Пример #1
0
    def test_wakefield_platesresonator(self):
        '''
        Track through a ParallelPlatesResonator wakefield
        '''
        Dx = np.append(np.linspace(0., 20., self.nsegments), [0])
        # add some dispersion/alpha
        lhc = m.LHC(n_segments=self.nsegments,
                    machine_configuration='450GeV',
                    app_x=1e-9,
                    app_y=2e-9,
                    app_xy=-1.5e-11,
                    chromaticity_on=False,
                    amplitude_detuning_on=True,
                    alpha_x=1.2 * np.ones(self.nsegments),
                    D_x=Dx,
                    printer=SilentPrinter())

        self.n_macroparticles = 200000
        bunch_cpu = self.create_lhc_bunch(lhc)  #self.create_gaussian_bunch()
        bunch_gpu = self.create_lhc_bunch(lhc)  #self.create_gaussian_bunch()
        n_slices = 50  #5
        frequency = 8e8  #1e9
        R_shunt = 23e3  # [Ohm]
        Q = 1.
        unif_bin_slicer = UniformBinSlicer(n_slices=n_slices, n_sigma_z=1)
        #res = CircularResonator(R_shunt=R_shunt, frequency=frequency, Q=Q)
        res = ParallelPlatesResonator(R_shunt=R_shunt,
                                      frequency=frequency,
                                      Q=Q,
                                      printer=SilentPrinter())
        wake_field = WakeField(unif_bin_slicer, res)
        self.assertTrue(
            self._track_cpu_gpu([wake_field], bunch_cpu, bunch_gpu),
            'Tracking Wakefield CircularResonator CPU/GPU differs')
Пример #2
0
 def test_wakefield_wakefile(self):
     '''
     Track an LHC bunch and a LHC wakefield
     '''
     wakefile = 'autoruntests/wake_table.dat'  #'./wakeforhdtl_PyZbase_Allthemachine_450GeV_B1_LHC_inj_450GeV_B1.dat'
     Qp_x, Qp_y = 1., 1.
     Q_s = 0.0049
     n_macroparticles = 10
     intensity = 1e11
     longitudinal_focusing = 'linear'
     machine = m.LHC(n_segments=1,
                     machine_configuration='450GeV',
                     longitudinal_focusing=longitudinal_focusing,
                     Qp_x=[Qp_x],
                     Qp_y=[Qp_y],
                     Q_s=Q_s,
                     beta_x=[65.9756],
                     beta_y=[71.5255],
                     printer=SilentPrinter())
     epsn_x = 3.5e-6
     epsn_y = 3.5e-6
     sigma_z = 1.56e-9 * c / 4.
     np.random.seed(0)
     bunch_cpu = machine.generate_6D_Gaussian_bunch(n_macroparticles,
                                                    intensity,
                                                    epsn_x,
                                                    epsn_y,
                                                    sigma_z=sigma_z)
     np.random.seed(0)
     bunch_gpu = machine.generate_6D_Gaussian_bunch(n_macroparticles,
                                                    intensity,
                                                    epsn_x,
                                                    epsn_y,
                                                    sigma_z=sigma_z)
     n_slices_wakefields = 55
     n_sigma_z_wakefields = 3
     slicer_for_wakefields_cpu = UniformBinSlicer(
         n_slices_wakefields, n_sigma_z=n_sigma_z_wakefields)
     wake_components = [
         'time', 'dipole_x', 'dipole_y', 'no_quadrupole_x',
         'no_quadrupole_y', 'no_dipole_xy', 'no_dipole_yx'
     ]
     wake_table_cpu = WakeTable(wakefile,
                                wake_components,
                                printer=SilentPrinter())
     wake_field_cpu = WakeField(slicer_for_wakefields_cpu, wake_table_cpu)
     # also checked for 100 turns!
     self.assertTrue(
         self._track_cpu_gpu([wake_field_cpu],
                             bunch_cpu,
                             bunch_gpu,
                             nturns=2),
         'Tracking through WakeField(waketable) differs')
Пример #3
0
)
ww1 = WakeTable(
    wakefile1,
    ['time', 'dipole_x', 'dipole_y', 'quadrupole_x', 'quadrupole_y'],
    n_turns_wake=n_turns_wake)
# only dipolar kick
#my_length = len(ww1.wake_table['quadrupole_x'])
#ww1.wake_table['quadrupole_x'] = np.zeros(my_length)
#ww1.wake_table['quadrupole_y'] = np.zeros(my_length)

# only quadrupolar kick
#my_length = len(ww1.wake_table['dipole_x'])
#ww1.wake_table['dipole_x'] = np.zeros(my_length)
#ww1.wake_table['dipole_y'] = np.zeros(my_length)

wake_field_complete = WakeField(slicer_for_wakefields,
                                ww1)  #, beta_x=beta_x, beta_y=beta_y)

# CREATE TRANSVERSE AND LONGITUDINAL MAPS
# =======================================
scale_factor = 2 * bunch.p0  # scale the detuning coefficients in pyheadtail units
transverse_map = TransverseMap(
    s, alpha_x, beta_x, D_x, alpha_y, beta_y, D_y, Q_x, Q_y, [
        Chromaticity(Qp_x, Qp_y),
        AmplitudeDetuning(app_x * scale_factor, app_y * scale_factor,
                          app_xy * scale_factor)
    ])

longitudinal_map = LinearMap([alpha], circumference, Q_s)

# ======================================================================
# SET UP ACCELERATOR MAP AND START TRACKING
Пример #4
0
def run(job_id, accQ_y):
    it = job_id

    # SIMULATION PARAMETERS
    # =====================

    # Simulation parameters
    n_turns = 10000
    n_macroparticles = 100000  # per bunch

    # MACHINE PARAMETERS
    # ==================

    intensity = 1e13  # protons
    #    intensity = 2*4e12 # protons
    E0 = 71e6  # Kinetic energy [eV]
    p0 = np.sqrt((m_p_MeV + E0)**2 - m_p_MeV**2) * e / c

    print('Beam kinetic energy: ' + str(E0 * 1e-6) + ' MeV')
    print('Beam momentum: ' + str(p0 * 1e-6 * c / e) + ' MeV/c')

    accQ_x = 4.31  # Horizontal tune
    #    accQ_y = 3.80 # Vertical tune is an input argument

    chroma = -1.4  # Chromaticity

    alpha = 5.034**-2  # momentum compaction factor

    circumference = 160.  # [meters]

    # Approximated average beta functions (lumped wake normalizations)
    beta_x = circumference / (2. * np.pi * accQ_x)
    beta_y = circumference / (2. * np.pi * accQ_y)

    # Harmonic number for RF
    h_RF = [2]  # a list of harmonic number for RF
    V_RF = [5e3 * 2]  # a list of RF voltages
    p_increment = 0.
    dphi_RF = [np.pi]  # a list of RF phases
    #    dphi_RF = 0.

