Пример #1
0
def convBN(inmaps,
           outmaps,
           size,
           stride,
           pad,
           name,
           actInplace,
           bnInplace,
           scheme,
           typ="bn"):
    block = Sequential()

    if typ == "bn":
        names = ["conv_%s" % name, "bn_%s" % name, "relu_%s" % name]

    elif typ == "v3":
        names = ["%s_conv2d" % name, "%s_batchnorm" % name, "%s_relu" % name]

    else:
        raise ValueError("Unrecognized convBN type")

    block.append(
        Conv2D(inmaps,
               outmaps,
               size,
               stride,
               pad,
               useBias=False,
               initscheme=scheme,
               name=names[0]))
    block.append(BatchNorm2D(outmaps, inplace=bnInplace, name=names[1]))
    block.append(Activation(relu, inplace=actInplace, name=names[2]))

    return block
Пример #2
0
def block(idx,
          inmaps,
          outmaps,
          sizeconv,
          strideconv,
          initscheme,
          actInPlace,
          sizepool=2,
          stridepool=2,
          addMaxpool=True):
    assert len(inmaps) == len(outmaps) == len(sizeconv) == len(
        strideconv) == len(idx), "lengths must be the same size"

    seq = Sequential()

    for i in range(len(inmaps)):
        seq.append(
            Conv2D(inmaps=inmaps[i],
                   outmaps=outmaps[i],
                   size=sizeconv[i],
                   pad=sizeconv[i] // 2,
                   stride=strideconv[i],
                   initscheme=initscheme,
                   dilation=1,
                   useBias=True,
                   name="conv%s" % idx[i]))
        seq.append(Activation(leakyRelu, inplace=actInPlace, args=(0.01, )))

    if addMaxpool:
        seq.append(
            MaxPool2D(size=sizepool,
                      stride=stridepool,
                      name="conv%s_pool" % idx[-1]))

    return seq
Пример #3
0
def residMiniBlock(inmaps, outmaps, size, stride, pad, blockname, mininame,
                   addAct, actInplace, bnInplace, initscheme):
    block = Sequential()

    block.append(
        Conv2D(inmaps,
               outmaps,
               size,
               stride=stride,
               pad=pad,
               useBias=False,
               initscheme=initscheme,
               name="res%s_branch%s" % (blockname, mininame)))
    block.append(
        BatchNorm2D(outmaps,
                    name="bn%s_branch%s" % (blockname, mininame),
                    inplace=bnInplace))

    if addAct:
        block.append(
            Activation(relu,
                       inplace=actInplace,
                       name="res%s_branch%s_relu" % (blockname, mininame)))

    return block
Пример #4
0
def buildBranch(fHeight, sentlength, branchMaps, embsize):
    seq = Sequential()

    seq.append(Conv2D(1, outmaps=branchMaps, size=(fHeight, embsize)))
    seq.append(MaxPool2D(size=(sentlength - fHeight + 1, 1)))
    seq.append(Reshape((-1, branchMaps)))

    return seq
Пример #5
0
def buildSmallBlock(inplace=True):
    block = Sequential()

    block.append(Replicate(3))

    left = buildSmallBranch(inplace=inplace, num=1)
    right = buildSmallBranch(inplace=inplace, num=2)

    shortcut = Sequential().append(Identity())

    block.append(Parallel().append(left).append(right).append(shortcut))
    block.append(Concat(axis=1, name="concat_stage2"))

    return block
Пример #6
0
def buildBall(stage=2, inplace=True):
    ball = Sequential()

    ball.append(Replicate(2))

    left = buildBranch(stage=stage, num=1, inplace=inplace)
    right = buildBranch(stage=stage, num=2, inplace=inplace)

    ball.append(Parallel().append(left).append(right))

    ball.append(Concat(axis=1))

    return ball
Пример #7
0
def buildBigBlock(stage=2, prenet=None, inplace=True):
    block = Sequential()

    block.append(Replicate(2))

    shortcut = Sequential().append(Identity())

    if prenet is None:
        ball = buildBall(stage=stage, inplace=inplace)
    else:
        ball = prenet
        ball.extend(buildBall(stage=stage, inplace=inplace))

    block.append(Parallel().append(ball).append(shortcut))
    block.append(Concat(axis=1, name="concat_stage%d" % (stage + 1)))

    return block
Пример #8
0
def unittest():
    from PuzzleLib.Containers.Sequential import Sequential
    from PuzzleLib.Modules import Linear, Activation, sigmoid, Identity, Concat

    data1 = gpuarray.to_gpu(np.random.randn(128, 128).astype(np.float32))
    data2 = gpuarray.to_gpu(np.random.randn(128, 16).astype(np.float32))
    data3 = gpuarray.to_gpu(np.random.randn(128, 32).astype(np.float32))

    seq = Sequential()
    seq.append(Linear(128, 64))
    seq.append(Activation(sigmoid))

    parallel = Parallel()
    parallel.append(seq)
    parallel.append(Identity())
    parallel.append(Identity())

    concat = Concat(axis=1)

    parallel([data1, data2, data3])
    concat(parallel.data)

    assert np.allclose(data2.get(), concat.data.get()[:, 64:64 + 16])

    grad = gpuarray.to_gpu(np.random.randn(128, 112).astype(np.float32))
    concat.backward(grad)
    parallel.backward(concat.grad)

    assert np.allclose(grad.get()[:, 64:64 + 16], parallel.grad[1].get())

    parallel = parallel[::2]
    parallel([data1, data3])
Пример #9
0
def tower(towername,
          names,
          maps,
          sizes,
          strides,
          pads,
          act,
          bn,
          scheme,
          typ="bn"):
    block = Sequential()

    lvlnames = ["%s_%s" % (towername, name) for name in names]

    for i, name in enumerate(lvlnames):
        if "pool" in name:
            block.append(pool2D(sizes[i], strides[i], pads[i], name=names[i]))

        else:
            act = False if i == len(names) - 1 else act
            block.extend(
                convBN(maps[i], maps[i + 1], sizes[i], strides[i], pads[i],
                       lvlnames[i], act, bn, scheme, typ))

    return block
Пример #10
0
def factorBlock(inmaps, b1m, b2m, b3m, b4m, name, act, bn, scheme):
    block = Sequential()

    b1towername, b1names = name, ["conv"]
    b2towername, b2names = "%s_tower" % name, ["conv", "conv_1", "conv_2"]
    b3towername, b3names = "%s_tower_1" % name, [
        "conv", "conv_1", "conv_2", "conv_3", "conv_4"
    ]
    b4towername, b4names = "%s_tower_2" % name, ["avg_pool", "conv"]

