Пример #1
0
def write_points(e, n, t, d, dat_port, dat_star, data_R, pix_m, res,
                 cs2cs_args, sonpath, p, c, dx):

    #trans =  pyproj.Proj(init=cs2cs_args)

    merge = np.vstack((dat_port, dat_star))

    merge[np.isnan(merge)] = 0
    merge = merge[:, :len(n)]

    ## actual along-track resolution is this: dx times dy = Af
    tmp = data_R * dx * (c * 0.007 / 2
                         )  #dx = np.arcsin(c/(1000*meta['t']*meta['f']))
    res_grid = np.vstack((tmp, tmp))
    del tmp

    res_grid = res_grid[:np.shape(merge)[0], :np.shape(merge)[1]]

    merge = merge - 10 * np.log10(res_grid)

    merge[np.isnan(merge)] = 0
    merge[merge < 0] = 0

    R = np.vstack((np.flipud(data_R), data_R))
    R = R[:np.shape(merge)[0], :np.shape(merge)[1]]

    # get number pixels in scan line
    extent = int(np.shape(merge)[0] / 2)

    yvec = np.squeeze(
        np.linspace(np.squeeze(pix_m), extent * np.squeeze(pix_m), extent))

    X, Y, D, h, t = getXY(e, n, yvec, np.squeeze(d), t, extent)

    D[np.isnan(D)] = 0
    h[np.isnan(h)] = 0
    t[np.isnan(t)] = 0

    X = X[np.where(np.logical_not(np.isnan(Y)))]
    merge = merge.flatten()[np.where(np.logical_not(np.isnan(Y)))]
    res_grid = res_grid.flatten()[np.where(np.logical_not(np.isnan(Y)))]
    Y = Y[np.where(np.logical_not(np.isnan(Y)))]
    D = D[np.where(np.logical_not(np.isnan(Y)))]
    R = R.flatten()[np.where(np.logical_not(np.isnan(Y)))]
    h = h[np.where(np.logical_not(np.isnan(Y)))]
    t = t[np.where(np.logical_not(np.isnan(Y)))]

    Y = Y[np.where(np.logical_not(np.isnan(X)))]
    merge = merge.flatten()[np.where(np.logical_not(np.isnan(X)))]
    res_grid = res_grid.flatten()[np.where(np.logical_not(np.isnan(X)))]
    X = X[np.where(np.logical_not(np.isnan(X)))]
    D = D[np.where(np.logical_not(np.isnan(X)))]
    R = R.flatten()[np.where(np.logical_not(np.isnan(X)))]
    h = h[np.where(np.logical_not(np.isnan(X)))]
    t = t[np.where(np.logical_not(np.isnan(X)))]

    X = X[np.where(np.logical_not(np.isnan(merge)))]
    Y = Y[np.where(np.logical_not(np.isnan(merge)))]
    merge = merge[np.where(np.logical_not(np.isnan(merge)))]
    res_grid = res_grid.flatten()[np.where(np.logical_not(np.isnan(merge)))]
    D = D[np.where(np.logical_not(np.isnan(merge)))]
    R = R[np.where(np.logical_not(np.isnan(merge)))]
    h = h[np.where(np.logical_not(np.isnan(merge)))]
    t = t[np.where(np.logical_not(np.isnan(merge)))]

    X = X[np.where(np.logical_not(np.isinf(merge)))]
    Y = Y[np.where(np.logical_not(np.isinf(merge)))]
    merge = merge[np.where(np.logical_not(np.isinf(merge)))]
    res_grid = res_grid.flatten()[np.where(np.logical_not(np.isinf(merge)))]
    D = D[np.where(np.logical_not(np.isinf(merge)))]
    R = R[np.where(np.logical_not(np.isinf(merge)))]
    h = h[np.where(np.logical_not(np.isinf(merge)))]
    t = t[np.where(np.logical_not(np.isinf(merge)))]

    ## write raw bs to file
    outfile = os.path.normpath(
        os.path.join(sonpath, 'x_y_ss_raw' + str(p) + '.asc'))
    write.txtwrite(
        outfile,
        np.hstack(
            (humutils.ascol(X.flatten()), humutils.ascol(Y.flatten()),
             humutils.ascol(merge.flatten()), humutils.ascol(D.flatten()),
             humutils.ascol(R.flatten()), humutils.ascol(h.flatten()),
             humutils.ascol(t.flatten()))))

    del D, R, h, t, X, Y, merge, res_grid
Пример #2
0
    X = X[np.where(np.logical_not(np.isnan(merge)))]
    Y = Y[np.where(np.logical_not(np.isnan(merge)))]
    merge = merge[np.where(np.logical_not(np.isnan(merge)))]

    # plot to check
    #plt.scatter(X[::20],Y[::20],10,merge[::20], linewidth=0)

    print "writing point cloud"
    ## write raw bs to file
    outfile = os.path.normpath(
        os.path.join(sonpath, 'x_y_slicsegmentnumber.asc'))

    np.savetxt(outfile,
               np.hstack(
                   (humutils.ascol(X.flatten()), humutils.ascol(Y.flatten()),
                    humutils.ascol(merge.flatten()))),
               fmt="%8.6f %8.6f %8.6f")

    trans = pyproj.Proj(init="epsg:26949")
    humlon, humlat = trans(X, Y, inverse=True)
    res = 0.25

    orig_def, targ_def, grid_x, grid_y, res, shape = get_griddefs(
        np.min(X), np.max(X), np.min(Y), np.max(Y), res, humlon, humlat, trans)

    grid_x = grid_x.astype('float32')
    grid_y = grid_y.astype('float32')

    sigmas = 1  #m
    eps = 2
Пример #3
0
def write_points(e, n, t, d, dat_port, dat_star, data_R, pix_m, res, cs2cs_args, sonpath, p, c, dx):
 
   #trans =  pyproj.Proj(init=cs2cs_args)   

   merge = np.vstack((dat_port,dat_star))
   
   merge[np.isnan(merge)] = 0
   merge = merge[:,:len(n)]

   ## actual along-track resolution is this: dx times dy = Af
   tmp = data_R * dx * (c*0.007 / 2) #dx = np.arcsin(c/(1000*meta['t']*meta['f']))
   res_grid = np.vstack((tmp, tmp))
   del tmp 

   res_grid = res_grid[:np.shape(merge)[0],:np.shape(merge)[1]]

   merge = merge - 10*np.log10(res_grid)

   merge[np.isnan(merge)] = 0
   merge[merge<0] = 0

   R = np.vstack((np.flipud(data_R),data_R))
   R = R[:np.shape(merge)[0],:np.shape(merge)[1]]
  
   # get number pixels in scan line
   extent = int(np.shape(merge)[0]/2)

   yvec = np.squeeze(np.linspace(np.squeeze(pix_m),extent*np.squeeze(pix_m),extent))

   X, Y, D, h, t  = getXY(e,n,yvec,np.squeeze(d),t,extent)
   
   D[np.isnan(D)] = 0
   h[np.isnan(h)] = 0
   t[np.isnan(t)] = 0
       
   X = X[np.where(np.logical_not(np.isnan(Y)))]
   merge = merge.flatten()[np.where(np.logical_not(np.isnan(Y)))]
   res_grid = res_grid.flatten()[np.where(np.logical_not(np.isnan(Y)))]
   Y = Y[np.where(np.logical_not(np.isnan(Y)))]
   D = D[np.where(np.logical_not(np.isnan(Y)))]
   R = R.flatten()[np.where(np.logical_not(np.isnan(Y)))]
   h = h[np.where(np.logical_not(np.isnan(Y)))]
   t = t[np.where(np.logical_not(np.isnan(Y)))]   
         
   Y = Y[np.where(np.logical_not(np.isnan(X)))]
   merge = merge.flatten()[np.where(np.logical_not(np.isnan(X)))]
   res_grid = res_grid.flatten()[np.where(np.logical_not(np.isnan(X)))]
   X = X[np.where(np.logical_not(np.isnan(X)))]
   D = D[np.where(np.logical_not(np.isnan(X)))]
   R = R.flatten()[np.where(np.logical_not(np.isnan(X)))]
   h = h[np.where(np.logical_not(np.isnan(X)))]
   t = t[np.where(np.logical_not(np.isnan(X)))]   
         
   X = X[np.where(np.logical_not(np.isnan(merge)))]
   Y = Y[np.where(np.logical_not(np.isnan(merge)))]
   merge = merge[np.where(np.logical_not(np.isnan(merge)))]
   res_grid = res_grid.flatten()[np.where(np.logical_not(np.isnan(merge)))]
   D = D[np.where(np.logical_not(np.isnan(merge)))]
   R = R[np.where(np.logical_not(np.isnan(merge)))]
   h = h[np.where(np.logical_not(np.isnan(merge)))]
   t = t[np.where(np.logical_not(np.isnan(merge)))]   

   X = X[np.where(np.logical_not(np.isinf(merge)))]
   Y = Y[np.where(np.logical_not(np.isinf(merge)))]
   merge = merge[np.where(np.logical_not(np.isinf(merge)))]
   res_grid = res_grid.flatten()[np.where(np.logical_not(np.isinf(merge)))]
   D = D[np.where(np.logical_not(np.isinf(merge)))]
   R = R[np.where(np.logical_not(np.isinf(merge)))]
   h = h[np.where(np.logical_not(np.isinf(merge)))]
   t = t[np.where(np.logical_not(np.isinf(merge)))] 
         
   ## write raw bs to file
   outfile = os.path.normpath(os.path.join(sonpath,'x_y_ss_raw'+str(p)+'.asc'))
   write.txtwrite( outfile, np.hstack((humutils.ascol(X.flatten()),humutils.ascol(Y.flatten()), humutils.ascol(merge.flatten()), humutils.ascol(D.flatten()), humutils.ascol(R.flatten()), humutils.ascol(h.flatten()), humutils.ascol(t.flatten())  )) )
      
   del D, R, h, t, X, Y, merge, res_grid
Пример #4
0
def make_map(e, n, t, d, dat_port, dat_star, data_R, pix_m, res, cs2cs_args, sonpath, p, mode, nn, numstdevs, c, dx, use_uncorrected, scalemax): #dogrid, influence,dowrite,

   thres=5

   trans =  pyproj.Proj(init=cs2cs_args)

   mp = np.nanmean(dat_port)
   ms = np.nanmean(dat_star)
   if mp>ms:
      merge = np.vstack((dat_port,dat_star*(mp/ms)))      
   else:
      merge = np.vstack((dat_port*(ms/mp),dat_star))
   del dat_port, dat_star

   merge[np.isnan(merge)] = 0
   merge = merge[:,:len(n)]

   ## actual along-track resolution is this: dx times dy = Af
   tmp = data_R * dx * (c*0.007 / 2) #dx = np.arcsin(c/(1000*meta['t']*meta['f']))
   res_grid = np.sqrt(np.vstack((tmp, tmp)))
   del tmp
   res_grid = res_grid[:np.shape(merge)[0],:np.shape(merge)[1]]
   
   #if use_uncorrected != 1:
   #   merge = merge - 10*np.log10(res_grid)
   
   res_grid = res_grid.astype('float32')

   merge[np.isnan(merge)] = 0
   merge[merge<0] = 0

   merge = merge.astype('float32')

   merge = denoise_tv_chambolle(merge.copy(), weight=.2, multichannel=False).astype('float32')

   R = np.vstack((np.flipud(data_R),data_R))
   del data_R
   R = R[:np.shape(merge)[0],:np.shape(merge)[1]]

   # get number pixels in scan line
   extent = int(np.shape(merge)[0]/2)

   yvec = np.squeeze(np.linspace(np.squeeze(pix_m),extent*np.squeeze(pix_m),extent))

   X, Y, D, h, t  = getXY(e,n,yvec,np.squeeze(d),t,extent)

   X = X.astype('float32')
   Y = Y.astype('float32')
   D = D.astype('float32')
   h = h.astype('float32')
   t = t.astype('float32')
   X = X.astype('float32')