    # non-linear longitudinal mode includes RF, otherwise linear needs synhotron tune Q_s
    longitudinal_mode = 'non-linear'
    #    Q_s=0.02 # Longitudinal tune

    optics_mode = 'smooth'
    n_segments = 1
    s = None
    alpha_x = None
    alpha_y = None
    D_x = 0
    D_y = 0
    charge = e
    mass = m_p
    name = None
    app_x = 0
    app_y = 0
    app_xy = 0

    # Creates PyHEADTAIL object for the synchotron
    machine = Synchrotron(optics_mode=optics_mode,
                          circumference=circumference,
                          n_segments=n_segments,
                          s=s,
                          name=name,
                          alpha_x=alpha_x,
                          beta_x=beta_x,
                          D_x=D_x,
                          alpha_y=alpha_y,
                          beta_y=beta_y,
                          D_y=D_y,
                          accQ_x=accQ_x,
                          accQ_y=accQ_y,
                          Qp_x=chroma,
                          Qp_y=chroma,
                          app_x=app_x,
                          app_y=app_y,
                          app_xy=app_xy,
                          alpha_mom_compaction=alpha,
                          longitudinal_mode=longitudinal_mode,
                          h_RF=np.atleast_1d(h_RF),
                          V_RF=np.atleast_1d(V_RF),
                          dphi_RF=np.atleast_1d(dphi_RF),
                          p0=p0,
                          p_increment=p_increment,
                          charge=charge,
                          mass=mass)

    print('')
    print('machine.beta: ')
    print(machine.beta)
    print('')

    print('')
    print('machine.gamma: ')
    print(machine.gamma)
    print('')

    epsn_x = 300e-6
    epsn_y = 300e-6
    sigma_z = 15  # bunch length in meters to be matched to the bucket

    # Creates transverse macroparticle distribution
    allbunches = machine.generate_6D_Gaussian_bunch(n_macroparticles,
                                                    intensity, epsn_x, epsn_y,
                                                    sigma_z)

    # Creates longitudinal macroparticle distribution
    rfb = RFBucket(circumference, machine.gamma, m_p, e, [alpha], 0., h_RF,
                   V_RF, dphi_RF)
    rfb_matcher = RFBucketMatcher(rfb, WaterbagDistribution, sigma_z=sigma_z)

    rfb_matcher.integrationmethod = 'cumtrapz'

    z, dp, _, _ = rfb_matcher.generate(n_macroparticles)
    np.copyto(allbunches.z, z)
    np.copyto(allbunches.dp, dp)

    # Slicer object, which used for wakefields and slice monitors
    slicer = UniformBinSlicer(75, z_cuts=(-2. * sigma_z, 2. * sigma_z))

    # WAKE FIELDS
    # ===========

    # Length of the wake function in turns, wake
    n_turns_wake = 150

    # Parameters for a resonator
    # frequency is in the units of (mode-Q_frac), where
    #       mode: integer number of coupled bunch mode (1 matches to the observations)
    #       Q_frac: resonance fractional tune

    f_r = (1 - 0.83) * 1. / (circumference / (c * machine.beta))
    Q = 15
    R = 1.0e6

    # Renator wake object, which is added to the one turn map
    wakes = CircularResonator(R, f_r, Q, n_turns_wake=n_turns_wake)
    wake_field = WakeField(slicer, wakes)
    machine.one_turn_map.append(wake_field)

    # CREATE MONITORS
    # ===============
    simulation_parameters_dict = {'gamma'           : machine.gamma,\
                                  'intensity'       : intensity,\
                                  'Qx'              : accQ_x,\
                                  'Qy'              : accQ_y,\
#                                  'Qs'              : Q_s,\
                                  'beta_x'          : beta_x,\
                                  'beta_y'          : beta_y,\
    #                               'beta_z'          : bucket.beta_z,\
                                  'epsn_x'          : epsn_x,\
                                  'epsn_y'          : epsn_y,\
                                  'sigma_z'         : sigma_z,\
                                 }
    # Bunch monitor strores bunch average positions for all the bunches
    bunchmonitor = BunchMonitor(outputpath + '/bunchmonitor_{:04d}'.format(it),
                                n_turns,
                                simulation_parameters_dict,
                                write_buffer_every=32,
                                buffer_size=32)

    # Slice monitors saves slice-by-slice data for each bunch
    slicemonitor = SliceMonitor(outputpath +
                                '/slicemonitor_{:01d}_{:04d}'.format(0, it),
                                60,
                                slicer,
                                simulation_parameters_dict,
                                write_buffer_every=60,
                                buffer_size=60)

    # Counter for a number of turns stored to slice monitors
    s_cnt = 0

    # TRACKING LOOP
    # =============
    monitor_active = False
    print('\n--> Begin tracking...\n')

    for i in range(n_turns):
        t0 = time.clock()

        # Tracks beam through the one turn map simulation map
        machine.track(allbunches)

        # Stores bunch mean coordinate values
        bunchmonitor.dump(allbunches)

        # If the total oscillation amplitude of bunches exceeds the threshold
        # or the simulation is running on the last turns, triggers the slice
        # monitors for headtail motion data
        if (allbunches.mean_x() > 1e-1 or allbunches.mean_y() > 1e-1 or i >
            (n_turns - 64)):
            monitor_active = True