    branch1 = tower(b1towername,
                    b1names, [inmaps] + b1m, [1], [1], [0],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ="v3")

    branch2 = tower(b2towername,
                    b2names, [inmaps] + b2m, [1, (1, 7), (7, 1)], [1, 1, 1],
                    [0, (0, 3), (3, 0)],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ="v3")

    branch3 = tower(b3towername,
                    b3names, [inmaps] + b3m,
                    [1, (7, 1), (1, 7), (7, 1), (1, 7)], [1, 1, 1, 1, 1],
                    [0, (3, 0), (0, 3), (3, 0), (0, 3)],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ="v3")

    branch4 = tower(b4towername,
                    b4names, [inmaps, inmaps] + b4m, [3, 1], [1, 1], [1, 0],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ="v3")

    block.append(Replicate(times=4))
    block.append(Parallel().append(branch1).append(branch2).append(
        branch3).append(branch4))
    block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name))

    return block
Пример #11
0
def gruTest():
	batchsize, seqlen, insize = 5, 6, 4
	hsize = 3

	seq = Sequential(name="gru")

	seq.append(SwapAxes(0, 1))
	seq.append(RNN(insize, hsize, mode="gru", getSequences=True, hintBatchSize=batchsize))
	seq.append(SwapAxes(0, 1))

	data = gpuarray.to_gpu(np.random.randn(batchsize, seqlen, insize).astype(np.float32))

	engine = buildRTEngine(seq, data.shape, savepath="../TestData", dtype=DataType.float32)

	outdata = seq(data)
	enginedata = engine(data)

	assert np.allclose(outdata.get(), enginedata.get())
Пример #12
0
def v3ShrinkBlock(inmaps, b1m, b2m, name, act, bn, scheme):
    block = Sequential()

    b1towername, b1names = "%s_tower" % name, ["conv", "conv_1"]
    b2towername, b2names = "%s_tower_1" % name, [
        "conv", "conv_1", "conv_2", "conv_3"
    ]
    b3towername, b3names = name, ["max_pool"]

    branch1 = tower(b1towername,
                    b1names, [inmaps] + b1m, [1, 3], [1, 2], [0, 0],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ="v3")

    branch2 = tower(b2towername,
                    b2names, [inmaps] + b2m, [1, (1, 7), (7, 1), 3],
                    [1, 1, 1, 2], [0, (0, 3), (3, 0), 0],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ="v3")

    branch3 = tower(b3towername,
                    b3names, [inmaps, inmaps], [3], [2], [0],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ="v3")

    block.append(Replicate(times=3))
    block.append(Parallel().append(branch1).append(branch2).append(branch3))
    block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name))

    return block
Пример #13
0
def bnShrinkBlock(inmaps,
                  b1m,
                  b2m,
                  name,
                  act,
                  bn,
                  scheme,
                  b1deep=True,
                  pad=1,
                  typ="bn"):
    block = Sequential()

    if typ == "bn":
        if b1deep:
            b1towername, b1names = name, ["3x3_reduce", "3x3"]
        else:
            b1towername, b1names = name, ["3x3"]

        b2towername, b2names = name, [
            "double_3x3_reduce", "double_3x3_0", "double_3x3_1"
        ]
        b3towername, b3names = name, ["max_pool"]

    elif typ == "v3":
        if b1deep:
            b1towername, b1names = name, ["conv"]
        else:
            b1towername, b1names = name, ["conv"]

        b2towername, b2names = "%s_tower" % name, ["conv", "conv_1", "conv_2"]
        b3towername, b3names = name, ["max_pool"]

    else:
        raise ValueError("Unrecognized block type")

    if b1deep:
        branch1 = tower(b1towername,
                        b1names, [inmaps] + b1m, [1, 3], [1, 2], [0, pad],
                        act=act,
                        bn=bn,
                        scheme=scheme,
                        typ=typ)
    else:
        branch1 = tower(b1towername,
                        b1names, [inmaps] + b1m, [3], [2], [pad],
                        act=act,
                        bn=bn,
                        scheme=scheme,
                        typ=typ)

    branch2 = tower(b2towername,
                    b2names, [inmaps] + b2m, [1, 3, 3], [1, 1, 2], [0, 1, pad],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ=typ)

    branch3 = tower(b3towername,
                    b3names, [inmaps, inmaps], [3], [2], [pad],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ=typ)

    block.append(Replicate(times=3))
    block.append(Parallel().append(branch1).append(branch2).append(branch3))
    block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name))

    return block
Пример #14
0
def bnBlock(inmaps,
            b1m,
            b2m,
            b3m,
            b4m,
            name,
            act,
            bn,
            scheme,
            b2size=3,
            b2pad=1,
            typ="bn"):
    block = Sequential()

    if typ == "bn":
        b1towername, b1names = name, ["1x1"]
        b2towername, b2names = name, ["3x3_reduce", "3x3"]
        b3towername, b3names = name, [
            "double_3x3_reduce", "double_3x3_0", "double_3x3_1"
        ]
        b4towername, b4names = name, ["avg_pool", "proj"]

    elif typ == "v3":
        b1towername, b1names = name, ["conv"]
        b2towername, b2names = "%s_tower" % name, ["conv", "conv_1"]
        b3towername, b3names = "%s_tower_1" % name, [
            "conv", "conv_1", "conv_2"
        ]
        b4towername, b4names = "%s_tower_2" % name, ["avg_pool", "conv"]

    else:
        raise ValueError("Unrecognized block type")

    branch1 = tower(b1towername,
                    b1names, [inmaps] + b1m, [1],
                    strides=[1],
                    pads=[0],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ=typ)

    branch2 = tower(b2towername,
                    b2names, [inmaps] + b2m, [1, b2size],
                    strides=[1, 1],
                    pads=[0, b2pad],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ=typ)

    branch3 = tower(b3towername,
                    b3names, [inmaps] + b3m, [1, 3, 3],
                    strides=[1, 1, 1],
                    pads=[0, 1, 1],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ=typ)

    branch4 = tower(b4towername,
                    b4names, [inmaps, inmaps] + b4m, [3, 1],
                    strides=[1, 1],
                    pads=[1, 0],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ=typ)

    block.append(Replicate(times=4))
    block.append(Parallel().append(branch1).append(branch2).append(
        branch3).append(branch4))
    block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name))

    return block
Пример #15
0
def loadNet(name="", inplace=True, modelpath=None):
    net = Sequential(name)