   D[np.isnan(D)] = 0
   h[np.isnan(h)] = 0
   t[np.isnan(t)] = 0

   X = X[np.where(np.logical_not(np.isnan(Y)))]
   merge = merge.flatten()[np.where(np.logical_not(np.isnan(Y)))]
   res_grid = res_grid.flatten()[np.where(np.logical_not(np.isnan(Y)))]
   Y = Y[np.where(np.logical_not(np.isnan(Y)))]
   D = D[np.where(np.logical_not(np.isnan(Y)))]
   R = R.flatten()[np.where(np.logical_not(np.isnan(Y)))]
   h = h[np.where(np.logical_not(np.isnan(Y)))]
   t = t[np.where(np.logical_not(np.isnan(Y)))]

   Y = Y[np.where(np.logical_not(np.isnan(X)))]
   merge = merge.flatten()[np.where(np.logical_not(np.isnan(X)))]
   res_grid = res_grid.flatten()[np.where(np.logical_not(np.isnan(X)))]
   X = X[np.where(np.logical_not(np.isnan(X)))]
   D = D[np.where(np.logical_not(np.isnan(X)))]
   R = R.flatten()[np.where(np.logical_not(np.isnan(X)))]
   h = h[np.where(np.logical_not(np.isnan(X)))]
   t = t[np.where(np.logical_not(np.isnan(X)))]

   X = X[np.where(np.logical_not(np.isnan(merge)))]
   Y = Y[np.where(np.logical_not(np.isnan(merge)))]
   merge = merge[np.where(np.logical_not(np.isnan(merge)))]
   res_grid = res_grid.flatten()[np.where(np.logical_not(np.isnan(merge)))]
   D = D[np.where(np.logical_not(np.isnan(merge)))]
   R = R[np.where(np.logical_not(np.isnan(merge)))]
   h = h[np.where(np.logical_not(np.isnan(merge)))]
   t = t[np.where(np.logical_not(np.isnan(merge)))]

   X = X[np.where(np.logical_not(np.isinf(merge)))]
   Y = Y[np.where(np.logical_not(np.isinf(merge)))]
   merge = merge[np.where(np.logical_not(np.isinf(merge)))]
   res_grid = res_grid.flatten()[np.where(np.logical_not(np.isinf(merge)))]
   D = D[np.where(np.logical_not(np.isinf(merge)))]
   R = R[np.where(np.logical_not(np.isinf(merge)))]
   h = h[np.where(np.logical_not(np.isinf(merge)))]
   t = t[np.where(np.logical_not(np.isinf(merge)))]



   print("writing point cloud")
   #if dowrite==1:
   ## write raw bs to file
   outfile = os.path.normpath(os.path.join(sonpath,'x_y_ss_raw'+str(p)+'.asc'))
   ##write.txtwrite( outfile, np.hstack((humutils.ascol(X.flatten()),humutils.ascol(Y.flatten()), humutils.ascol(merge.flatten()), humutils.ascol(D.flatten()), humutils.ascol(R.flatten()), humutils.ascol(h.flatten()), humutils.ascol(t.flatten())  )) )
   np.savetxt(outfile, np.hstack((humutils.ascol(X.flatten()),humutils.ascol(Y.flatten()), humutils.ascol(merge.flatten()), humutils.ascol(D.flatten()), humutils.ascol(R.flatten()), humutils.ascol(h.flatten()), humutils.ascol(t.flatten())  )) , fmt="%8.6f %8.6f %8.6f %8.6f %8.6f %8.6f %8.6f") 

   del D, R, h, t

   sigmas = 0.1 #m
   eps = 2

   print("gridding ...")
   #if dogrid==1:
   if 2>1:

      if res==99:
         resg = np.min(res_grid[res_grid>0])/2
         print('Gridding at resolution of %s' % str(resg))
      else:
         resg = res

      tree = KDTree(np.c_[X.flatten(),Y.flatten()])
      complete=0
      while complete==0:
         try:
            grid_x, grid_y, res = getmesh(np.min(X), np.max(X), np.min(Y), np.max(Y), resg)
            longrid, latgrid = trans(grid_x, grid_y, inverse=True)
            longrid = longrid.astype('float32')
            latgrid = latgrid.astype('float32')
            shape = np.shape(grid_x)

            ## create mask for where the data is not
            if pykdtree==1:
               dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1)
            else:
               try:
                  dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1, n_jobs=cpu_count())
               except:
                  #print ".... update your scipy installation to use faster kd-tree queries"
                  dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1)

            dist = dist.reshape(grid_x.shape)

            targ_def = pyresample.geometry.SwathDefinition(lons=longrid.flatten(), lats=latgrid.flatten())
            del longrid, latgrid

            humlon, humlat = trans(X, Y, inverse=True)
            orig_def = pyresample.geometry.SwathDefinition(lons=humlon.flatten(), lats=humlat.flatten())
            del humlon, humlat
            if 'orig_def' in locals():
               complete=1
         except:
            print("memory error: trying grid resolution of %s" % (str(resg*2)))
            resg = resg*2

      if mode==1:

         complete=0
         while complete==0:
            try:
               try:
                  dat = pyresample.kd_tree.resample_nearest(orig_def, merge.flatten(), targ_def, radius_of_influence=res*20, fill_value=None, nprocs = cpu_count(), reduce_data=1)
               except:
                  dat = pyresample.kd_tree.resample_nearest(orig_def, merge.flatten(), targ_def, radius_of_influence=res*20, fill_value=None, nprocs = 1, reduce_data=1)

               try:
                  r_dat = pyresample.kd_tree.resample_nearest(orig_def, res_grid.flatten(), targ_def, radius_of_influence=res*20, fill_value=None, nprocs = cpu_count(), reduce_data=1)
               except:
                  r_dat = pyresample.kd_tree.resample_nearest(orig_def, res_grid.flatten(), targ_def, radius_of_influence=res*20, fill_value=None, nprocs = 1, reduce_data=1)

               stdev = None
               counts = None
               if 'dat' in locals():
                  complete=1
            except:
               del grid_x, grid_y, targ_def, orig_def

               wf = None
               humlon, humlat = trans(X, Y, inverse=True)
               dat, stdev, counts, resg, complete, shape = getgrid_lm(humlon, humlat, merge, res*10, min(X), max(X), min(Y), max(Y), resg*2, mode, trans, nn, wf, sigmas, eps)
               r_dat, stdev, counts, resg, complete, shape = getgrid_lm(humlon, humlat, res_grid, res*10, min(X), max(X), min(Y), max(Y), resg*2, mode, trans, nn, wf, sigmas, eps)
               del humlon, humlat

      elif mode==2:

         # custom inverse distance
         wf = lambda r: 1/r**2

         complete=0
         while complete==0:
            try:
               try:
                  dat, stdev, counts = pyresample.kd_tree.resample_custom(orig_def, merge.flatten(),targ_def, radius_of_influence=res*20, neighbours=nn, weight_funcs=wf, fill_value=None, with_uncert = True, nprocs = cpu_count(), reduce_data=1)
               except:
                  dat, stdev, counts = pyresample.kd_tree.resample_custom(orig_def, merge.flatten(),targ_def, radius_of_influence=res*20, neighbours=nn, weight_funcs=wf, fill_value=None, with_uncert = True, nprocs = 1, reduce_data=1)

               try:
                  r_dat = pyresample.kd_tree.resample_custom(orig_def, res_grid.flatten(), targ_def, radius_of_influence=res*20, neighbours=nn, weight_funcs=wf, fill_value=None, with_uncert = False, nprocs = cpu_count(), reduce_data=1)
               except:
                  r_dat = pyresample.kd_tree.resample_custom(orig_def, res_grid.flatten(), targ_def, radius_of_influence=res*20, neighbours=nn, weight_funcs=wf, fill_value=None, with_uncert = False, nprocs = 1, reduce_data=1)

               if 'dat' in locals():
                  complete=1
            except:
               del grid_x, grid_y, targ_def, orig_def
               humlon, humlat = trans(X, Y, inverse=True)
               dat, stdev, counts, resg, complete, shape = getgrid_lm(humlon, humlat, merge, res*2, min(X), max(X), min(Y), max(Y), resg*2, mode, trans, nn, wf, sigmas, eps)
               r_dat, stdev, counts, resg, complete, shape = getgrid_lm(humlon, humlat, res_grid, res*2, min(X), max(X), min(Y), max(Y), resg*2, mode, trans, nn, wf, sigmas, eps)
               del humlat, humlon
               del stdev_null, counts_null

      elif mode==3:
         wf = None

         complete=0
         while complete==0:
            try:
               try:
                  dat, stdev, counts = pyresample.kd_tree.resample_gauss(orig_def, merge.flatten(), targ_def, radius_of_influence=res*20, neighbours=nn, sigmas=sigmas, fill_value=None, with_uncert = True, nprocs = cpu_count(), epsilon = eps, reduce_data=1)
               except:
                  dat, stdev, counts = pyresample.kd_tree.resample_gauss(orig_def, merge.flatten(), targ_def, radius_of_influence=res*20, neighbours=nn, sigmas=sigmas, fill_value=None, with_uncert = True, nprocs = 1, epsilon = eps, reduce_data=1)

               try:
                  r_dat = pyresample.kd_tree.resample_gauss(orig_def, res_grid.flatten(), targ_def, radius_of_influence=res*20, neighbours=nn, sigmas=sigmas, fill_value=None, with_uncert = False, nprocs = cpu_count(), epsilon = eps, reduce_data=1)
               except:
                  r_dat = pyresample.kd_tree.resample_gauss(orig_def, res_grid.flatten(), targ_def, radius_of_influence=res*20, neighbours=nn, sigmas=sigmas, fill_value=None, with_uncert = False, nprocs = 1, epsilon = eps, reduce_data=1)

               if 'dat' in locals():
                  complete=1
            except:
               del grid_x, grid_y, targ_def, orig_def
               humlon, humlat = trans(X, Y, inverse=True)
               dat, stdev, counts, resg, complete, shape = getgrid_lm(humlon, humlat, merge, res*10, min(X), max(X), min(Y), max(Y), resg*2, mode, trans, nn, wf, sigmas, eps)
               r_dat, stdev_null, counts_null, resg, complete, shape = getgrid_lm(humlon, humlat, res_grid, res*10, min(X), max(X), min(Y), max(Y), resg*2, mode, trans, nn, wf, sigmas, eps)
               del humlat, humlon
               del stdev_null, counts_null

      humlon, humlat = trans(X, Y, inverse=True)
      del X, Y, res_grid, merge

      dat = dat.reshape(shape)

      dat[dist>res*30] = np.nan
      del dist

      r_dat = r_dat.reshape(shape)
      r_dat[r_dat<1] = 1
      r_dat[r_dat > 2*np.pi] = 1
      r_dat[np.isnan(dat)] = np.nan

      dat = dat + r_dat #np.sqrt(np.cos(np.deg2rad(r_dat))) #dat*np.sqrt(r_dat) + dat

      del r_dat

      if mode>1:
         stdev = stdev.reshape(shape)
         counts = counts.reshape(shape)

      mask = dat.mask.copy()

      dat[mask==1] = np.nan
      #dat[mask==1] = 0

      if mode>1:
         dat[(stdev>numstdevs) & (mask!=0)] = np.nan
         dat[(counts<nn) & (counts>0)] = np.nan