        # saves slice monitor data if monitors are activated and less than
        # 64 turns have been stored
        if monitor_active and s_cnt < 64:
            slicemonitor.dump(allbunches)
            s_cnt += 1
        elif s_cnt == 64:
            break

        # If this script is runnin on the first processor, prints the current
        # bunch coordinates and emittances
        if (i % 100 == 0):
            print(
                '{:4d} \t {:+3e} \t {:+3e} \t {:+3e} \t {:3e} \t {:3e} \t {:3f} \t {:3f} \t {:3f} \t {:3s}'
                .format(i, allbunches.mean_x(), allbunches.mean_y(),
                        allbunches.mean_z(), allbunches.epsn_x(),
                        allbunches.epsn_y(), allbunches.epsn_z(),
                        allbunches.sigma_z(), allbunches.sigma_dp(),
                        str(time.clock() - t0)))
# ==========
n_turns_wake = 1 # for the moment we consider that the wakefield decays after 1 turn
#wakefile1 = ('/afs/cern.ch/work/n/natriant/private/pyheadtail_example_crabcavity/wakefields/newkickers_Q26_2018_modified.txt')
wakefile1 = ('/afs/cern.ch/work/n/natriant/private/pyheadtail_example_crabcavity/wakefields/SPS_complete_wake_model_2018_Q26.txt')
ww1 = WakeTable(wakefile1, ['time', 'dipole_x', 'dipole_y', 'quadrupole_x', 'quadrupole_y'], n_turns_wake=n_turns_wake)
# only dipolar kick
#my_length = len(ww1.wake_table['quadrupole_x'])
#ww1.wake_table['quadrupole_x'] = np.zeros(my_length)
#ww1.wake_table['quadrupole_y'] = np.zeros(my_length)

# only quadrupolar kick
#my_length = len(ww1.wake_table['dipole_x'])
#ww1.wake_table['dipole_x'] = np.zeros(my_length)
#ww1.wake_table['dipole_y'] = np.zeros(my_length)

wake_field_kicker = WakeField(slicer_for_wakefields, ww1)#, beta_x=beta_x, beta_y=beta_y)

# CREATE TRANSVERSE AND LONGITUDINAL MAPS
# =======================================
scale_factor = 2*bunch.p0  # scale the detuning coefficients in pyheadtail units
transverse_map = TransverseMap(s, alpha_x, beta_x, D_x, alpha_y, beta_y, D_y, Q_x, Q_y,
    [Chromaticity(Qp_x, Qp_y),
    AmplitudeDetuning(app_x*scale_factor, app_y*scale_factor, app_xy*scale_factor)])

longitudinal_map = LinearMap([alpha], circumference, Q_s)



# ======================================================================
# SET UP ACCELERATOR MAP AND START TRACKING
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def run(intensity, chroma=0, i_oct=0):
    '''Arguments:
        - intensity: integer number of charges in beam
        - chroma: first-order chromaticity Q'_{x,y}, identical
          for both transverse planes
        - i_oct: octupole current in A (positive i_oct means
          LOF = i_oct > 0 and LOD = -i_oct < 0)
    '''

    # BEAM AND MACHINE PARAMETERS
    # ============================
    from LHC import LHC
    # energy set above will enter get_nonlinear_params p0
    assert machine_configuration == 'LHC-injection'
    machine = LHC(n_segments=1,
                  machine_configuration=machine_configuration,
                  **get_nonlinear_params(chroma=chroma,
                                         i_oct=i_oct,
                                         p0=0.45e12 * e / c))

    # BEAM
    # ====
    epsn_x = 3.e-6  # normalised horizontal emittance
    epsn_y = 3.e-6  # normalised vertical emittance
    sigma_z = 1.2e-9 * machine.beta * c / 4.  # RMS bunch length in meters

    bunch = machine.generate_6D_Gaussian_bunch(n_macroparticles,
                                               intensity,
                                               epsn_x,
                                               epsn_y,
                                               sigma_z=sigma_z,
                                               matched=True)

    print("\n--> Bunch length and emittance: {:g} m, {:g} eVs.".format(
        bunch.sigma_z(), bunch.epsn_z()))

    # CREATE BEAM SLICERS
    # ===================
    slicer_for_slicemonitor = UniformBinSlicer(50,
                                               z_cuts=(-3 * sigma_z,
                                                       3 * sigma_z))
    slicer_for_wakefields = UniformBinSlicer(
        50,
        z_cuts=(-3 * sigma_z, 3 * sigma_z),
        circumference=machine.circumference,
        h_bunch=machine.h_bunch)
    print("Slice")

    # CREATE WAKES
    # ============
    wake_table1 = WakeTable(
        wakefile,
        [
            'time',
            'dipole_x',
            'dipole_y',
            # 'quadrupole_x', 'quadrupole_y',
            'noquadrupole_x',
            'noquadrupole_y',
            # 'dipole_xy', 'dipole_yx',
            'nodipole_xy',
            'nodipole_yx',
        ])
    wake_field = WakeField(slicer_for_wakefields, wake_table1, mpi=True)

    # CREATE DAMPER
    # =============
    dampingtime = 50.
    gain = 2. / dampingtime
    damper = IdealBunchFeedback(gain)

    # CREATE MONITORS
    # ===============
    try:
        bucket = machine.longitudinal_map.get_bucket(bunch)
    except AttributeError:
        bucket = machine.rfbucket

    simulation_parameters_dict = {
        'gamma': machine.gamma,
        'intensity': intensity,
        'Qx': machine.Q_x,
        'Qy': machine.Q_y,
        'Qs': bucket.Q_s,
        'beta_x': bunch.beta_Twiss_x(),
        'beta_y': bunch.beta_Twiss_y(),
        'beta_z': bucket.beta_z,
        'epsn_x': bunch.epsn_x(),
        'epsn_y': bunch.epsn_y(),
        'sigma_z': bunch.sigma_z(),
    }
    bunchmonitor = BunchMonitor(
        outputpath + '/bunchmonitor_{:04d}_chroma={:g}'.format(it, chroma),
        n_turns,
        simulation_parameters_dict,
        write_buffer_to_file_every=512,
        buffer_size=4096)
    slicemonitor = SliceMonitor(
        outputpath + '/slicemonitor_{:04d}_chroma={:g}'.format(it, chroma),
        n_turns_slicemon,
        slicer_for_slicemonitor,
        simulation_parameters_dict,
        write_buffer_to_file_every=1,
        buffer_size=n_turns_slicemon)