    net.append(Conv2D(3, 64, 3, pad=1, initscheme="none", name="conv1_1"))
    net.append(Activation(relu, name="relu1_1", inplace=inplace))

    net.append(Conv2D(64, 64, 3, pad=1, initscheme="none", name="conv1_2"))
    net.append(Activation(relu, name="relu1_2", inplace=inplace))

    net.append(MaxPool2D(name="pool1_stage1"))

    net.append(Conv2D(64, 128, 3, pad=1, initscheme="none", name="conv2_1"))
    net.append(Activation(relu, name="relu2_1", inplace=inplace))

    net.append(Conv2D(128, 128, 3, pad=1, initscheme="none", name="conv2_2"))
    net.append(Activation(relu, name="relu2_2", inplace=inplace))

    net.append(MaxPool2D(name="pool2_stage1"))

    net.append(Conv2D(128, 256, 3, pad=1, initscheme="none", name="conv3_1"))
    net.append(Activation(relu, name="relu3_1", inplace=inplace))

    net.append(Conv2D(256, 256, 3, pad=1, initscheme="none", name="conv3_2"))
    net.append(Activation(relu, name="relu3_2", inplace=inplace))

    net.append(Conv2D(256, 256, 3, pad=1, initscheme="none", name="conv3_3"))
    net.append(Activation(relu, name="relu3_3", inplace=inplace))

    net.append(Conv2D(256, 256, 3, pad=1, initscheme="none", name="conv3_4"))
    net.append(Activation(relu, name="relu3_4", inplace=inplace))

    net.append(MaxPool2D(name="pool3_stage1"))

    net.append(Conv2D(256, 512, 3, pad=1, initscheme="none", name="conv4_1"))
    net.append(Activation(relu, name="relu4_1", inplace=inplace))

    net.append(Conv2D(512, 512, 3, pad=1, initscheme="none", name="conv4_2"))
    net.append(Activation(relu, name="relu4_2", inplace=inplace))

    net.append(
        Conv2D(512, 256, 3, pad=1, initscheme="none", name="conv4_3_CPM"))
    net.append(Activation(relu, name="relu4_3_CPM"))

    net.append(
        Conv2D(256, 128, 3, pad=1, initscheme="none", name="conv4_4_CPM"))
    net.append(Activation(relu, name="relu4_4_CPM"))

    block2 = buildSmallBlock(inplace=inplace)
    block3 = buildBigBlock(stage=2, prenet=block2, inplace=inplace)
    block4 = buildBigBlock(stage=3, prenet=block3, inplace=inplace)
    block5 = buildBigBlock(stage=4, prenet=block4, inplace=inplace)
    block6 = buildBigBlock(stage=5, prenet=block5, inplace=inplace)

    net.extend(block6)
    net.append(Replicate(2))

    net.append(Parallel().append(buildBranch(stage=6, num=2,
                                             inplace=inplace)).append(
                                                 buildBranch(stage=6,
                                                             num=1,
                                                             inplace=inplace)))

    net.append(Concat(axis=1))

    if modelpath is not None:
        net.load(modelpath, assumeUniqueNames=True)

    return net
Пример #16
0
def trainHardTest(optCls, dtype, *args, **kwargs):
    from PuzzleLib.Containers.Sequential import Sequential

    from PuzzleLib.Modules.Conv2D import Conv2D
    from PuzzleLib.Modules.BatchNorm2D import BatchNorm2D
    from PuzzleLib.Modules.Activation import Activation, relu
    from PuzzleLib.Modules.Cast import Cast

    from PuzzleLib.Cost.MSE import MSE

    seq = Sequential()

    seq.append(Conv2D(4, 8, 5, pad=1))
    seq.append(BatchNorm2D(8))
    seq.append(Activation(relu))

    seq.append(Conv2D(8, 16, 5, pad=1))

    seq.calcMode(dtype)
    seq.append(Cast(intype=dtype, outtype=np.float32))

    optimizer = optCls(*args, **kwargs)
    optimizer.setupOn(seq, useGlobalState=True)

    mse = MSE()

    data = gpuarray.to_gpu(np.random.randn(4, 4, 5, 5).astype(dtype))
    target = gpuarray.to_gpu(np.random.randn(4, 16, 1, 1).astype(np.float32))

    for i in range(200):
        error, grad = mse(seq(data), target)

        optimizer.zeroGradParams()
        seq.backward(grad)
        optimizer.update()

        if (i + 1) % 5 == 0:
            print("Iteration #%d error: %s" % (i + 1, error))
Пример #17
0
def expandBlock(inmaps, b1m, b2m, b3m, b4m, name, act, bn, scheme, pool="avg"):
    block = Sequential()

    b1towername, b1names = name, ["conv"]
    b2towername, b2names, b2sub1names, b2sub2names = "%s_tower" % name, [
        "conv"
    ], ["mixed_conv"], ["mixed_conv_1"]
    b3towername, b3names, b3sub1names, b3sub2names = "%s_tower_1" % name, [
        "conv", "conv_1"
    ], ["mixed_conv"], ["mixed_conv_1"]

    branch1 = tower(b1towername,
                    b1names, [inmaps] + b1m, [1], [1], [0],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ="v3")

    branch2 = tower(b2towername,
                    b2names, [inmaps, b2m[0]], [1], [1], [0],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ="v3")
    branch2sub1 = tower(b2towername,
                        b2sub1names, [b2m[0], b2m[1]], [(1, 3)], [1], [(0, 1)],
                        act=act,
                        bn=bn,
                        scheme=scheme,
                        typ="v3")
    branch2sub2 = tower(b2towername,
                        b2sub2names, [b2m[0], b2m[2]], [(3, 1)], [1], [(1, 0)],
                        act=act,
                        bn=bn,
                        scheme=scheme,
                        typ="v3")

    branch2.append(Replicate(times=2))
    branch2.append(Parallel().append(branch2sub1).append(branch2sub2))

    branch3 = tower(b3towername,
                    b3names, [inmaps, b3m[0], b3m[1]], [1, 3], [1, 1], [0, 1],
                    act=act,
                    bn=bn,
                    scheme=scheme,
                    typ="v3")
    branch3sub1 = tower(b3towername,
                        b3sub1names, [b3m[1], b3m[2]], [(1, 3)], [1], [(0, 1)],
                        act=act,
                        bn=bn,
                        scheme=scheme,
                        typ="v3")
    branch3sub2 = tower(b3towername,
                        b3sub2names, [b3m[1], b3m[3]], [(3, 1)], [1], [(1, 0)],
                        act=act,
                        bn=bn,
                        scheme=scheme,
                        typ="v3")