   #if dogrid==1:

   dat[dat==0] = np.nan
   dat[np.isinf(dat)] = np.nan

   dat[dat<thres] = np.nan

   datm = np.ma.masked_invalid(dat)

   glon, glat = trans(grid_x, grid_y, inverse=True)
   #del grid_x, grid_y

   try:
      from osgeo import gdal,ogr,osr
      proj = osr.SpatialReference()
      proj.ImportFromEPSG(int(cs2cs_args.split(':')[-1])) #26949)
      datout = np.squeeze(np.ma.filled(dat))#.astype('int16')
      datout[np.isnan(datout)] = -99
      driver = gdal.GetDriverByName('GTiff')
      #rows,cols = np.shape(datout)
      cols,rows = np.shape(datout)    
      outFile = os.path.normpath(os.path.join(sonpath,'geotiff_map'+str(p)+'.tif'))
      ds = driver.Create( outFile, rows, cols, 1, gdal.GDT_Float32, [ 'COMPRESS=LZW' ] )        
      if proj is not None:  
        ds.SetProjection(proj.ExportToWkt()) 

      xmin, ymin, xmax, ymax = [grid_x.min(), grid_y.min(), grid_x.max(), grid_y.max()]

      xres = (xmax - xmin) / float(rows)
      yres = (ymax - ymin) / float(cols)
      geotransform = (xmin, xres, 0, ymax, 0, -yres)

      ds.SetGeoTransform(geotransform)
      ss_band = ds.GetRasterBand(1)
      ss_band.WriteArray(np.flipud(datout)) #datout)
      ss_band.SetNoDataValue(-99)
      ss_band.FlushCache()
      ss_band.ComputeStatistics(False)
      del ds   
   
   except:
      print("error: geotiff could not be created... check your gdal/ogr install")


   try:

      # =========================================================
      print("creating kmz file ...")
      ## new way to create kml file
      pixels = 1024 * 10

      fig, ax = humutils.gearth_fig(llcrnrlon=glon.min(),
                     llcrnrlat=glat.min(),
                     urcrnrlon=glon.max(),
                     urcrnrlat=glat.max(),
                     pixels=pixels)
      cs = ax.pcolormesh(glon, glat, datm, vmax=scalemax, cmap='gray')
      ax.set_axis_off()
      fig.savefig(os.path.normpath(os.path.join(sonpath,'map'+str(p)+'.png')), transparent=True, format='png')
      del fig, ax

      # =========================================================
      fig = plt.figure(figsize=(1.0, 4.0), facecolor=None, frameon=False)
      ax = fig.add_axes([0.0, 0.05, 0.2, 0.9])
      cb = fig.colorbar(cs, cax=ax)
      cb.set_label('Intensity [dB W]', rotation=-90, color='k', labelpad=20)
      fig.savefig(os.path.normpath(os.path.join(sonpath,'legend'+str(p)+'.png')), transparent=False, format='png')
      del fig, ax, cs, cb

      # =========================================================
      humutils.make_kml(llcrnrlon=glon.min(), llcrnrlat=glat.min(),
         urcrnrlon=glon.max(), urcrnrlat=glat.max(),
         figs=[os.path.normpath(os.path.join(sonpath,'map'+str(p)+'.png'))],
         colorbar=os.path.normpath(os.path.join(sonpath,'legend'+str(p)+'.png')),
         kmzfile=os.path.normpath(os.path.join(sonpath,'GroundOverlay'+str(p)+'.kmz')),
         name='Sidescan Intensity')

   except:
      print("error: map could not be created...")


   #y1 = np.min(glat)-0.001
   #x1 = np.min(glon)-0.001
   #y2 = np.max(glat)+0.001
   #x2 = np.max(glon)+0.001

   print("drawing and printing map ...")
   fig = plt.figure(frameon=False)
   map = Basemap(projection='merc', epsg=cs2cs_args.split(':')[1],
    resolution = 'i', #h #f
    llcrnrlon=np.min(humlon)-0.001, llcrnrlat=np.min(glat)-0.001,
    urcrnrlon=np.max(humlon)+0.001, urcrnrlat=np.max(glat)+0.001)

   try:
      map.arcgisimage(server='http://server.arcgisonline.com/ArcGIS', service='World_Imagery', xpixels=1000, ypixels=None, dpi=300)
   except:
      map.arcgisimage(server='http://server.arcgisonline.com/ArcGIS', service='ESRI_Imagery_World_2D', xpixels=1000, ypixels=None, dpi=300)
   #finally:
   #   print "error: map could not be created..."

   #if dogrid==1:
   gx,gy = map.projtran(glon, glat)

   ax = plt.Axes(fig, [0., 0., 1., 1.], )
   ax.set_axis_off()
   fig.add_axes(ax)

   #if dogrid==1:
   if 2>1:
      if datm.size > 25000000:
         print("matrix size > 25,000,000 - decimating by factor of 5 for display")
         map.pcolormesh(gx[::5,::5], gy[::5,::5], datm[::5,::5], cmap='gray', vmin=np.nanmin(datm), vmax=scalemax) #vmax=np.nanmax(datm)
      else:
         map.pcolormesh(gx, gy, datm, cmap='gray', vmin=np.nanmin(datm), vmax=scalemax) #vmax=np.nanmax(datm)
      del datm, dat
   else:
      ## draw point cloud
      x,y = map.projtran(humlon, humlat)
      map.scatter(x.flatten(), y.flatten(), 0.5, merge.flatten(), cmap='gray', linewidth = '0')

   #map.drawmapscale(x1+0.001, y1+0.001, x1, y1, 200., units='m', barstyle='fancy', labelstyle='simple', fontcolor='k') #'#F8F8FF')
   #map.drawparallels(np.arange(y1-0.001, y2+0.001, 0.005),labels=[1,0,0,1], linewidth=0.0, rotation=30, fontsize=8)
   #map.drawmeridians(np.arange(x1, x2, 0.002),labels=[1,0,0,1], linewidth=0.0, rotation=30, fontsize=8)

   custom_save2(sonpath,'map_imagery'+str(p))
   del fig


   del humlat, humlon
   return res #return the new resolution
Пример #5
0
def make_map(e, n, t, d, dat_port, dat_star, pix_m, res, cs2cs_args, sonpath, p, dogrid):
   
   trans =  pyproj.Proj(init=cs2cs_args)   
   
   merge = np.vstack((dat_port,dat_star))
   #merge = np.vstack((np.flipud(port_fp[p]),star_fp[p]))
   
   merge[np.isnan(merge)] = 0

   merge = merge[:,:len(n)]

   # get number pixels in scan line
   extent = int(np.shape(merge)[0]/2)

   yvec = np.linspace(pix_m,extent*pix_m,extent)

   print "getting point cloud ..."
   # get the points by rotating the [x,y] vector so it lines up with boat heading, assumed to be the same as the curvature of the [e,n] trace
   X=[]; Y=[];
   for k in range(len(n)): 
      x = np.concatenate((np.tile(e[k],extent) , np.tile(e[k],extent)))
      #y = np.concatenate((n[k]+yvec, n[k]-yvec))
      rangedist = np.sqrt(np.power(yvec, 2.0) - np.power(d[k], 2.0))
      y = np.concatenate((n[k]+rangedist, n[k]-rangedist))
      # Rotate line around center point
      xx = e[k] - ((x - e[k]) * np.cos(t[k])) - ((y - n[k]) * np.sin(t[k]))
      yy = n[k] - ((x - e[k]) * np.sin(t[k])) + ((y - n[k]) * np.cos(t[k]))
      xx, yy = calc_beam_pos(d[k], t[k], xx, yy)
      X.append(xx)
      Y.append(yy) 

   del e, n, t, x, y #, X, Y

   # merge flatten and stack
   X = np.asarray(X,'float').T
   X = X.flatten()

   # merge flatten and stack
   Y = np.asarray(Y,'float').T
   Y = Y.flatten()

   X = X[np.where(np.logical_not(np.isnan(Y)))]
   merge = merge.flatten()[np.where(np.logical_not(np.isnan(Y)))]
   Y = Y[np.where(np.logical_not(np.isnan(Y)))]

   Y = Y[np.where(np.logical_not(np.isnan(X)))]
   merge = merge.flatten()[np.where(np.logical_not(np.isnan(X)))]
   X = X[np.where(np.logical_not(np.isnan(X)))]


   X = X[np.where(np.logical_not(np.isnan(merge)))]
   Y = Y[np.where(np.logical_not(np.isnan(merge)))]
   merge = merge[np.where(np.logical_not(np.isnan(merge)))]

   # write raw bs to file
   outfile = sonpath+'x_y_ss_raw'+str(p)+'.asc' 
   with open(outfile, 'w') as f:
      np.savetxt(f, np.hstack((humutils.ascol(X.flatten()),humutils.ascol(Y.flatten()), humutils.ascol(merge.flatten()))), delimiter=' ', fmt="%8.6f %8.6f %8.6f")

   humlon, humlat = trans(X, Y, inverse=True)

   if dogrid==1:
      grid_x, grid_y = np.meshgrid( np.arange(np.min(X), np.max(X), res), np.arange(np.min(Y), np.max(Y), res) )  

      dat = griddata(np.c_[X.flatten(),Y.flatten()], merge.flatten(), (grid_x, grid_y), method='nearest') 

      ## create mask for where the data is not
      tree = KDTree(np.c_[X.flatten(),Y.flatten()])
      dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1)
      dist = dist.reshape(grid_x.shape)

   del X, Y #, bearing #, pix_m, yvec

   if dogrid==1:
      ## mask
      dat[dist> np.floor(np.sqrt(1/res))-1 ] = np.nan #np.floor(np.sqrt(1/res))-1 ] = np.nan
      del dist, tree

      dat[dat==0] = np.nan
      dat[np.isinf(dat)] = np.nan
      datm = np.ma.masked_invalid(dat)

      glon, glat = trans(grid_x, grid_y, inverse=True)
      del grid_x, grid_y

   print "drawing and printing map ..."
   fig = plt.figure(frameon=False)
   map = Basemap(projection='merc', epsg=cs2cs_args.split(':')[1], #26949,
    resolution = 'i', #h #f
    llcrnrlon=np.min(humlon)-0.001, llcrnrlat=np.min(humlat)-0.001,
    urcrnrlon=np.max(humlon)+0.001, urcrnrlat=np.max(humlat)+0.001)

   if dogrid==1:
      gx,gy = map.projtran(glon, glat)

   ax = plt.Axes(fig, [0., 0., 1., 1.], )
   ax.set_axis_off()
   fig.add_axes(ax)

   if dogrid==1:
      map.pcolormesh(gx, gy, datm, cmap='gray', vmin=np.nanmin(dat), vmax=np.nanmax(dat))
      del datm, dat
   else: 
      ## draw point cloud
      x,y = map.projtran(humlon, humlat)
      map.scatter(x.flatten(), y.flatten(), 0.5, merge.flatten(), cmap='gray', linewidth = '0')

   custom_save(sonpath,'map'+str(p))
   del fig 

   kml = simplekml.Kml()
   ground = kml.newgroundoverlay(name='GroundOverlay')
   ground.icon.href = sonpath+'map'+str(p)+'.png'
   ground.latlonbox.north = np.min(humlat)-0.001
   ground.latlonbox.south = np.max(humlat)+0.001
   ground.latlonbox.east =  np.max(humlon)+0.001
   ground.latlonbox.west =  np.min(humlon)-0.001
   ground.latlonbox.rotation = 0

   kml.save(sonpath+'GroundOverlay'+str(p)+'.kml')

   del humlat, humlon
Пример #6
0
def map_texture(humfile, sonpath, cs2cs_args, res, mode, nn, numstdevs): #influence = 10, 
         
    '''
    Create plots of the texture lengthscale maps made in PyHum.texture module 
    using the algorithm detailed by Buscombe et al. (2015)
    This textural lengthscale is not a direct measure of grain size. Rather, it is a statistical 
    representation that integrates over many attributes of bed texture, of which grain size is the most important. 
    The technique is a physically based means to identify regions of texture within a sidescan echogram, 
    and could provide a basis for objective, automated riverbed sediment classification.