    # TRACKING LOOP
    # =============
    # machine.one_turn_map.append(damper)
    machine.one_turn_map.append(wake_field)

    # for slice statistics monitoring:
    s_cnt = 0
    monitorswitch = False

    print('\n--> Begin tracking...\n')

    # GO!!!
    for i in range(n_turns):

        t0 = time.clock()

        # track the beam around the machine for one turn:
        machine.track(bunch)

        ex, ey, ez = bunch.epsn_x(), bunch.epsn_y(), bunch.epsn_z()
        mx, my, mz = bunch.mean_x(), bunch.mean_y(), bunch.mean_z()

        # monitor the bunch statistics (once per turn):
        bunchmonitor.dump(bunch)

        # if the centroid becomes unstable (>1cm motion)
        # then monitor the slice statistics:
        if not monitorswitch:
            if mx > 1e-2 or my > 1e-2 or i > n_turns - n_turns_slicemon:
                print("--> Activate slice monitor")
                monitorswitch = True
        else:
            if s_cnt < n_turns_slicemon:
                slicemonitor.dump(bunch)
                s_cnt += 1

        # stop the tracking as soon as we have not-a-number values:
        if not all(np.isfinite(c) for c in [ex, ey, ez, mx, my, mz]):
            print('*** STOPPING SIMULATION: non-finite bunch stats!')
            break

        # print status all 1000 turns:
        if i % 100 == 0:
            t1 = time.clock()
            print('Emittances: ({:.3g}, {:.3g}, {:.3g}) '
                  '& Centroids: ({:.3g}, {:.3g}, {:.3g})'
                  '@ turn {:d}, {:g} ms, {:s}'.format(
                      ex, ey, ez, mx, my, mz, i, (t1 - t0) * 1e3,
                      time.strftime("%d/%m/%Y %H:%M:%S", time.localtime())))

    print('\n*** Successfully completed!')
Пример #7
0
def run():
    def track_n_save(bunch, map_):
        mean_x = np.empty(n_turns)
        mean_y = np.empty(n_turns)
        sigma_z = np.empty(n_turns)

        for i in xrange(n_turns):
            mean_x[i] = bunch.mean_x()
            mean_y[i] = bunch.mean_y()
            sigma_z[i] = bunch.sigma_z()

            for m_ in map_:
                m_.track(bunch)

        return mean_x, mean_y, sigma_z

    def my_fft(data):
        t = np.arange(len(data))
        fft = np.fft.rfft(data)
        fft_freq = np.fft.rfftfreq(t.shape[-1])

        return fft_freq, np.abs(fft.real)

    def generate_bunch(n_macroparticles, alpha_x, alpha_y, beta_x, beta_y,
                       linear_map):

        intensity = 1.05e11
        sigma_z = 0.059958
        gamma = 3730.26
        p0 = np.sqrt(gamma**2 - 1) * m_p * c

        beta_z = (linear_map.eta(dp=0, gamma=gamma) *
                  linear_map.circumference / (2 * np.pi * linear_map.Q_s))

        epsn_x = 3.75e-6  # [m rad]
        epsn_y = 3.75e-6  # [m rad]
        epsn_z = 4 * np.pi * sigma_z**2 * p0 / (beta_z * e)

        bunch = generators.generate_Gaussian6DTwiss(
            macroparticlenumber=n_macroparticles,
            intensity=intensity,
            charge=e,
            gamma=gamma,
            mass=m_p,
            circumference=C,
            alpha_x=alpha_x,
            beta_x=beta_x,
            epsn_x=epsn_x,
            alpha_y=alpha_y,
            beta_y=beta_y,
            epsn_y=epsn_y,
            beta_z=beta_z,
            epsn_z=epsn_z)
        # print ('bunch sigma_z=' + bunch.sigma_z())

        return bunch

    def track_n_show(bunch, slicer, map_woWakes, wake_field):
        fig, ((ax1, ax2)) = plt.subplots(2, 1, figsize=(16, 16))

        xp_diff = np.zeros(n_macroparticles)

        for i in xrange(n_turns):
            for m_ in map_woWakes:
                m_.track(bunch)

            # Dipole X kick.
            if i == (n_turns - 1):
                xp_old = bunch.xp.copy()
            wake_field.track(bunch)

            if i == (n_turns - 1):
                xp_diff[:] = bunch.xp[:] - xp_old[:]

        # Plot bunch.z vs. slice index of particle. Mark particles within
        # z cuts in green.
        nsigmaz_lbl = ' (nsigmaz =' + str(n_sigma_z) + ')'

        slice_set = bunch.get_slices(slicer)
        pidx = slice_set.particles_within_cuts
        slidx = slice_set.slice_index_of_particle

        z_cut_tail, z_cut_head = slice_set.z_cut_tail, slice_set.z_cut_head

    # In[4]:
    # Basic parameters.
    n_turns = 10
    n_segments = 1
    n_macroparticles = 50

    Q_x = 64.28
    Q_y = 59.31
    Q_s = 0.0020443

    C = 26658.883
    R = C / (2. * np.pi)

    alpha_x_inj = 0.
    alpha_y_inj = 0.
    beta_x_inj = 66.0064
    beta_y_inj = 71.5376
    alpha_0 = [0.0003225]

    #waketable filename
    fn = os.path.join(os.path.dirname(__file__), 'wake_table.dat')
    # In[5]:

    # Parameters for transverse map.
    s = np.arange(0, n_segments + 1) * C / n_segments

    alpha_x = alpha_x_inj * np.ones(n_segments)
    beta_x = beta_x_inj * np.ones(n_segments)
    D_x = np.zeros(n_segments)

    alpha_y = alpha_y_inj * np.ones(n_segments)
    beta_y = beta_y_inj * np.ones(n_segments)
    D_y = np.zeros(n_segments)