    branch3.append(Replicate(times=2))
    branch3.append(Parallel().append(branch3sub1).append(branch3sub2))

    if pool == "avg":
        branch4 = tower("%s_tower_2" % name, ["avg_pool", "conv"],
                        [inmaps, inmaps] + b4m, [3, 1], [1, 1], [1, 0],
                        act=act,
                        bn=bn,
                        scheme=scheme,
                        typ="v3")

    elif pool == "max":
        branch4 = tower("%s_tower_2" % name, ["max_pool", "conv"],
                        [inmaps, inmaps] + b4m, [3, 1], [1, 1], [1, 0],
                        act=act,
                        bn=bn,
                        scheme=scheme,
                        typ="v3")

    else:
        raise ValueError("Unrecognized block type")

    block.append(Replicate(times=4))
    block.append(Parallel().append(branch1).append(branch2).append(
        branch3).append(branch4))
    block.append(ToList())
    block.append(Concat(axis=1, name="ch_concat_%s_chconcat" % name))

    return block
Пример #18
0
def buildSmallBranch(inplace=True, num=1):
    branch = Sequential()

    branch.append(
        Conv2D(128,
               128,
               3,
               pad=1,
               initscheme="none",
               name="conv5_1_CPM_L%d" % num))
    branch.append(
        Activation(relu, inplace=inplace, name="relu5_1_CPM_L%d" % num))

    branch.append(
        Conv2D(128,
               128,
               3,
               pad=1,
               initscheme="none",
               name="conv5_2_CPM_L%d" % num))
    branch.append(
        Activation(relu, inplace=inplace, name="relu5_2_CPM_L%d" % num))

    branch.append(
        Conv2D(128,
               128,
               3,
               pad=1,
               initscheme="none",
               name="conv5_3_CPM_L%d" % num))
    branch.append(
        Activation(relu, inplace=inplace, name="relu5_3_CPM_L%d" % num))

    branch.append(
        Conv2D(128, 512, 1, initscheme="none", name="conv5_4_CPM_L%d" % num))
    branch.append(
        Activation(relu, inplace=inplace, name="relu5_4_CPM_L%d" % num))

    branch.append(
        Conv2D(512,
               19 * (3 - num),
               1,
               initscheme="none",
               name="conv5_5_CPM_L%d" % num))

    return branch
Пример #19
0
def buildNet(vocabulary,
             branches,
             w2v,
             sentlength,
             embsize,
             wscale,
             dim=2,
             branchMaps=100,
             name="sentinet"):
    def onVocabulary(W):
        W[0] = np.zeros((1, embsize), dtype=np.float32)

        arrayPOS = [
            "", "_S", "_A", "_V", "_UNKN", "_ADJ", "_ADV", "_INTJ", "_NOUN",
            "_PROPN", "_VERB", "_ADP", "_AUX", "_CCONJ", "_DET", "_NUM",
            "_PART", "_PRON", "_SCONJ", "_SUM", "_X"
        ]

        tmpPOS = []
        if not w2v:
            return

        for word in vocabulary:
            for pos in tmpPOS:
                if (word + pos) in w2v.vocab:
                    W[vocabulary[word]] = w2v[word + pos]
                    break

            for i, pos in enumerate(arrayPOS):
                if (word + pos) in w2v.vocab:
                    tmpPOS.append(pos)
                    W[vocabulary[word]] = w2v[word + pos]
                    del arrayPOS[i]
                    break

    net = Sequential(name)
    net.setAttr("timestamp", int(time.time()))

    net.append(
        Embedder(vocabulary,
                 sentlength,
                 embsize,
                 wscale=wscale,
                 onVocabulary=onVocabulary,
                 learnable=True,
                 name="embedder"))

    net.append(Reshape((-1, 1, sentlength, embsize)))

    branchNum = len(branches)
    net.append(Replicate(times=branchNum))

    par = Parallel()

    for branchFilterSize in branches:
        par.append(
            buildBranch(branchFilterSize, sentlength, branchMaps, embsize))

    net.append(par)
    net.append(Concat(axis=1))
    net.append(Activation(relu))
    net.append(Dropout(p=0.5))

    net.append(Linear(branchNum * branchMaps, dim))

    return net
Пример #20
0
def residBlock(inmaps, hmaps, stride, blockname, convShortcut, actInplace,
               bnInplace, initscheme):
    block = Sequential()

    branch = Sequential()
    branch.extend(
        residMiniBlock(inmaps, hmaps, 1, stride, 0, blockname, "2a", True,
                       actInplace, bnInplace, initscheme))
    branch.extend(
        residMiniBlock(hmaps, hmaps, 3, 1, 1, blockname, "2b", True,
                       actInplace, bnInplace, initscheme))
    branch.extend(
        residMiniBlock(hmaps, 4 * hmaps, 1, 1, 0, blockname, "2c", False,
                       actInplace, bnInplace, initscheme))

    shortcut = Sequential()
    if convShortcut:
        shortcut.extend(
            residMiniBlock(inmaps, 4 * hmaps, 1, stride, 0, blockname, "1",
                           False, actInplace, bnInplace, initscheme))
    else:
        shortcut.append(Identity())

    block.append(Replicate(2))
    block.append(Parallel().append(branch).append(shortcut))

    block.append(Add())
    block.append(Activation(relu, inplace=actInplace))

    return block
Пример #21
0
def buildBranch(inmaps=185, inplace=True, num=1, stage=2):
    branch = Sequential()

    branch.append(
        Conv2D(inmaps,
               128,
               7,
               pad=3,
               initscheme="none",
               name="Mconv1_stage%d_L%d" % (stage, num)))
    branch.append(
        Activation(relu,
                   inplace=inplace,
                   name="Mrelu1_stage%d_L%d" % (stage, num)))

    branch.append(
        Conv2D(128,
               128,
               7,
               pad=3,
               initscheme="none",
               name="Mconv2_stage%d_L%d" % (stage, num)))
    branch.append(
        Activation(relu,
                   inplace=inplace,
                   name="Mrelu2_stage%d_L%d" % (stage, num)))

    branch.append(
        Conv2D(128,
               128,
               7,
               pad=3,
               initscheme="none",
               name="Mconv3_stage%d_L%d" % (stage, num)))
    branch.append(
        Activation(relu,
                   inplace=inplace,
                   name="Mrelu3_stage%d_L%d" % (stage, num)))