    Syntax
    ----------
    [] = PyHum.map_texture(humfile, sonpath, cs2cs_args, res, mode, nn, numstdevs)

    Parameters
    ----------
    humfile : str
       path to the .DAT file
    sonpath : str
       path where the *.SON files are
    cs2cs_args : int, *optional* [Default="epsg:26949"]
       arguments to create coordinates in a projected coordinate system
       this argument gets given to pyproj to turn wgs84 (lat/lon) coordinates
       into any projection supported by the proj.4 libraries
    res : float, *optional* [Default=0.5]
       grid resolution of output gridded texture map
    mode: int, *optional* [Default=3]
       gridding mode. 1 = nearest neighbour
                      2 = inverse weighted nearest neighbour
                      3 = Gaussian weighted nearest neighbour
    nn: int, *optional* [Default=64]
       number of nearest neighbours for gridding (used if mode > 1) 
    numstdevs: int, *optional* [Default = 4]
       Threshold number of standard deviations in texture lengthscale per grid cell up to which to accept 
           
    Returns
    -------
    sonpath+'x_y_class'+str(p)+'.asc' : text file
        contains the point cloud of easting, northing, and texture lengthscales
        of the pth chunk

    sonpath+'class_GroundOverlay'+str(p)+'.kml': kml file
        contains gridded (or point cloud) texture lengthscale map for importing into google earth
        of the pth chunk

    sonpath+'class_map'+str(p)+'.png' : 
        image overlay associated with the kml file

    sonpath+'class_map_imagery'+str(p)+'.png' : png image file
        gridded (or point cloud) texture lengthscale map
        overlain onto an image pulled from esri image server

    References
    ----------
      .. [1] Buscombe, D., Grams, P.E., and Smith, S.M.C., 2015, Automated riverbed sediment
       classification using low-cost sidescan sonar. Journal of Hydraulic Engineering 10.1061/(ASCE)HY.1943-7900.0001079, 06015019.
    '''

    # prompt user to supply file if no input file given
    if not humfile:
       print('An input file is required!!!!!!')
       Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
       humfile = askopenfilename(filetypes=[("DAT files","*.DAT")]) 

    # prompt user to supply directory if no input sonpath is given
    if not sonpath:
       print('A *.SON directory is required!!!!!!')
       Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
       sonpath = askdirectory() 

    # print given arguments to screen and convert data type where necessary
    if humfile:
       print('Input file is %s' % (humfile))

    if sonpath:
       print('Sonar file path is %s' % (sonpath))

    if cs2cs_args:
       print('cs2cs arguments are %s' % (cs2cs_args))

    if res:
       res = np.asarray(res,float)
       print('Gridding resolution: %s' % (str(res)))      

    if mode:
       mode = int(mode)
       print('Mode for gridding: %s' % (str(mode)))      

    if nn:
       nn = int(nn)
       print('Number of nearest neighbours for gridding: %s' % (str(nn)))            

    #if influence:
    #   influence = int(influence)
    #   print 'Radius of influence for gridding: %s (m)' % (str(influence))             

    if numstdevs:
       numstdevs = int(numstdevs)
       print('Threshold number of standard deviations in texture lengthscale per grid cell up to which to accept: %s' % (str(numstdevs)))         

    # start timer
    if os.name=='posix': # true if linux/mac or cygwin on windows
       start = time.time()
    else: # windows
       start = time.clock()
       
    trans =  pyproj.Proj(init=cs2cs_args)

    # if son path name supplied has no separator at end, put one on
    if sonpath[-1]!=os.sep:
       sonpath = sonpath + os.sep

    base = humfile.split('.DAT') # get base of file name for output
    base = base[0].split(os.sep)[-1]

    # remove underscores, negatives and spaces from basename
    base = humutils.strip_base(base)

    meta = loadmat(os.path.normpath(os.path.join(sonpath,base+'meta.mat')))

    esi = np.squeeze(meta['e'])
    nsi = np.squeeze(meta['n']) 

    pix_m = np.squeeze(meta['pix_m'])*1.1
    dep_m = np.squeeze(meta['dep_m'])
    c = np.squeeze(meta['c'])
    #dist_m = np.squeeze(meta['dist_m'])

    theta = np.squeeze(meta['heading'])/(180/np.pi)

    # load memory mapped scans
    shape_port = np.squeeze(meta['shape_port'])
    if shape_port!='':
       if os.path.isfile(os.path.normpath(os.path.join(sonpath,base+'_data_port_lar.dat'))):
          port_fp = io.get_mmap_data(sonpath, base, '_data_port_lar.dat', 'float32', tuple(shape_port))
       else:
          port_fp = io.get_mmap_data(sonpath, base, '_data_port_la.dat', 'float32', tuple(shape_port))

    shape_star = np.squeeze(meta['shape_star'])
    if shape_star!='':
       if os.path.isfile(os.path.normpath(os.path.join(sonpath,base+'_data_star_lar.dat'))):
             star_fp = io.get_mmap_data(sonpath, base, '_data_star_lar.dat', 'float32', tuple(shape_star))
       else:
          star_fp = io.get_mmap_data(sonpath, base, '_data_star_la.dat', 'float32', tuple(shape_star))

    if len(shape_star)>2:    
       shape = shape_port.copy()
       shape[1] = shape_port[1] + shape_star[1]
       class_fp = io.get_mmap_data(sonpath, base, '_data_class.dat', 'float32', tuple(shape))
       #with open(os.path.normpath(os.path.join(sonpath,base+'_data_class.dat')), 'r') as ff:
       #   class_fp = np.memmap(ff, dtype='float32', mode='r', shape=tuple(shape))
    else:
       with open(os.path.normpath(os.path.join(sonpath,base+'_data_class.dat')), 'r') as ff:
          class_fp = np.load(ff)    


    tvg = ((8.5*10**-5)+(3/76923)+((8.5*10**-5)/4))*c
    dist_tvg = ((np.tan(np.radians(25)))*dep_m)-(tvg)

    if len(shape_star)>2:    
       for p in range(len(class_fp)):

          e = esi[shape_port[-1]*p:shape_port[-1]*(p+1)]
          n = nsi[shape_port[-1]*p:shape_port[-1]*(p+1)]
          t = theta[shape_port[-1]*p:shape_port[-1]*(p+1)]
          d = dist_tvg[shape_port[-1]*p:shape_port[-1]*(p+1)]

          len_n = len(n)
   
          merge = class_fp[p].copy()

          merge[np.isnan(merge)] = 0
          merge[np.isnan(np.vstack((np.flipud(port_fp[p]),star_fp[p])))] = 0

          extent = shape_port[1]
          R1 = merge[extent:,:]
          R2 = np.flipud(merge[:extent,:])

          merge = np.vstack((R2,R1))
          del R1, R2

          # get number pixels in scan line
          extent = int(np.shape(merge)[0]/2)

          yvec = np.linspace(pix_m,extent*pix_m,extent)

          X, Y  = getXY(e,n,yvec,d,t,extent)

          merge[merge==0] = np.nan

          if len(merge.flatten()) != len(X):
             merge = merge[:,:len_n]

          merge = merge.T.flatten()

          index = np.where(np.logical_not(np.isnan(merge)))[0]

          X, Y, merge = trim_xys(X, Y, merge, index)

          X = X.astype('float32')
          Y = Y.astype('float32')
          merge = merge.astype('float32')
          
          # write raw bs to file
          outfile = os.path.normpath(os.path.join(sonpath,'x_y_class'+str(p)+'.asc'))
          with open(outfile, 'w') as f:
             np.savetxt(f, np.hstack((humutils.ascol(X),humutils.ascol(Y), humutils.ascol(merge))), delimiter=' ', fmt="%8.6f %8.6f %8.6f")

          humlon, humlat = trans(X, Y, inverse=True)

          #if dogrid==1:

          orig_def, targ_def, grid_x, grid_y, res, shape = get_griddefs(np.min(X), np.max(X), np.min(Y), np.max(Y), res, humlon, humlat, trans)

          grid_x = grid_x.astype('float32')
          grid_y = grid_y.astype('float32')
                                      
          sigmas = 1 #m
          eps = 2
          dat, res = get_grid(mode, orig_def, targ_def, merge, res*10, np.min(X), np.max(X), np.min(Y), np.max(Y), res, nn, sigmas, eps, shape, numstdevs, trans, humlon, humlat)
          
          del merge
             
          dat[dat==0] = np.nan
          dat[np.isinf(dat)] = np.nan

          datm = np.ma.masked_invalid(dat)
          del dat

          glon, glat = trans(grid_x, grid_y, inverse=True)
          del grid_x, grid_y
          
          vmin=np.nanmin(datm)+0.1
          vmax=np.nanmax(datm)-0.1
          if vmin > vmax:
             vmin=np.nanmin(datm)
             vmax=np.nanmax(datm)            
          
          print_map(cs2cs_args, glon, glat, datm, sonpath, p, vmin=vmin, vmax=vmax)

    else: #just 1 chunk   
    
       e = esi
       n = nsi
       t = theta
       d = dist_tvg

       len_n = len(n)
   
       merge = class_fp.copy()

       merge[np.isnan(merge)] = 0
       merge[np.isnan(np.vstack((np.flipud(port_fp),star_fp)))] = 0

       extent = shape_port[0]
       R1 = merge[extent:,:]
       R2 = np.flipud(merge[:extent,:])

       merge = np.vstack((R2,R1))
       del R1, R2

       # get number pixels in scan line
       extent = int(np.shape(merge)[0]/2)

       yvec = np.linspace(pix_m,extent*pix_m,extent)

       X, Y  = getXY(e,n,yvec,d,t,extent)

       merge[merge==0] = np.nan

       if len(merge.flatten()) != len(X):
          merge = merge[:,:len_n]

       merge = merge.T.flatten()

       index = np.where(np.logical_not(np.isnan(merge)))[0]

       X, Y, merge = trim_xys(X, Y, merge, index)

       # write raw bs to file
       outfile = os.path.normpath(os.path.join(sonpath,'x_y_class'+str(0)+'.asc'))
       with open(outfile, 'w') as f:
          np.savetxt(f, np.hstack((humutils.ascol(X),humutils.ascol(Y), humutils.ascol(merge))), delimiter=' ', fmt="%8.6f %8.6f %8.6f")

       humlon, humlat = trans(X, Y, inverse=True)

       #if dogrid==1:
       if 2>1:

          orig_def, targ_def, grid_x, grid_y, res, shape = get_griddefs(np.min(X), np.max(X), np.min(Y), np.max(Y), res, humlon, humlat, trans)

          ## create mask for where the data is not
          tree = KDTree(np.c_[X.flatten(),Y.flatten()])

          if pykdtree==1:
             dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1)                      
          else:
             try:
                dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1, n_jobs=cpu_count())
             except:
                #print ".... update your scipy installation to use faster kd-tree queries"
                dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1)

          dist = dist.reshape(grid_x.shape)
             
          sigmas = 1 #m
          eps = 2
          dat, res = get_grid(mode, orig_def, targ_def, merge, res*10, np.min(X), np.max(X), np.min(Y), np.max(Y), res, nn, sigmas, eps, shape, numstdevs, trans, humlon, humlat)
          
          del merge

       #if dogrid==1:
       if 2>1:
          dat[dat==0] = np.nan
          dat[np.isinf(dat)] = np.nan
          dat[dist>res*2] = np.nan
          del dist

          datm = np.ma.masked_invalid(dat)

          glon, glat = trans(grid_x, grid_y, inverse=True)
          del grid_x, grid_y

       vmin=np.nanmin(datm)+0.1
       vmax=np.nanmax(datm)-0.1
       if vmin > vmax:
         vmin=np.nanmin(datm)
         vmax=np.nanmax(datm)
       
       Parallel(n_jobs = 2, verbose=0)(delayed(doplots)(k, humlon, humlat, cs2cs_args, glon, glat, datm, sonpath, 0, vmin=vmin, vmax=vmax) for k in range(2)) 
       
       #print_map(cs2cs_args, glon, glat, datm, sonpath, 0, vmin=vmin, vmax=vmax)

       #print_contour_map(cs2cs_args, humlon, humlat, glon, glat, datm, sonpath, 0, vmin=vmin, vmax=vmax) 

    if os.name=='posix': # true if linux/mac
       elapsed = (time.time() - start)
    else: # windows
       elapsed = (time.clock() - start)
    print("Processing took "+str(elapsed)+"seconds to analyse")

    print("Done!")
    print("===================================================")
Пример #7
0
def map_texture(humfile, sonpath, cs2cs_args, dogrid, calc_bearing, filt_bearing, res, cog, dowrite):
         
    '''
    Create plots of the texture lengthscale maps made in PyHum.texture module 
    using the algorithm detailed by Buscombe et al. (forthcoming)
    This textural lengthscale is not a direct measure of grain size. Rather, it is a statistical 
    representation that integrates over many attributes of bed texture, of which grain size is the most important. 
    The technique is a physically based means to identify regions of texture within a sidescan echogram, 
    and could provide a basis for objective, automated riverbed sediment classification.