    # In[6]:

    # In[7]:

    # In[8]:

    # CASE TEST SETUP
    trans_map = TransverseMap(s, alpha_x, beta_x, D_x, alpha_y, beta_y, D_y,
                              Q_x, Q_y)
    long_map = LinearMap(alpha_0, C, Q_s)

    bunch = generate_bunch(n_macroparticles, alpha_x_inj, alpha_y_inj,
                           beta_x_inj, beta_y_inj, long_map)

    # In[9]:

    # CASE I
    # Transverse and long. tracking (linear), and wakes from WakeTable source.
    # DIPOLE X, UniformBinSlicer

    n_sigma_z = 2
    n_slices = 15
    uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices,
                                          n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    wake_file_columns = [
        'time', 'dipole_x', 'no_dipole_y', 'no_quadrupole_x',
        'no_quadrupole_y', 'no_dipole_xy', 'no_dipole_yx'
    ]
    table = WakeTable(fn,
                      wake_file_columns,
                      printer=SilentPrinter(),
                      warningprinter=SilentPrinter())
    wake_field = WakeField(uniform_bin_slicer, table)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)

    # In[10]:

    # CASE II
    # Transverse and long. tracking (linear), and wakes from WakeTable source.
    # DIPOLE X, UniformChargeSlicer

    n_sigma_z = 2
    n_slices = 15
    uniform_charge_slicer = UniformChargeSlicer(n_slices=n_slices,
                                                n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    wake_file_columns = [
        'time', 'dipole_x', 'no_dipole_y', 'no_quadrupole_x',
        'no_quadrupole_y', 'no_dipole_xy', 'no_dipole_yx'
    ]
    table = WakeTable(fn,
                      wake_file_columns,
                      printer=SilentPrinter(),
                      warningprinter=SilentPrinter())
    wake_field = WakeField(uniform_charge_slicer, table)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)

    # In[11]:

    # CASE III
    # Transverse and long. tracking (linear), and wakes from WakeTable source.
    # Quadrupole X, UniformChargeSlicer

    n_sigma_z = 2
    n_slices = 15
    uniform_charge_slicer = UniformChargeSlicer(n_slices=n_slices,
                                                n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    wake_file_columns = [
        'time', 'no_dipole_x', 'no_dipole_y', 'quadrupole_x',
        'no_quadrupole_y', 'no_dipole_xy', 'no_dipole_yx'
    ]
    table = WakeTable(fn,
                      wake_file_columns,
                      printer=SilentPrinter(),
                      warningprinter=SilentPrinter())
    wake_field = WakeField(uniform_charge_slicer, table)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)

    # In[12]:

    # CASE IV
    # Transverse and long. tracking (linear), and wakes from WakeTable source.
    # Quadrupole X, UniformBinSlicer

    n_sigma_z = 2
    n_slices = 15
    uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices,
                                          n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    wake_file_columns = [
        'time', 'no_dipole_x', 'no_dipole_y', 'quadrupole_x',
        'no_quadrupole_y', 'no_dipole_xy', 'no_dipole_yx'
    ]
    table = WakeTable(fn,
                      wake_file_columns,
                      printer=SilentPrinter(),
                      warningprinter=SilentPrinter())
    wake_field = WakeField(uniform_bin_slicer, table)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)

    # In[15]:

    # CASE V
    # Transverse and long. tracking (linear),
    # Resonator circular

    n_sigma_z = 2
    n_slices = 15
    uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices,
                                          n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    reson_circ = CircularResonator(R_shunt=1e6, frequency=1e8, Q=1)
    wake_field = WakeField(uniform_bin_slicer, reson_circ)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)

    # In[16]:

    # CASE V b.
    # Transverse and long. tracking (linear),
    # Several Resonators circular

    n_sigma_z = 2
    n_slices = 15
    uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices,
                                          n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    reson_circ = CircularResonator(R_shunt=1e6, frequency=1e8, Q=1)
    reson_circ2 = CircularResonator(R_shunt=1e6, frequency=1e9, Q=0.8)
    reson_circ3 = CircularResonator(R_shunt=5e6, frequency=1e6, Q=0.2)

    wake_field = WakeField(uniform_bin_slicer, reson_circ, reson_circ2,
                           reson_circ3)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)

    # In[17]:

    # CASE V c.
    # Transverse and long. tracking (linear),
    # Resonator parallel_plates

    n_sigma_z = 2
    n_slices = 15
    uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices,
                                          n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    reson_para = ParallelPlatesResonator(R_shunt=1e6, frequency=1e8, Q=1)
    wake_field = WakeField(uniform_bin_slicer, reson_para)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)

    # In[18]:

    # CASE V d.
    # Transverse and long. tracking (linear),
    # Resonator w. longitudinal wake

    n_sigma_z = 2
    n_slices = 15
    uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices,
                                          n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    reson = Resonator(R_shunt=1e6,
                      frequency=1e8,
                      Q=1,
                      Yokoya_X1=1,
                      Yokoya_X2=1,
                      Yokoya_Y1=1,
                      Yokoya_Y2=1,
                      switch_Z=True)
    wake_field = WakeField(uniform_bin_slicer, reson)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)

    # In[19]:

    # CASE VI
    # Transverse and long. tracking (linear),
    # ResistiveWall circular

    n_sigma_z = 2
    n_slices = 15
    uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices,
                                          n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    resis_circ = CircularResistiveWall(pipe_radius=5e-2,
                                       resistive_wall_length=C,
                                       conductivity=1e6,
                                       dt_min=1e-3)
    wake_field = WakeField(uniform_bin_slicer, resis_circ)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)

    # In[20]:

    # CASE VI b.
    # Transverse and long. tracking (linear),
    # ResistiveWall parallel_plates

    n_sigma_z = 2
    n_slices = 15
    uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices,
                                          n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    resis_para = ParallelPlatesResistiveWall(pipe_radius=5e-2,
                                             resistive_wall_length=C,
                                             conductivity=1e6,
                                             dt_min=1e-3)
    wake_field = WakeField(uniform_bin_slicer, resis_para)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)

