def run_pygmo(): algos = [('PyGMO_DE',algorithm.de(gen=1)), ('PyGMO_DE_v1',algorithm.de(gen=1,f=.2,cr=1.0,variant=4)), #('PyGMO_DE_v2',algorithm.de(gen=1,f=.1,cr=1.0,variant=4)), #('PyGMO_DE_v3',algorithm.de(gen=1,f=.3,cr=1.0,variant=4)), #('PyGMO_DE_v4',algorithm.de(gen=1,f=.2,cr=0.9,variant=4)), ('PyGMO_JDE',algorithm.jde(gen=1)), ('PyGMO_MDE_PBX',algorithm.mde_pbx(gen=1)), ('PyGMO_PSO',algorithm.pso(gen=1,variant=5)), ('PyGMO_PSO_GEN',algorithm.pso_gen(gen=1)), ('PyGMO_BEE_COLONY',algorithm.bee_colony(gen=1)), ('PyGMO_IHS',algorithm.ihs(iter=pop_size))] run_eval("PyGMO",algos)
def run_test(n_trials=200, pop_size = 20, n_gen = 500): number_of_trials = n_trials number_of_individuals = pop_size number_of_generations = n_gen prob_list = [problem.schwefel(dim = 10), problem.michalewicz(dim = 10), problem.rastrigin(dim = 10), problem.rosenbrock(dim = 10), problem.ackley(dim = 10), problem.griewank(dim = 10)] if __extensions__['gtop']: prob_list.append(problem.cassini_1()) prob_list.append(problem.cassini_2()) prob_list.append(problem.gtoc_1()) prob_list.append(problem.rosetta()) prob_list.append(problem.messenger_full()) prob_list.append(problem.tandem(prob_id = 6, max_tof = 10)) algo_list = [algorithm.pso(gen = number_of_generations), algorithm.de(gen = number_of_generations,xtol=1e-30, ftol=1e-30), algorithm.jde(gen = number_of_generations, variant_adptv=2,xtol=1e-30, ftol=1e-30), algorithm.de_1220(gen = number_of_generations, variant_adptv=2,xtol=1e-30, ftol=1e-30), algorithm.sa_corana(iter = number_of_generations*number_of_individuals,Ts = 1,Tf = 0.01), algorithm.ihs(iter = number_of_generations*number_of_individuals), algorithm.sga(gen = number_of_generations), algorithm.cmaes(gen = number_of_generations,xtol=1e-30, ftol=1e-30), algorithm.bee_colony(gen = number_of_generations/2)] print('\nTrials: ' + str(n_trials) + ' - Population size: ' + str(pop_size) + ' - Generations: ' + str(n_gen)) for prob in prob_list: print('\nTesting problem: ' + prob.get_name() + ', Dimension: ' + str(prob.dimension) ) print('With Population Size: ' + str(pop_size) ) for algo in algo_list: print(' ' + str(algo)) best = [] best_x = [] for i in range(0,number_of_trials): isl = island(algo,prob,number_of_individuals) isl.evolve(1) isl.join() best.append(isl.population.champion.f) best_x.append(isl.population.champion.x) print(' Best:\t' + str(min(best)[0])) print(' Mean:\t' + str(mean(best))) print(' Std:\t' + str(std(best)))
def run(n_tri,n_gen,pop_size): import numpy #inital number of generations number_of_generations = 1 number_of_trials = n_tri number_of_individuals = pop_size algo_list = [algorithm.pso(gen = number_of_generations), algorithm.de(gen = number_of_generations,xtol=1e-30, ftol=1e-30), algorithm.jde(gen = number_of_generations, variant_adptv=2,xtol=1e-30, ftol=1e-30), algorithm.de_1220(gen = number_of_generations, variant_adptv=2,xtol=1e-30, ftol=1e-30), #algorithm.sa_corana(iter = number_of_generations*number_of_individuals,Ts = 1,Tf = 0.01), algorithm.ihs(iter = number_of_generations*number_of_individuals), #algorithm.sga(gen = number_of_generations), algorithm.cmaes(gen = number_of_generations,xtol=1e-30, ftol=1e-30), algorithm.bee_colony(gen = number_of_generations) ] algo_means_list = [] algo_name_list = [] print('\nTrials: ' + str(n_tri) + ' - Population size: ' + str(pop_size) + ' - Generations: ' + str(n_gen)) for algo in algo_list: print(' ' + str(algo)) algo_name_list.append(algo.get_name()) trials = [] trials_max_len = 0 for i in range(number_of_trials): print ".", trials.append(single_test(algo,total_evals,pop_size)) t_minlen = min([len(t) for t in trials]) t_new = numpy.array([t[:t_minlen-1] for t in trials ]) t_new = numpy.mean(t_new,axis=0) algo_means_list.append(t_new[:,1]) plot_multi(algo_means_list,names=algo_name_list,trials=number_of_trials)
def run_test(n_trials=200, pop_size=20, n_gen=500): """ This function runs some tests on the algorthm. Use it to verify the correct installation of PyGMO. USAGE: PyGMO.run_test(n_trials=200, pop_size = 20, n_gen = 500) * n_trials: each algorithm will be called n_trials times on the same problem to then evaluate best, mean and std * pop_size: this determines the population size * n_gen: this regulates the maximim number of function evaluation """ from PyGMO import problem, algorithm, island from numpy import mean, std number_of_trials = n_trials number_of_individuals = pop_size number_of_generations = n_gen prob_list = [ problem.schwefel( dim=10), problem.rastrigin( dim=10), problem.rosenbrock( dim=10), problem.ackley( dim=10), problem.griewank( dim=10), problem.levy5(10)] if __extensions__['gtop']: prob_list.append(problem.cassini_1()) prob_list.append(problem.gtoc_1()) prob_list.append(problem.cassini_2()) prob_list.append(problem.messenger_full()) algo_list = [ algorithm.pso( gen=number_of_generations), algorithm.mde_pbx( gen=number_of_generations, xtol=1e-30, ftol=1e-30), algorithm.de( gen=number_of_generations, xtol=1e-30, ftol=1e-30), algorithm.jde( gen=number_of_generations, memory=False, xtol=1e-30, ftol=1e-30), algorithm.de_1220( gen=number_of_generations, memory=False, xtol=1e-30, ftol=1e-30), algorithm.sa_corana( iter=number_of_generations * number_of_individuals, Ts=1, Tf=0.01), algorithm.ihs( iter=number_of_generations * number_of_individuals), algorithm.sga( gen=number_of_generations), algorithm.cmaes( gen=number_of_generations, xtol=1e-30, ftol=1e-30, memory=False), algorithm.bee_colony( gen=number_of_generations / 2)] print('\nTrials: ' + str(n_trials) + ' - Population size: ' + str(pop_size) + ' - Generations: ' + str(n_gen)) for prob in prob_list: print('\nTesting problem: ' + prob.get_name() + ', Dimension: ' + str(prob.dimension)) print('With Population Size: ' + str(pop_size)) for algo in algo_list: print(' ' + str(algo)) best = [] best_x = [] for i in range(0, number_of_trials): isl = island(algo, prob, number_of_individuals) isl.evolve(1) isl.join() best.append(isl.population.champion.f) best_x.append(isl.population.champion.x) print(' Best:\t' + str(min(best)[0])) print(' Mean:\t' + str(mean(best))) print(' Std:\t' + str(std(best)))