    Syntax
    ----------
    [] = PyHum.map_texture(humfile, sonpath, cs2cs_args, dogrid, calc_bearing, filt_bearing, res, cog, dowrite)

    Parameters
    ----------
    humfile : str
       path to the .DAT file
    sonpath : str
       path where the *.SON files are
    cs2cs_args : int, *optional* [Default="epsg:26949"]
       arguments to create coordinates in a projected coordinate system
       this argument gets given to pyproj to turn wgs84 (lat/lon) coordinates
       into any projection supported by the proj.4 libraries
    dogrid : float, *optional* [Default=1]
       if 1, textures will be gridded with resolution 'res'. 
       Otherwise, point cloud will be plotted
    calc_bearing : float, *optional* [Default=0]
       if 1, bearing will be calculated from coordinates
    filt_bearing : float, *optional* [Default=0]
       if 1, bearing will be filtered
    res : float, *optional* [Default=0.1]
       grid resolution of output gridded texture map
    cog : int, *optional* [Default=1]
       if 1, heading calculated assuming GPS course-over-ground rather than
       using a compass
    dowrite: int, *optional* [Default=1]
       if 1, point cloud data from each chunk is written to ascii file
       if 0, processing times are speeded up considerably but point clouds are not available for further analysis

    Returns
    -------
    sonpath+'x_y_class'+str(p)+'.asc' : text file
        contains the point cloud of easting, northing, and texture lengthscales
        of the pth chunk

    sonpath+'class_GroundOverlay'+str(p)+'.kml': kml file
        contains gridded (or point cloud) texture lengthscale map for importing into google earth
        of the pth chunk

    sonpath+'class_map'+str(p)+'.png' : 
        image overlay associated with the kml file

    sonpath+'class_map_imagery'+str(p)+'.png' : png image file
        gridded (or point cloud) texture lengthscale map
        overlain onto an image pulled from esri image server

    References
    ----------
     .. [1] Buscombe, D., Grams, P.E., and Smith, S.M.C., Automated riverbed sediment
       classification using low-cost sidescan sonar. submitted to
       Journal of Hydraulic Engineering
    '''

    # prompt user to supply file if no input file given
    if not humfile:
       print 'An input file is required!!!!!!'
       Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
       inputfile = askopenfilename(filetypes=[("DAT files","*.DAT")]) 

    # prompt user to supply directory if no input sonpath is given
    if not sonpath:
       print 'A *.SON directory is required!!!!!!'
       Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
       sonpath = askdirectory() 

    # print given arguments to screen and convert data type where necessary
    if humfile:
       print 'Input file is %s' % (humfile)

    if sonpath:
       print 'Sonar file path is %s' % (sonpath)

    if cs2cs_args:
       print 'cs2cs arguments are %s' % (cs2cs_args)

    if dogrid:
       dogrid = int(dogrid)
       if dogrid==1:
          print "Data will be gridded"      

    if calc_bearing:
       calc_bearing = int(calc_bearing)
       if calc_bearing==1:
          print "Bearing will be calculated from coordinates"     
 
    if filt_bearing:
       filt_bearing = int(filt_bearing)
       if filt_bearing==1:
          print "Bearing will be filtered"    

    if res:
       res = np.asarray(res,float)
       print 'Gridding resolution: %s' % (str(res))      

    if cog:
       cog = int(cog)
       if cog==1:
          print "Heading based on course-over-ground" 

    if dowrite:
       dowrite = int(dowrite)
       if dowrite==0:
          print "Point cloud data will be written to ascii file" 

    if not cs2cs_args:
       # arguments to pass to cs2cs for coordinate transforms
       cs2cs_args = "epsg:26949"
       print '[Default] cs2cs arguments are %s' % (cs2cs_args)

    if not dogrid:
       if dogrid != 0:
          dogrid = 1
          print "[Default] Data will be gridded"

    if not calc_bearing:
       if calc_bearing != 1:
          calc_bearing = 0
          print "[Default] Heading recorded by instrument will be used"

    if not filt_bearing:
       if filt_bearing != 1:
          filt_bearing = 0
          print "[Default] Heading will not be filtered"

    if not res:
       res = 0.5
       print '[Default] Grid resolution is %s m' % (str(res))

    if not cog:
       if cog != 0:
          cog = 1
          print "[Default] Heading based on course-over-ground"

    if not dowrite:
       if dowrite != 0:
          dowrite = 1
          print "[Default] Point cloud data will be written to ascii file"

    trans =  pyproj.Proj(init=cs2cs_args)

    # if son path name supplied has no separator at end, put one on
    if sonpath[-1]!=os.sep:
       sonpath = sonpath + os.sep

    base = humfile.split('.DAT') # get base of file name for output
    base = base[0].split(os.sep)[-1]

    # remove underscores, negatives and spaces from basename
    if base.find('_')>-1:
       base = base[:base.find('_')]

    if base.find('-')>-1:
       base = base[:base.find('-')]

    if base.find(' ')>-1:
       base = base[:base.find(' ')]

    esi = np.squeeze(loadmat(sonpath+base+'meta.mat')['e'])
    nsi = np.squeeze(loadmat(sonpath+base+'meta.mat')['n']) 

    pix_m = np.squeeze(loadmat(sonpath+base+'meta.mat')['pix_m'])
    dep_m = np.squeeze(loadmat(sonpath+base+'meta.mat')['dep_m'])
    c = np.squeeze(loadmat(sonpath+base+'meta.mat')['c'])
    dist_m = np.squeeze(loadmat(sonpath+base+'meta.mat')['dist_m'])

    # over-ride measured bearing and calc from positions
    if calc_bearing==1:
       lat = np.squeeze(loadmat(sonpath+base+'meta.mat')['lat'])
       lon = np.squeeze(loadmat(sonpath+base+'meta.mat')['lon']) 

       #point-to-point bearing
       bearing = np.zeros(len(lat))
       for k in xrange(len(lat)-1):
          bearing[k] = bearingBetweenPoints(lat[k], lat[k+1], lon[k], lon[k+1])
       del lat, lon

    else:
       # reported bearing by instrument (Kalman filtered?)
       bearing = np.squeeze(loadmat(sonpath+base+'meta.mat')['heading'])

    ## bearing can only be observed modulo 2*pi, therefore phase unwrap
    #bearing = np.unwrap(bearing)

    # if stdev in heading is large, there's probably noise that needs to be filtered out
    if np.std(bearing)>180:
       print "WARNING: large heading stdev - attempting filtering"
       from sklearn.cluster import MiniBatchKMeans
       # can have two modes
       data = np.column_stack([bearing, bearing])
       k_means = MiniBatchKMeans(2)
       # fit the model
       k_means.fit(data) 
       values = k_means.cluster_centers_.squeeze()
       labels = k_means.labels_

       if np.sum(labels==0) > np.sum(labels==1):
          bearing[labels==1] = np.nan
       else:
          bearing[labels==0] = np.nan

       nans, y= humutils.nan_helper(bearing)
       bearing[nans]= np.interp(y(nans), y(~nans), bearing[~nans])
 
    if filt_bearing ==1:
       bearing = humutils.runningMeanFast(bearing, len(bearing)/100)

    theta = np.asarray(bearing, 'float')/(180/np.pi)

    # this is standard course over ground
    if cog==1:
       #course over ground is given as a compass heading (ENU) from True north, or Magnetic north.
       #To get this into NED (North-East-Down) coordinates, you need to rotate the ENU 
       # (East-North-Up) coordinate frame. 
       #Subtract pi/2 from your heading
       theta = theta - np.pi/2
       # (re-wrap to Pi to -Pi)
       theta = np.unwrap(-theta)

    # load memory mapped scans
    shape_port = np.squeeze(loadmat(sonpath+base+'meta.mat')['shape_port'])
    if shape_port!='':
       port_fp = np.memmap(sonpath+base+'_data_port_l.dat', dtype='float32', mode='r', shape=tuple(shape_port))

    shape_star = np.squeeze(loadmat(sonpath+base+'meta.mat')['shape_star'])
    if shape_star!='':
       star_fp = np.memmap(sonpath+base+'_data_star_l.dat', dtype='float32', mode='r', shape=tuple(shape_star))

    shape = shape_port.copy()
    shape[1] = shape_port[1] + shape_star[1]
    class_fp = np.memmap(sonpath+base+'_data_class.dat', dtype='float32', mode='r', shape=tuple(shape))

    tvg = ((8.5*10**-5)+(3/76923)+((8.5*10**-5)/4))*c
    dist_tvg = ((np.tan(np.radians(25)))*dep_m)-(tvg)

    for p in xrange(len(class_fp)):

       e = esi[shape_port[-1]*p:shape_port[-1]*(p+1)]
       n = nsi[shape_port[-1]*p:shape_port[-1]*(p+1)]
       t = theta[shape_port[-1]*p:shape_port[-1]*(p+1)]
       d = dist_tvg[shape_port[-1]*p:shape_port[-1]*(p+1)]

       len_n = len(n)
   
       merge = class_fp[p].copy()

       merge[np.isnan(merge)] = 0
       merge[np.isnan(np.vstack((np.flipud(port_fp[p]),star_fp[p])))] = 0

       extent = shape_port[1]
       R1 = merge[extent:,:]
       R2 = np.flipud(merge[:extent,:])

       merge = np.vstack((R2,R1))
       del R1, R2

       # get number pixels in scan line
       extent = int(np.shape(merge)[0]/2)

       yvec = np.linspace(pix_m,extent*pix_m,extent)

       print "getting point cloud ..."
       # get the points by rotating the [x,y] vector so it lines up with boat heading
       X=[]; Y=[]; 
       for k in range(len(n)): 
          x = np.concatenate((np.tile(e[k],extent) , np.tile(e[k],extent)))
          #y = np.concatenate((n[k]+yvec, n[k]-yvec))
          rangedist = np.sqrt(np.power(yvec, 2.0) - np.power(d[k], 2.0))
          y = np.concatenate((n[k]+rangedist, n[k]-rangedist))
          # Rotate line around center point
          xx = e[k] - ((x - e[k]) * np.cos(t[k])) - ((y - n[k]) * np.sin(t[k]))
          yy = n[k] - ((x - e[k]) * np.sin(t[k])) + ((y - n[k]) * np.cos(t[k]))
          xx, yy = calc_beam_pos(d[k], t[k], xx, yy)
          X.append(xx)
          Y.append(yy) 

       del e, n, t, x, y

       # merge flatten and stack
       X = np.asarray(X,'float')
       X = X.flatten()

       # merge flatten and stack
       Y = np.asarray(Y,'float')
       Y = Y.flatten()

       merge[merge==0] = np.nan

       if len(merge.flatten()) != len(X):
          merge = merge[:,:len_n]

       merge = merge.T.flatten()

       index = np.where(np.logical_not(np.isnan(merge)))[0]

       X = X.flatten()[index]
       Y = Y.flatten()[index]
       merge = merge.flatten()[index]

       X = X[np.where(np.logical_not(np.isnan(Y)))]
       merge = merge.flatten()[np.where(np.logical_not(np.isnan(Y)))]
       Y = Y[np.where(np.logical_not(np.isnan(Y)))]

       Y = Y[np.where(np.logical_not(np.isnan(X)))]
       merge = merge.flatten()[np.where(np.logical_not(np.isnan(X)))]
       X = X[np.where(np.logical_not(np.isnan(X)))]