    # In[21]:

    # CASE VII.
    # Transverse and long. tracking (linear),
    # Pass mixture of WakeSources to define WakeField.

    n_sigma_z = 2
    n_slices = 15
    uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices,
                                          n_sigma_z=n_sigma_z)

    # Definition of WakeField as a composition of different sources.
    resis_circ = CircularResistiveWall(pipe_radius=5e-2,
                                       resistive_wall_length=C,
                                       conductivity=1e6,
                                       dt_min=1e-3)
    reson_para = ParallelPlatesResonator(R_shunt=1e6, frequency=1e8, Q=1)
    wake_file_columns = [
        'time', 'dipole_x', 'dipole_y', 'quadrupole_x', 'quadrupole_y',
        'dipole_xy', 'dipole_yx'
    ]
    table = WakeTable(fn,
                      wake_file_columns,
                      printer=SilentPrinter(),
                      warningprinter=SilentPrinter())

    wake_field = WakeField(uniform_bin_slicer, resis_circ, reson_para, table)

    trans_map = [m for m in trans_map]
    map_woWakes = trans_map + [long_map]

    track_n_save(bunch, map_woWakes)
Пример #8
0
def run(intensity, chroma=0, i_oct=0):
    '''Arguments:
        - intensity: integer number of charges in beam
        - chroma: first-order chromaticity Q'_{x,y}, identical
          for both transverse planes
        - i_oct: octupole current in A (positive i_oct means
          LOF = i_oct > 0 and LOD = -i_oct < 0)
    '''

    # BEAM AND MACHINE PARAMETERS
    # ============================
    from LHC import LHC
    # energy set above will enter get_nonlinear_params p0
    assert machine_configuration == 'LHC-injection'
    machine = LHC(n_segments=1,
                  machine_configuration=machine_configuration,
                  **get_nonlinear_params(chroma=chroma,
                                         i_oct=i_oct,
                                         p0=0.45e12 * e / c))

    # BEAM
    # ====

    #print(filling_scheme)

    epsn_x = 3.e-6  # normalised horizontal emittance
    epsn_y = 3.e-6  # normalised vertical emittance
    sigma_z = 1.2e-9 * machine.beta * c / 4.  # RMS bunch length in meters

    beam = machine.generate_6D_Gaussian_bunch(n_macroparticles,
                                              intensity,
                                              epsn_x,
                                              epsn_y,
                                              sigma_z=sigma_z,
                                              matched=True,
                                              filling_scheme=filling_scheme)

    bunch_list = beam.split_to_views()

    for b in bunch_list:
        if b.bucket_id[0] < batch_length:
            b.x += 1e-3
            b.y += 1e-3

    bunch = bunch_list[0]

    print("\n--> Bunch length and emittance: {:g} m, {:g} eVs.".format(
        bunch.sigma_z(), bunch.epsn_z()))

    # CREATE BEAM SLICERS
    # ===================
    slicer_for_slicemonitor = UniformBinSlicer(50,
                                               z_cuts=(-3 * sigma_z,
                                                       3 * sigma_z))
    slicer_for_wakefields = UniformBinSlicer(
        50,
        z_cuts=(-3 * sigma_z, 3 * sigma_z),
        circumference=machine.circumference,
        h_bunch=machine.h_bunch)

    # CREATE WAKES
    # ============
    wake_table1 = WakeTable(
        wakefile,
        [
            'time',
            'dipole_x',
            'dipole_y',
            # 'quadrupole_x', 'quadrupole_y',
            'noquadrupole_x',
            'noquadrupole_y',
            # 'dipole_xy', 'dipole_yx',
            'nodipole_xy',
            'nodipole_yx',
        ])
    wake_field = WakeField(slicer_for_wakefields,
                           wake_table1,
                           mpi='linear_mpi_full_ring_fft')

    # CREATE DAMPER
    # =============
    from PyHEADTAIL_feedback.feedback import OneboxFeedback
    from PyHEADTAIL_feedback.processors.multiplication import ChargeWeighter
    from PyHEADTAIL_feedback.processors.register import TurnFIRFilter
    from PyHEADTAIL_feedback.processors.convolution import Lowpass, FIRFilter
    from PyHEADTAIL_feedback.processors.resampling import DAC, HarmonicADC, BackToOriginalBins, Upsampler
    from MD4063_filter_functions import calculate_coefficients_3_tap, calculate_hilbert_notch_coefficients
    #    from PyHEADTAIL_feedback.processors.addition import NoiseGenerator

    dampingtime = 20.
    gain = 2. / dampingtime

    lowpass100kHz = [
        1703, 1169, 1550, 1998, 2517, 3108, 3773, 4513, 5328, 6217, 7174, 8198,
        9282, 10417, 11598, 12813, 14052, 15304, 16555, 17793, 19005, 20176,
        21294, 22345, 23315, 24193, 24969, 25631, 26171, 26583, 26860, 27000,
        27000, 26860, 26583, 26171, 25631, 24969, 24193, 23315, 22345, 21294,
        20176, 19005, 17793, 16555, 15304, 14052, 12813, 11598, 10417, 9282,
        8198, 7174, 6217, 5328, 4513, 3773, 3108, 2517, 1998, 1550, 1169, 1703
    ]

    lowpassEnhanced = [
        490, 177, -478, -820, -370, 573, 1065, 428, -909, -1632, -799, 1015,
        2015, 901, -1592, -3053, -1675, 1642, 3670, 1841, -2828, -6010, -3929,
        2459, 7233, 4322, -6384, -17305, -18296, -5077, 16097, 32000, 32000,
        16097, -5077, -18296, -17305, -6384, 4322, 7233, 2459, -3929, -6010,
        -2828, 1841, 3670, 1642, -1675, -3053, -1592, 901, 2015, 1015, -799,
        -1632, -909, 428, 1065, 573, -370, -820, -478, 177, 490
    ]