    branch.append(
        Conv2D(128,
               128,
               7,
               pad=3,
               initscheme="none",
               name="Mconv4_stage%d_L%d" % (stage, num)))
    branch.append(
        Activation(relu,
                   inplace=inplace,
                   name="Mrelu4_stage%d_L%d" % (stage, num)))

    branch.append(
        Conv2D(128,
               128,
               7,
               pad=3,
               initscheme="none",
               name="Mconv5_stage%d_L%d" % (stage, num)))
    branch.append(
        Activation(relu,
                   inplace=inplace,
                   name="Mrelu5_stage%d_L%d" % (stage, num)))

    branch.append(
        Conv2D(128,
               128,
               1,
               initscheme="none",
               name="Mconv6_stage%d_L%d" % (stage, num)))
    branch.append(
        Activation(relu,
                   inplace=inplace,
                   name="Mrelu6_stage%d_L%d" % (stage, num)))

    branch.append(
        Conv2D(128,
               19 * (3 - num),
               1,
               initscheme="none",
               name="Mconv7_stage%d_L%d" % (stage, num)))

    return branch
Пример #22
0
def loadW2L(modelpath, inmaps, nlabels, initscheme=None, name="w2l"):
    net = Sequential(name=name)

    net.extend(
        convBlock(inmaps,
                  256,
                  size=11,
                  stride=2,
                  pad=5,
                  dropout=0.2,
                  initscheme=initscheme,
                  name="conv1d_0"))

    net.extend(
        convBlock(256,
                  256,
                  size=11,
                  stride=1,
                  pad=5,
                  dropout=0.2,
                  initscheme=initscheme,
                  name="conv1d_1"))
    net.extend(
        convBlock(256,
                  256,
                  size=11,
                  stride=1,
                  pad=5,
                  dropout=0.2,
                  initscheme=initscheme,
                  name="conv1d_2"))
    net.extend(
        convBlock(256,
                  256,
                  size=11,
                  stride=1,
                  pad=5,
                  dropout=0.2,
                  initscheme=initscheme,
                  name="conv1d_3"))

    net.extend(
        convBlock(256,
                  384,
                  size=13,
                  stride=1,
                  pad=6,
                  dropout=0.2,
                  initscheme=initscheme,
                  name="conv1d_4"))
    net.extend(
        convBlock(384,
                  384,
                  size=13,
                  stride=1,
                  pad=6,
                  dropout=0.2,
                  initscheme=initscheme,
                  name="conv1d_5"))
    net.extend(
        convBlock(384,
                  384,
                  size=13,
                  stride=1,
                  pad=6,
                  dropout=0.2,
                  initscheme=initscheme,
                  name="conv1d_6"))

    net.extend(
        convBlock(384,
                  512,
                  size=17,
                  stride=1,
                  pad=8,
                  dropout=0.2,
                  initscheme=initscheme,
                  name="conv1d_7"))
    net.extend(
        convBlock(512,
                  512,
                  size=17,
                  stride=1,
                  pad=8,
                  dropout=0.2,
                  initscheme=initscheme,
                  name="conv1d_8"))
    net.extend(
        convBlock(512,
                  512,
                  size=17,
                  stride=1,
                  pad=8,
                  dropout=0.2,
                  initscheme=initscheme,
                  name="conv1d_9"))

    net.extend(
        convBlock(512,
                  640,
                  size=21,
                  stride=1,
                  pad=10,
                  dropout=0.3,
                  initscheme=initscheme,
                  name="conv1d_10"))
    net.extend(
        convBlock(640,
                  640,
                  size=21,
                  stride=1,
                  pad=10,
                  dropout=0.3,
                  initscheme=initscheme,
                  name="conv1d_11"))
    net.extend(
        convBlock(640,
                  640,
                  size=21,
                  stride=1,
                  pad=10,
                  dropout=0.3,
                  initscheme=initscheme,
                  name="conv1d_12"))

    net.extend(
        convBlock(640,
                  768,
                  size=25,
                  stride=1,
                  pad=12,
                  dropout=0.3,
                  initscheme=initscheme,
                  name="conv1d_13"))
    net.extend(
        convBlock(768,
                  768,
                  size=25,
                  stride=1,
                  pad=12,
                  dropout=0.3,
                  initscheme=initscheme,
                  name="conv1d_14"))
    net.extend(
        convBlock(768,
                  768,
                  size=25,
                  stride=1,
                  pad=12,
                  dropout=0.3,
                  initscheme=initscheme,
                  name="conv1d_15"))

    net.extend(
        convBlock(768,
                  896,
                  size=29,
                  stride=1,
                  pad=28,
                  dropout=0.4,
                  initscheme=initscheme,
                  dilation=2,
                  name="conv1d_16"))

    net.extend(
        convBlock(896,
                  1024,
                  size=1,
                  stride=1,
                  pad=0,
                  dropout=0.4,
                  initscheme=initscheme,
                  name="conv1d_17"))

    net.extend(
        convBlock(1024,
                  nlabels,
                  size=1,
                  stride=1,
                  pad=0,
                  dropout=0.0,
                  initscheme=initscheme,
                  bnAct=False,
                  name="conv1d_18"))

    if modelpath is not None:
        net.load(modelpath)

    return net
Пример #23
0
def convBlock(inmaps,
              outmaps,
              size,
              stride,
              pad,
              dropout,
              initscheme,
              dilation=1,
              bnAct=True,
              name=None):
    block = Sequential()

    if pad > 0:
        block.append(Pad1D(pad, mode=PadMode.reflect))

    block.append(
        Conv1D(inmaps,
               outmaps,
               size=size,
               stride=stride,
               pad=0,
               dilation=dilation,
               useBias=True,
               initscheme=initscheme,
               name="%s_conv" % name))

    if bnAct:
        block.append(BatchNorm1D(outmaps, epsilon=0.001, name="%s_bn" % name))
        block.append(Activation(clip, args=(0.0, 20.0)))

    if dropout > 0.0:
        block.append(Dropout(p=dropout))

    return block
Пример #24
0
def loadVGG(modelpath, layers, poolmode="max", initscheme="none", withLinear=True, actInplace=False, name=None):
	if poolmode == "avg":
		pool = AvgPool2D
	elif poolmode == "max":
		pool = MaxPool2D
	else:
		raise ValueError("Unsupported pool mode")

	if layers not in {"11", "16", "19"}:
		raise ValueError("Unsupported VGG layers mode")

	if name is None and layers == "11":
		name = "VGG_ILSVRC_11_layers"
	elif name is None and layers == "16":
		name = "VGG_ILSVRC_16_layers"
	elif name is None and layers == "19":
		name = "VGG_ILSVRC_19_layers"