       X = X[np.where(np.logical_not(np.isnan(merge)))]
       Y = Y[np.where(np.logical_not(np.isnan(merge)))]
       merge = merge[np.where(np.logical_not(np.isnan(merge)))]

       if dowrite==1:
          # write raw bs to file
          outfile = sonpath+'x_y_class'+str(p)+'.asc' 
          with open(outfile, 'w') as f:
             np.savetxt(f, np.hstack((humutils.ascol(X),humutils.ascol(Y), humutils.ascol(merge))), delimiter=' ', fmt="%8.6f %8.6f %8.6f")

       humlon, humlat = trans(X, Y, inverse=True)

       if dogrid==1:
          grid_x, grid_y = np.meshgrid( np.arange(np.min(X), np.max(X), res), np.arange(np.min(Y), np.max(Y), res) )  

          dat = griddata(np.c_[X.flatten(),Y.flatten()], merge.flatten(), (grid_x, grid_y), method='nearest')

          ## create mask for where the data is not
          tree = KDTree(np.c_[X.flatten(),Y.flatten()])
          dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1)
          dist = dist.reshape(grid_x.shape)

       del X, Y

       if dogrid==1:
          ## mask
          dat[dist> 1 ] = np.nan 

          del dist, tree

          dat[dat==0] = np.nan
          dat[np.isinf(dat)] = np.nan

          datm = np.ma.masked_invalid(dat)

          glon, glat = trans(grid_x, grid_y, inverse=True)
          del grid_x, grid_y

       try:
          print "drawing and printing map ..."
          fig = plt.figure(frameon=False)
          map = Basemap(projection='merc', epsg=cs2cs_args.split(':')[1], #26949,
           resolution = 'i', #h #f
           llcrnrlon=np.min(humlon)-0.001, llcrnrlat=np.min(humlat)-0.001,
           urcrnrlon=np.max(humlon)+0.001, urcrnrlat=np.max(humlat)+0.001)

          if dogrid==1:
             gx,gy = map.projtran(glon, glat)

          ax = plt.Axes(fig, [0., 0., 1., 1.], )
          ax.set_axis_off()
          fig.add_axes(ax)

          if dogrid==1:
             map.pcolormesh(gx, gy, datm, cmap='YlOrRd', vmin=0.5, vmax=2)
             del dat
          else: 
             ## draw point cloud
             x,y = map.projtran(humlon, humlat)
             map.scatter(x.flatten(), y.flatten(), 0.5, merge.flatten(), cmap='YlOrRd', linewidth = '0')

          custom_save(sonpath,'class_map'+str(p))
          del fig 

       except:
          print "error: map could not be created..."

       kml = simplekml.Kml()
       ground = kml.newgroundoverlay(name='GroundOverlay')
       ground.icon.href = 'class_map'+str(p)+'.png'
       ground.latlonbox.north = np.min(humlat)-0.001
       ground.latlonbox.south = np.max(humlat)+0.001
       ground.latlonbox.east =  np.max(humlon)+0.001
       ground.latlonbox.west =  np.min(humlon)-0.001
       ground.latlonbox.rotation = 0

       kml.save(sonpath+'class_GroundOverlay'+str(p)+'.kml')

    if dowrite==1:

       X = []; Y = []; S = [];
       for p in xrange(len(class_fp)):
          dat = np.genfromtxt(sonpath+'x_y_class'+str(p)+'.asc', delimiter=' ')
          X.append(dat[:,0])
          Y.append(dat[:,1])
          S.append(dat[:,2])
          del dat

       # merge flatten and stack
       X = np.asarray(np.hstack(X),'float')
       X = X.flatten()

       # merge flatten and stack
       Y = np.asarray(np.hstack(Y),'float')
       Y = Y.flatten()

       # merge flatten and stack
       S = np.asarray(np.hstack(S),'float')
       S = S.flatten()

       humlon, humlat = trans(X, Y, inverse=True)

       if dogrid==1:
          grid_x, grid_y = np.meshgrid( np.arange(np.min(X), np.max(X), res), np.arange(np.min(Y), np.max(Y), res) )  

          dat = griddata(np.c_[X.flatten(),Y.flatten()], S.flatten(), (grid_x, grid_y), method='nearest')

          ## create mask for where the data is not
          tree = KDTree(np.c_[X.flatten(),Y.flatten()])
          dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1)
          dist = dist.reshape(grid_x.shape)

       del X, Y

       if dogrid==1:
          ## mask
          dat[dist> 1 ] = np.nan

          del dist, tree

          dat[dat==0] = np.nan
          dat[np.isinf(dat)] = np.nan

          datm = np.ma.masked_invalid(dat)

          glon, glat = trans(grid_x, grid_y, inverse=True)
          del grid_x, grid_y

       levels = [0.5,0.75,1.25,1.5,1.75,2,3]

       try:
          print "drawing and printing map ..."
          fig = plt.figure()
          map = Basemap(projection='merc', epsg=cs2cs_args.split(':')[1],
           resolution = 'i',
           llcrnrlon=np.min(humlon)-0.001, llcrnrlat=np.min(humlat)-0.001,
           urcrnrlon=np.max(humlon)+0.001, urcrnrlat=np.max(humlat)+0.001)

          map.arcgisimage(server='http://server.arcgisonline.com/ArcGIS', service='World_Imagery', xpixels=1000, ypixels=None, dpi=300)
          if dogrid==1:
             gx,gy = map.projtran(glon, glat)

          if dogrid==1:
             map.contourf(gx, gy, datm, levels, cmap='YlOrRd')
          else: 
             ## draw point cloud
             x,y = map.projtran(humlon, humlat)
             map.scatter(x.flatten(), y.flatten(), 0.5, S.flatten(), cmap='YlOrRd', linewidth = '0')

          custom_save2(sonpath,'class_map_imagery'+str(p))
          del fig 
       except:
          print "error: map could not be created..."
Пример #8
0
def map_texture(humfile, sonpath, cs2cs_args = "epsg:26949", res = 0.5, mode=3, nn = 64, numstdevs=5): #influence = 10, 
         
    '''
    Create plots of the texture lengthscale maps made in PyHum.texture module 
    using the algorithm detailed by Buscombe et al. (2015)
    This textural lengthscale is not a direct measure of grain size. Rather, it is a statistical 
    representation that integrates over many attributes of bed texture, of which grain size is the most important. 
    The technique is a physically based means to identify regions of texture within a sidescan echogram, 
    and could provide a basis for objective, automated riverbed sediment classification.

    Syntax
    ----------
    [] = PyHum.map_texture(humfile, sonpath, cs2cs_args, res, mode, nn, numstdevs)

    Parameters
    ----------
    humfile : str
       path to the .DAT file
    sonpath : str
       path where the *.SON files are
    cs2cs_args : int, *optional* [Default="epsg:26949"]
       arguments to create coordinates in a projected coordinate system
       this argument gets given to pyproj to turn wgs84 (lat/lon) coordinates
       into any projection supported by the proj.4 libraries
    res : float, *optional* [Default=0.5]
       grid resolution of output gridded texture map
    mode: int, *optional* [Default=3]
       gridding mode. 1 = nearest neighbour
                      2 = inverse weighted nearest neighbour
                      3 = Gaussian weighted nearest neighbour
    nn: int, *optional* [Default=64]
       number of nearest neighbours for gridding (used if mode > 1) 
    numstdevs: int, *optional* [Default = 4]
       Threshold number of standard deviations in texture lengthscale per grid cell up to which to accept 
           
    Returns
    -------
    sonpath+'x_y_class'+str(p)+'.asc' : text file
        contains the point cloud of easting, northing, and texture lengthscales
        of the pth chunk

    sonpath+'class_GroundOverlay'+str(p)+'.kml': kml file
        contains gridded (or point cloud) texture lengthscale map for importing into google earth
        of the pth chunk

    sonpath+'class_map'+str(p)+'.png' : 
        image overlay associated with the kml file

    sonpath+'class_map_imagery'+str(p)+'.png' : png image file
        gridded (or point cloud) texture lengthscale map
        overlain onto an image pulled from esri image server

    References
    ----------
      .. [1] Buscombe, D., Grams, P.E., and Smith, S.M.C., 2015, Automated riverbed sediment
       classification using low-cost sidescan sonar. Journal of Hydraulic Engineering 10.1061/(ASCE)HY.1943-7900.0001079, 06015019.
    '''

    # prompt user to supply file if no input file given
    if not humfile:
       print 'An input file is required!!!!!!'
       Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
       humfile = askopenfilename(filetypes=[("DAT files","*.DAT")]) 

    # prompt user to supply directory if no input sonpath is given
    if not sonpath:
       print 'A *.SON directory is required!!!!!!'
       Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
       sonpath = askdirectory() 

    # print given arguments to screen and convert data type where necessary
    if humfile:
       print 'Input file is %s' % (humfile)

    if sonpath:
       print 'Sonar file path is %s' % (sonpath)

    if cs2cs_args:
       print 'cs2cs arguments are %s' % (cs2cs_args)

    if res:
       res = np.asarray(res,float)
       print 'Gridding resolution: %s' % (str(res))      

    if mode:
       mode = int(mode)
       print 'Mode for gridding: %s' % (str(mode))      

    if nn:
       nn = int(nn)
       print 'Number of nearest neighbours for gridding: %s' % (str(nn))             

    #if influence:
    #   influence = int(influence)
    #   print 'Radius of influence for gridding: %s (m)' % (str(influence))             

    if numstdevs:
       numstdevs = int(numstdevs)
       print 'Threshold number of standard deviations in texture lengthscale per grid cell up to which to accept: %s' % (str(numstdevs))             

    # start timer
    if os.name=='posix': # true if linux/mac or cygwin on windows
       start = time.time()
    else: # windows
       start = time.clock()
       
    trans =  pyproj.Proj(init=cs2cs_args)

    # if son path name supplied has no separator at end, put one on
    if sonpath[-1]!=os.sep:
       sonpath = sonpath + os.sep

    base = humfile.split('.DAT') # get base of file name for output
    base = base[0].split(os.sep)[-1]

    # remove underscores, negatives and spaces from basename
    base = humutils.strip_base(base)

    meta = loadmat(os.path.normpath(os.path.join(sonpath,base+'meta.mat')))

    esi = np.squeeze(meta['e'])
    nsi = np.squeeze(meta['n']) 

    pix_m = np.squeeze(meta['pix_m'])
    dep_m = np.squeeze(meta['dep_m'])
    c = np.squeeze(meta['c'])
    #dist_m = np.squeeze(meta['dist_m'])

    theta = np.squeeze(meta['heading'])/(180/np.pi)

    # load memory mapped scans
    shape_port = np.squeeze(meta['shape_port'])
    if shape_port!='':
       if os.path.isfile(os.path.normpath(os.path.join(sonpath,base+'_data_port_lar.dat'))):
          port_fp = io.get_mmap_data(sonpath, base, '_data_port_lar.dat', 'float32', tuple(shape_port))
       else:
          port_fp = io.get_mmap_data(sonpath, base, '_data_port_la.dat', 'float32', tuple(shape_port))

    shape_star = np.squeeze(meta['shape_star'])
    if shape_star!='':
       if os.path.isfile(os.path.normpath(os.path.join(sonpath,base+'_data_star_lar.dat'))):
             star_fp = io.get_mmap_data(sonpath, base, '_data_star_lar.dat', 'float32', tuple(shape_star))
       else:
          star_fp = io.get_mmap_data(sonpath, base, '_data_star_la.dat', 'float32', tuple(shape_star))

    if len(shape_star)>2:    
       shape = shape_port.copy()
       shape[1] = shape_port[1] + shape_star[1]
       class_fp = io.get_mmap_data(sonpath, base, '_data_class.dat', 'float32', tuple(shape))
       #with open(os.path.normpath(os.path.join(sonpath,base+'_data_class.dat')), 'r') as ff:
       #   class_fp = np.memmap(ff, dtype='float32', mode='r', shape=tuple(shape))
    else:
       with open(os.path.normpath(os.path.join(sonpath,base+'_data_class.dat')), 'r') as ff:
          class_fp = np.load(ff)    


    tvg = ((8.5*10**-5)+(3/76923)+((8.5*10**-5)/4))*c
    dist_tvg = ((np.tan(np.radians(25)))*dep_m)-(tvg)

    if len(shape_star)>2:    
       for p in xrange(len(class_fp)):

          e = esi[shape_port[-1]*p:shape_port[-1]*(p+1)]
          n = nsi[shape_port[-1]*p:shape_port[-1]*(p+1)]
          t = theta[shape_port[-1]*p:shape_port[-1]*(p+1)]
          d = dist_tvg[shape_port[-1]*p:shape_port[-1]*(p+1)]

          len_n = len(n)
   
          merge = class_fp[p].copy()

          merge[np.isnan(merge)] = 0
          merge[np.isnan(np.vstack((np.flipud(port_fp[p]),star_fp[p])))] = 0

          extent = shape_port[1]
          R1 = merge[extent:,:]
          R2 = np.flipud(merge[:extent,:])

          merge = np.vstack((R2,R1))
          del R1, R2

          # get number pixels in scan line
          extent = int(np.shape(merge)[0]/2)

          yvec = np.linspace(pix_m,extent*pix_m,extent)