    lowpass20MHz = [
        38, 118, 182, 112, -133, -389, -385, -45, 318, 257, -259, -665, -361,
        473, 877, 180, -996, -1187, 162, 1670, 1329, -954, -2648, -1219, 2427,
        4007, 419, -5623, -6590, 2893, 19575, 32700, 32700, 19575, 2893, -6590,
        -5623, 419, 4007, 2427, -1219, -2648, -954, 1329, 1670, 162, -1187,
        -996, 180, 877, 473, -361, -665, -259, 257, 318, -45, -385, -389, -133,
        112, 182, 118, 38
    ]

    phaseEqualizer = [
        2, 4, 7, 10, 12, 16, 19, 22, 27, 31, 36, 42, 49, 57, 67, 77, 90, 104,
        121, 141, 164, 191, 223, 261, 305, 358, 422, 498, 589, 700, 836, 1004,
        1215, 1483, 1832, 2301, 2956, 3944, 5600, 9184, 25000, -16746, -4256,
        -2056, -1195, -769, -523, -372, -271, -202, -153, -118, -91, -71, -56,
        -44, -34, -27, -20, -15, -11, -7, -4, -1
    ]

    FIR_phase_filter = np.loadtxt(
        './injection_error_input_data/FIR_Phase_40MSPS.csv')
    FIR_phase_filter = np.array(phaseEqualizer)
    FIR_phase_filter = FIR_phase_filter / float(np.sum(FIR_phase_filter))

    FIR_gain_filter = np.array(lowpass20MHz)
    FIR_gain_filter = FIR_gain_filter / float(np.sum(lowpass20MHz))

    # Cut-off frequency of the kicker system
    fc = 1.0e6
    ADC_bits = 16
    ADC_range = (-1e-3, 1e-3)

    # signal processing delay in turns before the first measurements is applied
    delay = 1
    extra_adc_bins = 10
    # betatron phase advance between the pickup and the kicker. The value 0.25
    # corresponds to the 90 deg phase change from from the pickup measurements
    # in x-plane to correction kicks in xp-plane.

    additional_phase = 0.25  # Kicker-to-pickup phase advance 0 deg
    #    additional_phase = 0. # Kicker-to-pickup phase advance 90 deg

    f_RF = 1. / (machine.circumference / c / (float(machine.h_RF)))
    #    turn_phase_filter_x = calculate_hilbert_notch_coefficients(machine.Q_x, delay, additional_phase)
    #    turn_phase_filter_y = calculate_hilbert_notch_coefficients(machine.Q_y, delay, additional_phase)

    turn_phase_filter_x = calculate_coefficients_3_tap(machine.Q_x, delay,
                                                       additional_phase)
    turn_phase_filter_y = calculate_coefficients_3_tap(machine.Q_y, delay,
                                                       additional_phase)

    print('f_RF: ' + str(f_RF))

    processors_detailed_x = [
        Bypass(),
        ChargeWeighter(normalization='segment_average'),
        #         NoiseGenerator(RMS_noise_level, debug=False),
        HarmonicADC(1 * f_RF / 10.,
                    ADC_bits,
                    ADC_range,
                    n_extras=extra_adc_bins),
        TurnFIRFilter(turn_phase_filter_x, machine.Q_x, delay=delay),
        FIRFilter(FIR_phase_filter, zero_tap=40),
        Upsampler(3, [1.5, 1.5, 0]),
        FIRFilter(FIR_gain_filter, zero_tap=34),
        DAC(ADC_bits, ADC_range),
        Lowpass(fc, f_cutoff_2nd=10 * fc),
        BackToOriginalBins(),
    ]

    processors_detailed_y = [
        Bypass(),
        ChargeWeighter(normalization='segment_average'),
        #         NoiseGenerator(RMS_noise_level, debug=False),
        HarmonicADC(1 * f_RF / 10.,
                    ADC_bits,
                    ADC_range,
                    n_extras=extra_adc_bins),
        TurnFIRFilter(turn_phase_filter_y, machine.Q_y, delay=delay),
        FIRFilter(FIR_phase_filter, zero_tap=40),
        Upsampler(3, [1.5, 1.5, 0]),
        FIRFilter(FIR_gain_filter, zero_tap=34),
        DAC(ADC_bits, ADC_range),
        Lowpass(fc, f_cutoff_2nd=10 * fc),
        BackToOriginalBins(),
    ]

    # Kicker-to-pickup phase advance 0 deg
    damper = OneboxFeedback(gain,
                            slicer_for_wakefields,
                            processors_detailed_x,
                            processors_detailed_y,
                            pickup_axis='displacement',
                            kicker_axis='divergence',
                            mpi=True,
                            beta_x=machine.beta_x,
                            beta_y=machine.beta_y)

    #    # Kicker-to-pickup phase advance 90 deg
    #    damper = OneboxFeedback(gain,slicer_for_wakefields,
    #                                  processors_detailed_x,processors_detailed_y, mpi=True,
    #                            pickup_axis='displacement', kicker_axis='displacement')

    # CREATE MONITORS
    # ===============

    try:
        bucket = machine.longitudinal_map.get_bucket(bunch)
    except AttributeError:
        bucket = machine.rfbucket

    simulation_parameters_dict = {
        'gamma': machine.gamma,
        'intensity': intensity,
        'Qx': machine.Q_x,
        'Qy': machine.Q_y,
        'Qs': bucket.Q_s,
        'beta_x': bunch.beta_Twiss_x(),
        'beta_y': bunch.beta_Twiss_y(),
        'beta_z': bucket.beta_z,
        'epsn_x': bunch.epsn_x(),
        'epsn_y': bunch.epsn_y(),
        'sigma_z': bunch.sigma_z(),
    }
    bunchmonitor = BunchMonitor(
        outputpath + '/bunchmonitor_{:04d}_chroma={:g}'.format(it, chroma),
        n_turns,
        simulation_parameters_dict,
        write_buffer_to_file_every=512,
        buffer_size=4096,
        mpi=True,
        filling_scheme=filling_scheme)
    #    slicemonitor = SliceMonitor(
    #        outputpath+'/slicemonitor_{:04d}_chroma={:g}_bunch_{:04d}'.format(it, chroma, bunch.bucket_id[0]),
    #        n_turns_slicemon,
    #        slicer_for_slicemonitor, simulation_parameters_dict,
    #        write_buffer_to_file_every=1, buffer_size=n_turns_slicemon)

