            elif vals.min() < vmin:
                extend = 'min'
            else:
                extend = 'neither'
            cbar = pl.gcf().colorbar(patches,
                                     orientation=orientation,
                                     cax=cax,
                                     extend=extend,
                                     format=formatter)
            del cbar.ax.texts[:]
            cbar.set_label(varkey + ' (' + varunit + '; min=%.3g; max=%.3g)' %
                           (var[:].min(), var[:].max()))
            #           if orientation == 'vertical':
            #               cbar.ax.text(.5, 1.05, '%.3g' % var[:].max(), horizontalalignment = 'center', verticalalignment = 'bottom')
            #                cbar.ax.text(.5, -.06, '%.3g ' % var[:].min(), horizontalalignment = 'center', verticalalignment = 'top')
            #            else:
            #                cbar.ax.text(1.05, .5, ' %.3g' % var[:].max(), verticalalignment = 'center', horizontalalignment = 'left')
            #                cbar.ax.text(-.06, .5, '%.3g ' % var[:].min(), verticalalignment = 'center', horizontalalignment = 'right')
            cbar.update_ticks()
            fmt = 'png'
            outpath = options.outpath
            if len(ifiles) > 1:

                outpath += ('_%%0%dd' % len(str(len(ifiles)))) % fi
            figpath = os.path.join(outpath + varkey + '.' + fmt)
            if options.interactive:
                csl = PNCConsole(locals=globals())
                csl.interact()

            pl.savefig(figpath)
            print('Saved fig', figpath)