          X, Y  = getXY(e,n,yvec,d,t,extent)

          merge[merge==0] = np.nan

          if len(merge.flatten()) != len(X):
             merge = merge[:,:len_n]

          merge = merge.T.flatten()

          index = np.where(np.logical_not(np.isnan(merge)))[0]

          X, Y, merge = trim_xys(X, Y, merge, index)

          X = X.astype('float32')
          Y = Y.astype('float32')
          merge = merge.astype('float32')
          
          # write raw bs to file
          outfile = os.path.normpath(os.path.join(sonpath,'x_y_class'+str(p)+'.asc'))
          with open(outfile, 'w') as f:
             np.savetxt(f, np.hstack((humutils.ascol(X),humutils.ascol(Y), humutils.ascol(merge))), delimiter=' ', fmt="%8.6f %8.6f %8.6f")

          humlon, humlat = trans(X, Y, inverse=True)

          #if dogrid==1:

          orig_def, targ_def, grid_x, grid_y, res, shape = get_griddefs(np.min(X), np.max(X), np.min(Y), np.max(Y), res, humlon, humlat, trans)

          grid_x = grid_x.astype('float32')
          grid_y = grid_y.astype('float32')
                                      
          sigmas = 1 #m
          eps = 2
          dat, res = get_grid(mode, orig_def, targ_def, merge, res*10, np.min(X), np.max(X), np.min(Y), np.max(Y), res, nn, sigmas, eps, shape, numstdevs, trans, humlon, humlat)
          
          del merge
             
          dat[dat==0] = np.nan
          dat[np.isinf(dat)] = np.nan

          datm = np.ma.masked_invalid(dat)
          del dat

          glon, glat = trans(grid_x, grid_y, inverse=True)
          del grid_x, grid_y
          
          vmin=np.nanmin(datm)+0.1
          vmax=np.nanmax(datm)-0.1
          if vmin > vmax:
             vmin=np.nanmin(datm)
             vmax=np.nanmax(datm)            
          
          print_map(cs2cs_args, glon, glat, datm, sonpath, p, vmin=vmin, vmax=vmax)

    else: #just 1 chunk   
    
       e = esi
       n = nsi
       t = theta
       d = dist_tvg

       len_n = len(n)
   
       merge = class_fp.copy()

       merge[np.isnan(merge)] = 0
       merge[np.isnan(np.vstack((np.flipud(port_fp),star_fp)))] = 0

       extent = shape_port[0]
       R1 = merge[extent:,:]
       R2 = np.flipud(merge[:extent,:])

       merge = np.vstack((R2,R1))
       del R1, R2

       # get number pixels in scan line
       extent = int(np.shape(merge)[0]/2)

       yvec = np.linspace(pix_m,extent*pix_m,extent)

       X, Y  = getXY(e,n,yvec,d,t,extent)

       merge[merge==0] = np.nan

       if len(merge.flatten()) != len(X):
          merge = merge[:,:len_n]

       merge = merge.T.flatten()

       index = np.where(np.logical_not(np.isnan(merge)))[0]

       X, Y, merge = trim_xys(X, Y, merge, index)

       # write raw bs to file
       outfile = os.path.normpath(os.path.join(sonpath,'x_y_class'+str(0)+'.asc'))
       with open(outfile, 'w') as f:
          np.savetxt(f, np.hstack((humutils.ascol(X),humutils.ascol(Y), humutils.ascol(merge))), delimiter=' ', fmt="%8.6f %8.6f %8.6f")

       humlon, humlat = trans(X, Y, inverse=True)

       #if dogrid==1:
       if 2>1:

          orig_def, targ_def, grid_x, grid_y, res, shape = get_griddefs(np.min(X), np.max(X), np.min(Y), np.max(Y), res, humlon, humlat, trans)

          ## create mask for where the data is not
          tree = KDTree(np.c_[X.flatten(),Y.flatten()])

          if pykdtree==1:
             dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1)                      
          else:
             try:
                dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1, n_jobs=cpu_count())
             except:
                #print ".... update your scipy installation to use faster kd-tree queries"
                dist, _ = tree.query(np.c_[grid_x.ravel(), grid_y.ravel()], k=1)

          dist = dist.reshape(grid_x.shape)
             
          sigmas = 1 #m
          eps = 2
          dat, res = get_grid(mode, orig_def, targ_def, merge, res*10, np.min(X), np.max(X), np.min(Y), np.max(Y), res, nn, sigmas, eps, shape, numstdevs, trans, humlon, humlat)
          
          del merge

       #if dogrid==1:
       if 2>1:
          dat[dat==0] = np.nan
          dat[np.isinf(dat)] = np.nan
          dat[dist>res*2] = np.nan
          del dist

          datm = np.ma.masked_invalid(dat)

          glon, glat = trans(grid_x, grid_y, inverse=True)
          del grid_x, grid_y

       vmin=np.nanmin(datm)+0.1
       vmax=np.nanmax(datm)-0.1
       if vmin > vmax:
         vmin=np.nanmin(datm)
         vmax=np.nanmax(datm)
       
       Parallel(n_jobs = 2, verbose=0)(delayed(doplots)(k, humlon, humlat, cs2cs_args, glon, glat, datm, sonpath, 0, vmin=vmin, vmax=vmax) for k in xrange(2)) 
       
       #print_map(cs2cs_args, glon, glat, datm, sonpath, 0, vmin=vmin, vmax=vmax)

       #print_contour_map(cs2cs_args, humlon, humlat, glon, glat, datm, sonpath, 0, vmin=vmin, vmax=vmax) 

    if os.name=='posix': # true if linux/mac
       elapsed = (time.time() - start)
    else: # windows
       elapsed = (time.clock() - start)
    print "Processing took ", elapsed , "seconds to analyse"

    print "Done!"
Пример #9
0
def make_map(e, n, t, d, dat_port, dat_star, data_R, pix_m, res, cs2cs_args, sonpath, p, dogrid, dowrite, mode, nn, influence, numstdevs):
   
   trans =  pyproj.Proj(init=cs2cs_args)   
   
   merge = np.vstack((dat_port,dat_star))
   #merge = np.vstack((np.flipud(port_fp[p]),star_fp[p]))
   
   merge[np.isnan(merge)] = 0
   merge = merge[:,:len(n)]

   R = np.vstack((np.flipud(data_R),data_R))
   R = R[:np.shape(merge)[0],:np.shape(merge)[1]]
  
   # get number pixels in scan line
   extent = int(np.shape(merge)[0]/2)

   yvec = np.linspace(pix_m,extent*pix_m,extent)

   X, Y, D, h, t  = getXY(e,n,yvec,d,t,extent)
   
   D[np.isnan(D)] = 0
   h[np.isnan(h)] = 0
   t[np.isnan(t)] = 0
       
   X = X[np.where(np.logical_not(np.isnan(Y)))]
   merge = merge.flatten()[np.where(np.logical_not(np.isnan(Y)))]
   Y = Y[np.where(np.logical_not(np.isnan(Y)))]
   D = D[np.where(np.logical_not(np.isnan(Y)))]
   R = R.flatten()[np.where(np.logical_not(np.isnan(Y)))]
   h = h[np.where(np.logical_not(np.isnan(Y)))]
   t = t[np.where(np.logical_not(np.isnan(Y)))]   
         
   Y = Y[np.where(np.logical_not(np.isnan(X)))]
   merge = merge.flatten()[np.where(np.logical_not(np.isnan(X)))]
   X = X[np.where(np.logical_not(np.isnan(X)))]
   D = D[np.where(np.logical_not(np.isnan(X)))]
   R = R.flatten()[np.where(np.logical_not(np.isnan(X)))]
   h = h[np.where(np.logical_not(np.isnan(X)))]
   t = t[np.where(np.logical_not(np.isnan(X)))]   
         
   X = X[np.where(np.logical_not(np.isnan(merge)))]
   Y = Y[np.where(np.logical_not(np.isnan(merge)))]
   merge = merge[np.where(np.logical_not(np.isnan(merge)))]
   D = D[np.where(np.logical_not(np.isnan(merge)))]
   R = R[np.where(np.logical_not(np.isnan(merge)))]
   h = h[np.where(np.logical_not(np.isnan(merge)))]
   t = t[np.where(np.logical_not(np.isnan(merge)))]   
         
   if dowrite==1:
      ## write raw bs to file
      outfile = os.path.normpath(os.path.join(sonpath,'x_y_ss_raw'+str(p)+'.asc'))
      write.txtwrite( outfile, np.hstack((humutils.ascol(X.flatten()),humutils.ascol(Y.flatten()), humutils.ascol(merge.flatten()), humutils.ascol(D.flatten()), humutils.ascol(np.cos(R.flatten())), humutils.ascol(h.flatten()), humutils.ascol(t.flatten())  )) )
      
   del D, R, h, t
  
   humlon, humlat = trans(X, Y, inverse=True)

   if dogrid==1:
      grid_x, grid_y = np.meshgrid( np.arange(np.min(X), np.max(X), res), np.arange(np.min(Y), np.max(Y), res) )  

      #del X, Y
      longrid, latgrid = trans(grid_x, grid_y, inverse=True)
      shape = np.shape(grid_x)
      #del grid_y, grid_x

      targ_def = pyresample.geometry.SwathDefinition(lons=longrid.flatten(), lats=latgrid.flatten())
      del longrid, latgrid

      orig_def = pyresample.geometry.SwathDefinition(lons=humlon.flatten(), lats=humlat.flatten())
      #del humlat, humlon

      #influence = 1 #m

      if mode==1:
         try:
            # nearest neighbour
            dat = pyresample.kd_tree.resample_nearest(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, fill_value=None, nprocs = cpu_count())

         except:

            print "Memory error: trying a grid resolution twice as big"
            res = res*2

            grid_x, grid_y = np.meshgrid( np.arange(np.min(X), np.max(X), res), np.arange(np.min(Y), np.max(Y), res) )  

            #del X, Y
            longrid, latgrid = trans(grid_x, grid_y, inverse=True)
            shape = np.shape(grid_x)
            #del grid_y, grid_x

            targ_def = pyresample.geometry.SwathDefinition(lons=longrid.flatten(), lats=latgrid.flatten())
            del longrid, latgrid

            orig_def = pyresample.geometry.SwathDefinition(lons=humlon.flatten(), lats=humlat.flatten())

            dat = pyresample.kd_tree.resample_nearest(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, fill_value=None, nprocs = cpu_count())

      elif mode==2:
         # custom inverse distance 
         wf = lambda r: 1/r**2

         try:
            dat, stdev, counts = pyresample.kd_tree.resample_custom(orig_def, merge.flatten(),targ_def, radius_of_influence=influence, neighbours=nn, weight_funcs=wf, fill_value=None, with_uncert = True, nprocs = cpu_count())

         except:

            print "Memory error: trying a grid resolution twice as big"
            res = res*2

            grid_x, grid_y = np.meshgrid( np.arange(np.min(X), np.max(X), res), np.arange(np.min(Y), np.max(Y), res) )  