    # TRACKING LOOP
    # =============
    machine.one_turn_map.append(damper)
    machine.one_turn_map.append(wake_field)

    # for slice statistics monitoring:
    s_cnt = 0
    monitorswitch = False

    print('\n--> Begin tracking...\n')

    # GO!!!
    for i in range(n_turns):

        t0 = time.clock()

        # track the beam around the machine for one turn:
        machine.track(beam)

        bunch_list = beam.split_to_views()
        bunch = bunch_list[0]

        ex, ey, ez = bunch.epsn_x(), bunch.epsn_y(), bunch.epsn_z()
        mx, my, mz = bunch.mean_x(), bunch.mean_y(), bunch.mean_z()

        # monitor the bunch statistics (once per turn):
        bunchmonitor.dump(beam)

        # if the centroid becomes unstable (>1cm motion)
        # then monitor the slice statistics:
        if not monitorswitch:
            if mx > 1e-2 or my > 1e-2 or i > n_turns - n_turns_slicemon:
                print("--> Activate slice monitor")
                monitorswitch = True
        else:
            if s_cnt < n_turns_slicemon:
                #                slicemonitor.dump(bunch)
                s_cnt += 1

        # stop the tracking as soon as we have not-a-number values:
        if not all(np.isfinite(c) for c in [ex, ey, ez, mx, my, mz]):
            print('*** STOPPING SIMULATION: non-finite bunch stats!')
            break

        # print status all 1000 turns:
        if i % 100 == 0:
            t1 = time.clock()
            print('Emittances: ({:.3g}, {:.3g}, {:.3g}) '
                  '& Centroids: ({:.3g}, {:.3g}, {:.3g})'
                  '@ turn {:d}, {:g} ms, {:s}'.format(
                      ex, ey, ez, mx, my, mz, i, (t1 - t0) * 1e3,
                      time.strftime("%d/%m/%Y %H:%M:%S", time.localtime())))

    print('\n*** Successfully completed!')
# multiply with a factor 2

#ww1.wake_table['dipole_y'] = 2*ww1.wake_table['dipole_y'] # for the analytical step wake

ww2.wake_table['dipole_y'] = 1.034*ww2.wake_table['dipole_y'] # for the analytical step wake
ww2.wake_table['dipole_x'] = 1.034*ww2.wake_table['dipole_x'] # for the analytical step wake
ww2.wake_table['quadrupole_y'] = 1.034*ww2.wake_table['quadrupole_y'] # for the analytical step wake
ww2.wake_table['quadrupole_x'] = 1.034*ww2.wake_table['quadrupole_x'] # for the analytical step wake




#wake_field_kicker = WakeField(slicer_for_wakefields, ww1)#, beta_x=beta_x, beta_y=beta_y)
#wake_field_1 = WakeField(slicer_for_wakefields, ww1)#, beta_x=beta_x, beta_y=beta_y)
wake_field_2 = WakeField(slicer_for_wakefields, ww2)#, beta_x=beta_x, beta_y=beta_y)
wake_field_3 = WakeField(slicer_for_wakefields, ww3)#, beta_x=beta_x, beta_y=beta_y)


# CREATE TRANSVERSE AND LONGITUDINAL MAPS
# =======================================
scale_factor = 2*bunch.p0  # scale the detuning coefficients in pyheadtail units
transverse_map = TransverseMap(s, alpha_x, beta_x, D_x, alpha_y, beta_y, D_y, Q_x, Q_y,
    [Chromaticity(Qp_x, Qp_y),
    AmplitudeDetuning(app_x*scale_factor, app_y*scale_factor, app_xy*scale_factor)])

longitudinal_map = LinearMap([alpha], circumference, Q_s)



# ======================================================================
# 1) Load the SPS imepdance model
n_turns_wake = 1 # for the moment we consider that the wakefield decays after 1 turn
wakefile1 = ('/afs/cern.ch/work/n/natriant/private/pyheadtail_example_crabcavity/wakefields/SPS_complete_wake_model_2018_Q26.txt')
ww1 = WakeTable(wakefile1, ['time', 'dipole_x', 'dipole_y', 'quadrupole_x', 'quadrupole_y'], n_turns_wake=n_turns_wake)

# only dipolar kick- uncomment the following 3 lines
#my_length = len(ww1.wake_table['quadrupole_x'])
#ww1.wake_table['quadrupole_x'] = np.zeros(my_length)
#ww1.wake_table['quadrupole_y'] = np.zeros(my_length)

# only quadrupolar kick, uncomment the following 3 lines
#my_length = len(ww1.wake_table['dipole_x'])
#ww1.wake_table['dipole_x'] = np.zeros(my_length)
#ww1.wake_table['dipole_y'] = np.zeros(my_length)

wake_field_complete_sps = WakeField(slicer_for_wakefields, ww1)#, beta_x=beta_x, beta_y=beta_y)

# 2) Definition of wakefield of a circular resonator
reson_circ = CircularResonator(R_shunt=2.2e6, frequency=1.92e9, Q=59000) # assuming here that Q is the quality factor in 1e4
wake_field_reson_circ = WakeField(slicer_for_wakefields, reson_circ)



# CREATE TRANSVERSE AND LONGITUDINAL MAPS
# =======================================
scale_factor = 2*bunch.p0  # scale the detuning coefficients in pyheadtail units
transverse_map = TransverseMap(s, alpha_x, beta_x, D_x, alpha_y, beta_y, D_y, Q_x, Q_y,
    [Chromaticity(Qp_x, Qp_y),
    AmplitudeDetuning(app_x*scale_factor, app_y*scale_factor, app_xy*scale_factor)])

longitudinal_map = LinearMap([alpha], circumference, Q_s)