	layers = int(layers)

	net = Sequential(name=name)

	net.append(Conv2D(3, 64, 3, pad=1, initscheme=initscheme, name="conv1_1"))
	net.append(Activation(relu, inplace=actInplace, name="relu1_1"))

	if layers > 11:
		net.append(Conv2D(64, 64, 3, pad=1, initscheme=initscheme, name="conv1_2"))
		net.append(Activation(relu, inplace=actInplace, name="relu1_2"))

	net.append(pool(2, 2, name="pool1"))

	net.append(Conv2D(64, 128, 3, pad=1, initscheme=initscheme, name="conv2_1"))
	net.append(Activation(relu, inplace=actInplace, name="relu2_1"))

	if layers > 11:
		net.append(Conv2D(128, 128, 3, pad=1, initscheme=initscheme, name="conv2_2"))
		net.append(Activation(relu, inplace=actInplace, name="relu2_2"))

	net.append(pool(2, 2, name="pool2"))

	net.append(Conv2D(128, 256, 3, pad=1, initscheme=initscheme, name="conv3_1"))
	net.append(Activation(relu, inplace=actInplace, name="relu3_1"))
	net.append(Conv2D(256, 256, 3, pad=1, initscheme=initscheme, name="conv3_2"))
	net.append(Activation(relu, inplace=actInplace, name="relu3_2"))

	if layers > 11:
		net.append(Conv2D(256, 256, 3, pad=1, initscheme=initscheme, name="conv3_3"))
		net.append(Activation(relu, inplace=actInplace, name="relu3_3"))

	if layers > 16:
		net.append(Conv2D(256, 256, 3, pad=1, initscheme=initscheme, name="conv3_4"))
		net.append(Activation(relu, inplace=actInplace, name="relu3_4"))

	net.append(pool(2, 2, name="pool3"))

	net.append(Conv2D(256, 512, 3, pad=1, initscheme=initscheme, name="conv4_1"))
	net.append(Activation(relu, inplace=actInplace, name="relu4_1"))
	net.append(Conv2D(512, 512, 3, pad=1, initscheme=initscheme, name="conv4_2"))
	net.append(Activation(relu, inplace=actInplace, name="relu4_2"))

	if layers > 11:
		net.append(Conv2D(512, 512, 3, pad=1, initscheme=initscheme, name="conv4_3"))
		net.append(Activation(relu, inplace=actInplace, name="relu4_3"))

	if layers > 16:
		net.append(Conv2D(512, 512, 3, pad=1, initscheme=initscheme, name="conv4_4"))
		net.append(Activation(relu, inplace=actInplace, name="relu4_4"))

	net.append(pool(2, 2, name="pool4"))

	net.append(Conv2D(512, 512, 3, pad=1, initscheme=initscheme, name="conv5_1"))
	net.append(Activation(relu, inplace=actInplace, name="relu5_1"))
	net.append(Conv2D(512, 512, 3, pad=1, initscheme=initscheme, name="conv5_2"))
	net.append(Activation(relu, inplace=actInplace, name="relu5_2"))

	if layers > 11:
		net.append(Conv2D(512, 512, 3, pad=1, initscheme=initscheme, name="conv5_3"))
		net.append(Activation(relu, inplace=actInplace, name="relu5_3"))

	if layers > 16:
		net.append(Conv2D(512, 512, 3, pad=1, initscheme=initscheme, name="conv5_4"))
		net.append(Activation(relu, inplace=actInplace, name="relu5_4"))

	net.append(pool(2, 2, name="pool5"))

	if withLinear:
		net.append(Flatten())

		insize = int(np.prod(net.dataShapeFrom((1, 3, 224, 224))))

		net.append(Linear(insize, 4096, initscheme=initscheme, name="fc6"))
		net.append(Activation(relu, inplace=actInplace, name="relu6"))

		net.append(Linear(4096, 4096, initscheme=initscheme, name="fc7"))
		net.append(Activation(relu, inplace=actInplace, name="relu7"))

		net.append(Linear(4096, 1000, initscheme=initscheme, name="fc8"))
		net.append(SoftMax())

	if modelpath is not None:
		net.load(modelpath)

	return net
Пример #25
0
def loadMiniYolo(modelpath, numOutput, actInplace=False, initscheme="none"):
    net = Sequential(name="YOLONet")

    block0 = block(idx=["1"],
                   inmaps=[3],
                   outmaps=[64],
                   sizeconv=[7],
                   strideconv=[2],
                   initscheme=initscheme,
                   actInPlace=actInplace)
    net.extend(block0)

    block1 = block(idx=["2"],
                   inmaps=[64],
                   outmaps=[192],
                   sizeconv=[3],
                   strideconv=[1],
                   initscheme=initscheme,
                   actInPlace=actInplace)
    net.extend(block1)

    block2 = block(idx=["3", "4", "5", "6"],
                   inmaps=[192, 128, 256, 256],
                   outmaps=[128, 256, 256, 512],
                   sizeconv=[1, 3, 1, 3],
                   strideconv=[1, 1, 1, 1],
                   initscheme=initscheme,
                   actInPlace=actInplace)
    net.extend(block2)

    block3 = block(
        idx=["7", "8", "9", "10", "11", "12", "13", "14", "15", "16"],
        inmaps=[512, 256, 512, 256, 512, 256, 512, 256, 512, 512],
        outmaps=[256, 512, 256, 512, 256, 512, 256, 512, 512, 1024],
        sizeconv=[1, 3, 1, 3, 1, 3, 1, 3, 1, 3],
        strideconv=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
        initscheme=initscheme,
        actInPlace=actInplace)
    net.extend(block3)

    block4 = block(idx=["17", "18", "19", "20", "21", "22", "23", "24"],
                   inmaps=[1024, 512, 1024, 512, 1024, 1024, 1024, 1024],
                   outmaps=[512, 1024, 512, 1024, 1024, 1024, 1024, 1024],
                   sizeconv=[1, 3, 1, 3, 3, 3, 3, 3],
                   strideconv=[1, 1, 1, 1, 1, 2, 1, 1],
                   initscheme=initscheme,
                   actInPlace=actInplace,
                   addMaxpool=False)
    net.extend(block4)

    net.append(Flatten())
    insize = int(np.prod(net.dataShapeFrom((1, 3, 448, 448))))

    net.append(Linear(insize, 512, initscheme=initscheme, name="fc25"))
    net.append(Activation(relu, inplace=actInplace, name="fc_relu24"))

    net.append(Linear(512, 4096, initscheme=initscheme, name="fc26"))
    net.append(Activation(relu, inplace=actInplace, name="fc_relu25"))

    net.append(Linear(4096, numOutput, initscheme=initscheme, name="fc27"))
    net.append(SoftMax())

    if modelpath is not None:
        net.load(modelpath)

    return net
Пример #26
0
def loadInceptionV3(modelpath,
                    actInplace=False,
                    bnInplace=False,
                    initscheme="none",
                    name="Inception-7-0001"):
    net = Sequential(name=name)

    net.append(
        Conv2D(3,
               32,
               3,
               stride=2,
               useBias=False,
               initscheme=initscheme,
               name="conv_conv2d"))
    net.append(BatchNorm2D(32, name="conv_batchnorm"))
    net.append(Activation(relu, inplace=actInplace, name="conv_relu"))

    net.append(
        Conv2D(32,
               32,
               3,
               useBias=False,
               initscheme=initscheme,
               name="conv_1_conv2d"))
    net.append(BatchNorm2D(32, name="conv_1_batchnorm"))
    net.append(Activation(relu, inplace=actInplace, name="conv_1_relu"))

    net.append(
        Conv2D(32,
               64,
               3,
               pad=1,
               useBias=False,
               initscheme=initscheme,
               name="conv_2_conv2d"))
    net.append(BatchNorm2D(64, name="conv_2_batchnorm"))
    net.append(Activation(relu, inplace=actInplace, name="conv_2_relu"))

    net.append(MaxPool2D(3, 2, name="pool"))

    net.append(
        Conv2D(64,
               80,
               1,
               useBias=False,
               initscheme=initscheme,
               name="conv_3_conv2d"))
    net.append(BatchNorm2D(80, name="conv_3_batchnorm"))
    net.append(Activation(relu, inplace=actInplace, name="conv_3_relu"))

    net.append(
        Conv2D(80,
               192,
               3,
               useBias=False,
               initscheme=initscheme,
               name="conv_4_conv2d"))
    net.append(BatchNorm2D(192, name="conv_4_batchnorm"))
    net.append(Activation(relu, inplace=actInplace, name="conv_4_relu"))

    net.append(MaxPool2D(3, 2, name="pool1"))

    act, bn = actInplace, bnInplace
    net.extend(
        bnBlock(192, [64], [48, 64], [64, 96, 96], [32], "mixed", act, bn,
                initscheme, 5, 2, "v3"))
    net.extend(
        bnBlock(256, [64], [48, 64], [64, 96, 96], [64], "mixed_1", act, bn,
                initscheme, 5, 2, "v3"))
    net.extend(
        bnBlock(288, [64], [48, 64], [64, 96, 96], [64], "mixed_2", act, bn,
                initscheme, 5, 2, "v3"))
    net.extend(
        bnShrinkBlock(288, [384], [64, 96, 96], "mixed_3", act, bn, initscheme,
                      False, 0, "v3"))

    net.extend(
        factorBlock(768, [192], [128, 128, 192], [128, 128, 128, 128, 192],
                    [192], "mixed_4", act, bn, initscheme))
    net.extend(
        factorBlock(768, [192], [160, 160, 192], [160, 160, 160, 160, 192],
                    [192], "mixed_5", act, bn, initscheme))
    net.extend(
        factorBlock(768, [192], [160, 160, 192], [160, 160, 160, 160, 192],
                    [192], "mixed_6", act, bn, initscheme))
    net.extend(
        factorBlock(768, [192], [192, 192, 192], [192, 192, 192, 192, 192],
                    [192], "mixed_7", act, bn, initscheme))
    net.extend(
        v3ShrinkBlock(768, [192, 320], [192, 192, 192, 192], "mixed_8", act,
                      bn, initscheme))

    net.extend(
        expandBlock(1280, [320], [384, 384, 384], [448, 384, 384, 384], [192],
                    "mixed_9",
                    act,
                    bn,
                    initscheme,
                    pool="avg"))

    net.extend(
        expandBlock(2048, [320], [384, 384, 384], [448, 384, 384, 384], [192],
                    "mixed_10",
                    act,
                    bn,
                    initscheme,
                    pool="max"))

    net.append(AvgPool2D(8, 1, name="global_pool"))
    net.append(Flatten(name="flatten"))
    net.append(Linear(2048, 1008, name="fc1"))
    net.append(SoftMax(name="softmax"))

    if modelpath is not None:
        net.load(modelpath, assumeUniqueNames=True)

    return net
Пример #27
0
def trainSimpleTest(optCls, dtype, *args, **kwargs):
    from PuzzleLib.Containers.Sequential import Sequential

    from PuzzleLib.Modules.Linear import Linear
    from PuzzleLib.Modules.Activation import Activation, relu
    from PuzzleLib.Modules.Cast import Cast

    from PuzzleLib.Cost.MSE import MSE

    seq = Sequential()

    seq.append(Linear(128, 64, useBias=False))
    seq.append(Activation(relu))
    seq.append(Linear(64, 32, useBias=False))
    seq.append(Activation(relu))
    seq.append(Linear(32, 16))

    seq.calcMode(dtype)
    seq.append(Cast(intype=dtype, outtype=np.float32))

    optimizer = optCls(*args, **kwargs)
    optimizer.setupOn(seq, useGlobalState=True)

    mse = MSE()

    data = gpuarray.to_gpu(np.random.randn(16, 128).astype(dtype))
    target = gpuarray.to_gpu(np.random.randn(16, 16).astype(np.float32))

    for i in range(200):
        error, grad = mse(seq(data), target)

        optimizer.zeroGradParams()
        seq.backward(grad)
        optimizer.update()

        if (i + 1) % 5 == 0:
            print("Iteration #%d error: %s" % (i + 1, error))
Пример #28
0
def loadInceptionBN(modelpath,
                    actInplace=False,
                    bnInplace=False,
                    initscheme="none",
                    name="Inception-BN-0126"):
    net = Sequential(name=name)

    net.append(
        Conv2D(3,
               64,
               7,
               stride=2,
               pad=3,
               useBias=False,
               initscheme=initscheme,
               name="conv_1"))
    net.append(BatchNorm2D(64, inplace=bnInplace, name="bn_1"))
    net.append(Activation(relu, inplace=actInplace, name="relu_1"))

    net.append(MaxPool2D(3, 2, pad=1, name="pool_1"))

    net.append(
        Conv2D(64,
               64,
               1,
               useBias=False,
               initscheme=initscheme,
               name="conv_2_red"))
    net.append(BatchNorm2D(64, inplace=bnInplace, name="bn_2_red"))
    net.append(Activation(relu, inplace=actInplace, name="relu_2_red"))

    net.append(
        Conv2D(64,
               192,
               3,
               pad=1,
               useBias=False,
               initscheme=initscheme,
               name="conv_2"))
    net.append(BatchNorm2D(192, inplace=bnInplace, name="bn_2"))
    net.append(Activation(relu, inplace=actInplace, name="relu_2"))

    net.append(MaxPool2D(3, 2, pad=1, name="pool_2"))

    act, bn = actInplace, bnInplace
    net.extend(
        bnBlock(192, [64], [64, 64], [64, 96, 96], [32],
                act=act,
                bn=bn,
                scheme=initscheme,
                name="3a"))
    net.extend(
        bnBlock(256, [64], [64, 96], [64, 96, 96], [64],
                act=act,
                bn=bn,
                scheme=initscheme,
                name="3b"))
    net.extend(
        bnShrinkBlock(320, [128, 160], [64, 96, 96],
                      bn=bn,
                      act=act,
                      scheme=initscheme,
                      name="3c"))

    net.extend(
        bnBlock(576, [224], [64, 96], [96, 128, 128], [128],
                act=act,
                bn=bn,
                scheme=initscheme,
                name="4a"))
    net.extend(
        bnBlock(576, [192], [96, 128], [96, 128, 128], [128],
                act=act,
                bn=bn,
                scheme=initscheme,
                name="4b"))
    net.extend(
        bnBlock(576, [160], [128, 160], [128, 160, 160], [128],
                act=act,
                bn=bn,
                scheme=initscheme,
                name="4c"))
    net.extend(
        bnBlock(608, [96], [128, 192], [160, 192, 192], [128],
                act=act,
                bn=bn,
                scheme=initscheme,
                name="4d"))
    net.extend(
        bnShrinkBlock(608, [128, 192], [192, 256, 256],
                      act=act,
                      bn=bn,
                      scheme=initscheme,
                      name="4e"))

    net.extend(
        bnBlock(1056, [352], [192, 320], [160, 224, 224], [128],
                act=act,
                bn=bn,
                scheme=initscheme,
                name="5a"))
    net.extend(
        bnBlock(1024, [352], [192, 320], [192, 224, 224], [128],
                act=act,
                bn=bn,
                scheme=initscheme,
                name="5b"))

    net.append(AvgPool2D(7, 1, name="global_pool"))
    net.append(Flatten(name="flatten"))
    net.append(Linear(1024, 1000, initscheme=initscheme, name="fc1"))
    net.append(SoftMax(name="softmax"))

    if modelpath is not None:
        net.load(modelpath, assumeUniqueNames=True)

    return net
Пример #29
0
def loadResNet(modelpath,
               layers,
               actInplace=False,
               bnInplace=False,
               initscheme="none",
               name=None):
    if layers == "50":
        if name is None:
            name = "ResNet-50"

        level3names = ["3%s" % alpha for alpha in string.ascii_lowercase[1:4]]
        level4names = ["4%s" % alpha for alpha in string.ascii_lowercase[1:6]]

    elif layers == "101":
        if name is None:
            name = "ResNet-101"

        level3names = ["3b%s" % num for num in range(1, 4)]
        level4names = ["4b%s" % num for num in range(1, 23)]

    elif layers == "152":
        if name is None:
            name = "ResNet-152"

        level3names = ["3b%s" % num for num in range(1, 8)]
        level4names = ["4b%s" % num for num in range(1, 36)]

    else:
        raise ValueError("Unsupported ResNet layers mode")

    net = Sequential(name=name)

    net.append(
        Conv2D(3,
               64,
               7,
               stride=2,
               pad=3,
               name="conv1",
               initscheme=initscheme,
               useBias=False))
    net.append(BatchNorm2D(64, name="bn_conv1", inplace=bnInplace))
    net.append(Activation(relu, inplace=actInplace, name="conv1_relu"))
    net.append(MaxPool2D(3, 2, name="pool1"))

    net.extend(
        residBlock(64, 64, 1, "2a", True, actInplace, bnInplace, initscheme))
    net.extend(
        residBlock(256, 64, 1, "2b", False, actInplace, bnInplace, initscheme))
    net.extend(
        residBlock(256, 64, 1, "2c", False, actInplace, bnInplace, initscheme))

    net.extend(
        residBlock(256, 128, 2, "3a", True, actInplace, bnInplace, initscheme))

    for name in level3names:
        net.extend(
            residBlock(512, 128, 1, name, False, actInplace, bnInplace,
                       initscheme))

    net.extend(
        residBlock(512, 256, 2, "4a", True, actInplace, bnInplace, initscheme))

    for name in level4names:
        net.extend(
            residBlock(1024, 256, 1, name, False, actInplace, bnInplace,
                       initscheme))

    net.extend(
        residBlock(1024, 512, 2, "5a", True, actInplace, bnInplace,
                   initscheme))
    net.extend(
        residBlock(2048, 512, 1, "5b", False, actInplace, bnInplace,
                   initscheme))
    net.extend(
        residBlock(2048, 512, 1, "5c", False, actInplace, bnInplace,
                   initscheme))

    net.append(AvgPool2D(7, 1))
    net.append(Flatten())
    net.append(Linear(2048, 1000, initscheme=initscheme, name="fc1000"))
    net.append(SoftMax())

    if modelpath is not None:
        net.load(modelpath, assumeUniqueNames=True)

    return net
Пример #30
0
def rnnTest():
	batchsize, inmaps, inh, inw = 4, 2, 3, 3
	outmaps, hsize = 4, 1

	seq = Sequential(name="rnn")

	seq.append(Conv2D(inmaps, outmaps, 3, pad=1))
	seq.append(Activation(relu))
	seq.append(Reshape(shape=(batchsize, outmaps, inh * inw)))

	seq.append(SwapAxes(0, 1))
	seq.append(RNN(inh * inw, hsize, layers=2, direction="bi", mode="tanh", getSequences=True, hintBatchSize=batchsize))
	seq.append(SwapAxes(0, 1))

	data = gpuarray.to_gpu(np.random.randn(batchsize, inmaps, inh, inw).astype(np.float32))

	engine = buildRTEngine(seq, data.shape, savepath="../TestData", dtype=DataType.float32)

	outdata = seq(data)
	enginedata = engine(data)

	assert np.allclose(outdata.get(), enginedata.get())