            #del X, Y
            longrid, latgrid = trans(grid_x, grid_y, inverse=True)
            shape = np.shape(grid_x)
            #del grid_y, grid_x

            targ_def = pyresample.geometry.SwathDefinition(lons=longrid.flatten(), lats=latgrid.flatten())
            del longrid, latgrid

            orig_def = pyresample.geometry.SwathDefinition(lons=humlon.flatten(), lats=humlat.flatten()) 

            dat, stdev, counts = pyresample.kd_tree.resample_custom(orig_def, merge.flatten(),targ_def, radius_of_influence=influence, neighbours=nn, weight_funcs=wf, fill_value=None, with_uncert = True, nprocs = cpu_count()) 

      elif mode==3:
         sigmas = 1 #m
         eps = 2

         try:
            dat, stdev, counts = pyresample.kd_tree.resample_gauss(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, neighbours=nn, sigmas=sigmas, fill_value=None, with_uncert = np.nan, nprocs = cpu_count(), epsilon = eps)
         except:

            print "Memory error: trying a grid resolution twice as big"
            res = res*2

            grid_x, grid_y = np.meshgrid( np.arange(np.min(X), np.max(X), res), np.arange(np.min(Y), np.max(Y), res) )  

            #del X, Y
            longrid, latgrid = trans(grid_x, grid_y, inverse=True)
            shape = np.shape(grid_x)
            #del grid_y, grid_x

            targ_def = pyresample.geometry.SwathDefinition(lons=longrid.flatten(), lats=latgrid.flatten())
            del longrid, latgrid

            orig_def = pyresample.geometry.SwathDefinition(lons=humlon.flatten(), lats=humlat.flatten()) 

            dat, stdev, counts = pyresample.kd_tree.resample_gauss(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, neighbours=nn, sigmas=sigmas, fill_value=None, with_uncert = np.nan, nprocs = cpu_count(), epsilon = eps)

      del X, Y

      dat = dat.reshape(shape)

      if mode>1:
         stdev = stdev.reshape(shape)
         counts = counts.reshape(shape)

      mask = dat.mask.copy()

      dat[mask==1] = 0

      if mode>1:
         dat[(stdev>numstdevs) & (mask!=0)] = np.nan
         dat[(counts<nn) & (counts>0)] = np.nan

      dat2 = replace_nans.RN(dat.astype('float64'),1000,0.01,2,'localmean').getdata()
      dat2[dat==0] = np.nan

      # get a new mask
      mask = np.isnan(dat2)

      mask = ~binary_dilation(binary_erosion(~mask,structure=np.ones((15,15))), structure=np.ones((15,15)))
      #mask = binary_fill_holes(mask, structure=np.ones((15,15)))
      #mask = ~binary_fill_holes(~mask, structure=np.ones((15,15)))

      dat2[mask==1] = np.nan
      dat2[dat2<1] = np.nan

      del dat
      dat = dat2
      del dat2


   if dogrid==1:
      ### mask
      #if np.floor(np.sqrt(1/res))-1 > 0.0:
      #   dat[dist> np.floor(np.sqrt(1/res))-1 ] = np.nan #np.floor(np.sqrt(1/res))-1 ] = np.nan
      #else:
      #   dat[dist> np.sqrt(1/res) ] = np.nan #np.floor(np.sqrt(1/res))-1 ] = np.nan

      #del dist, tree

      dat[dat==0] = np.nan
      dat[np.isinf(dat)] = np.nan
      datm = np.ma.masked_invalid(dat)

      glon, glat = trans(grid_x, grid_y, inverse=True)
      del grid_x, grid_y

   try:
      print "drawing and printing map ..."
      fig = plt.figure(frameon=False)
      map = Basemap(projection='merc', epsg=cs2cs_args.split(':')[1], #26949,
       resolution = 'i', #h #f
       llcrnrlon=np.min(humlon)-0.00001, llcrnrlat=np.min(humlat)-0.00001,
       urcrnrlon=np.max(humlon)+0.00001, urcrnrlat=np.max(humlat)+0.00001)

      if dogrid==1:
         gx,gy = map.projtran(glon, glat)

      ax = plt.Axes(fig, [0., 0., 1., 1.], )
      ax.set_axis_off()
      fig.add_axes(ax)

      if dogrid==1:
         map.pcolormesh(gx, gy, datm, cmap='gray', vmin=np.nanmin(datm), vmax=np.nanmax(datm))
         del datm, dat
      else: 
         ## draw point cloud
         x,y = map.projtran(humlon, humlat)
         map.scatter(x.flatten(), y.flatten(), 0.5, merge.flatten(), cmap='gray', linewidth = '0')

      custom_save(sonpath,'map'+str(p))
      del fig 

   except:
      print "error: map could not be created..."

   kml = simplekml.Kml()
   ground = kml.newgroundoverlay(name='GroundOverlay')
   ground.icon.href = 'map'+str(p)+'.png'
   ground.latlonbox.north = np.min(humlat)-0.00001
   ground.latlonbox.south = np.max(humlat)+0.00001
   ground.latlonbox.east =  np.max(humlon)+0.00001
   ground.latlonbox.west =  np.min(humlon)-0.00001
   ground.latlonbox.rotation = 0

   #kml.save(sonpath+'GroundOverlay'+str(p)+'.kml')
   kml.save(os.path.normpath(os.path.join(sonpath,'GroundOverlay'+str(p)+'.kml')))

   del humlat, humlon
Пример #10
0
def map_texture(humfile, sonpath, cs2cs_args = "epsg:26949", dogrid = 1, res = 0.5, dowrite = 0, mode=3, nn = 64, influence = 1, numstdevs=5):
         
    '''
    Create plots of the texture lengthscale maps made in PyHum.texture module 
    using the algorithm detailed by Buscombe et al. (forthcoming)
    This textural lengthscale is not a direct measure of grain size. Rather, it is a statistical 
    representation that integrates over many attributes of bed texture, of which grain size is the most important. 
    The technique is a physically based means to identify regions of texture within a sidescan echogram, 
    and could provide a basis for objective, automated riverbed sediment classification.

    Syntax
    ----------
    [] = PyHum.map_texture(humfile, sonpath, cs2cs_args, dogrid, res, dowrite, mode, nn, influence, numstdevs)

    Parameters
    ----------
    humfile : str
       path to the .DAT file
    sonpath : str
       path where the *.SON files are
    cs2cs_args : int, *optional* [Default="epsg:26949"]
       arguments to create coordinates in a projected coordinate system
       this argument gets given to pyproj to turn wgs84 (lat/lon) coordinates
       into any projection supported by the proj.4 libraries
    dogrid : float, *optional* [Default=1]
       if 1, textures will be gridded with resolution 'res'. 
       Otherwise, point cloud will be plotted
    res : float, *optional* [Default=0.5]
       grid resolution of output gridded texture map
    dowrite: int, *optional* [Default=0]
       if 1, point cloud data from each chunk is written to ascii file
       if 0, processing times are speeded up considerably but point clouds are not available for further analysis
    mode: int, *optional* [Default=3]
       gridding mode. 1 = nearest neighbour
                      2 = inverse weighted nearest neighbour
                      3 = Gaussian weighted nearest neighbour
    nn: int, *optional* [Default=64]
       number of nearest neighbours for gridding (used if mode > 1)
    influence: float, *optional* [Default=1]
       Radius of influence used in gridding. Cut off distance in meters   
    numstdevs: int, *optional* [Default = 4]
       Threshold number of standard deviations in texture lengthscale per grid cell up to which to accept 
           
    Returns
    -------
    sonpath+'x_y_class'+str(p)+'.asc' : text file
        contains the point cloud of easting, northing, and texture lengthscales
        of the pth chunk

    sonpath+'class_GroundOverlay'+str(p)+'.kml': kml file
        contains gridded (or point cloud) texture lengthscale map for importing into google earth
        of the pth chunk

    sonpath+'class_map'+str(p)+'.png' : 
        image overlay associated with the kml file

    sonpath+'class_map_imagery'+str(p)+'.png' : png image file
        gridded (or point cloud) texture lengthscale map
        overlain onto an image pulled from esri image server

    References
    ----------
      .. [1] Buscombe, D., Grams, P.E., and Smith, S.M.C., 2015, Automated riverbed sediment
       classification using low-cost sidescan sonar. Journal of Hydraulic Engineering, accepted
    '''

    # prompt user to supply file if no input file given
    if not humfile:
       print 'An input file is required!!!!!!'
       Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
       inputfile = askopenfilename(filetypes=[("DAT files","*.DAT")]) 

    # prompt user to supply directory if no input sonpath is given
    if not sonpath:
       print 'A *.SON directory is required!!!!!!'
       Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing
       sonpath = askdirectory() 

    # print given arguments to screen and convert data type where necessary
    if humfile:
       print 'Input file is %s' % (humfile)

    if sonpath:
       print 'Sonar file path is %s' % (sonpath)

    if cs2cs_args:
       print 'cs2cs arguments are %s' % (cs2cs_args)

    if dogrid:
       dogrid = int(dogrid)
       if dogrid==1:
          print "Data will be gridded"         

    if res:
       res = np.asarray(res,float)
       print 'Gridding resolution: %s' % (str(res))      

    if dowrite:
       dowrite = int(dowrite)
       if dowrite==0:
          print "Point cloud data will be written to ascii file" 

    if mode:
       mode = int(mode)
       print 'Mode for gridding: %s' % (str(mode))      

    if nn:
       nn = int(nn)
       print 'Number of nearest neighbours for gridding: %s' % (str(nn))             

    if influence:
       influence = int(influence)
       print 'Radius of influence for gridding: %s (m)' % (str(influence))             

    if numstdevs:
       numstdevs = int(numstdevs)
       print 'Threshold number of standard deviations in texture lengthscale per grid cell up to which to accept: %s' % (str(numstdevs))             


    trans =  pyproj.Proj(init=cs2cs_args)

    # if son path name supplied has no separator at end, put one on
    if sonpath[-1]!=os.sep:
       sonpath = sonpath + os.sep

    base = humfile.split('.DAT') # get base of file name for output
    base = base[0].split(os.sep)[-1]

    # remove underscores, negatives and spaces from basename
    if base.find('_')>-1:
       base = base[:base.find('_')]

    if base.find('-')>-1:
       base = base[:base.find('-')]

    if base.find(' ')>-1:
       base = base[:base.find(' ')]

    meta = loadmat(os.path.normpath(os.path.join(sonpath,base+'meta.mat')))

    esi = np.squeeze(meta['e'])
    nsi = np.squeeze(meta['n']) 

    pix_m = np.squeeze(meta['pix_m'])
    dep_m = np.squeeze(meta['dep_m'])
    c = np.squeeze(meta['c'])
    dist_m = np.squeeze(meta['dist_m'])

    theta = np.squeeze(meta['heading'])/(180/np.pi)

    # load memory mapped scans
    shape_port = np.squeeze(meta['shape_port'])
    if shape_port!='':
       #port_fp = np.memmap(sonpath+base+'_data_port_l.dat', dtype='float32', mode='r', shape=tuple(shape_port))
       if os.path.isfile(os.path.normpath(os.path.join(sonpath,base+'_data_port_lar.dat'))):
          with open(os.path.normpath(os.path.join(sonpath,base+'_data_port_lar.dat')), 'r') as ff:
             port_fp = np.memmap(ff, dtype='float32', mode='r', shape=tuple(shape_port))
       else:
          with open(os.path.normpath(os.path.join(sonpath,base+'_data_port_la.dat')), 'r') as ff:
             port_fp = np.memmap(ff, dtype='float32', mode='r', shape=tuple(shape_port))

    shape_star = np.squeeze(meta['shape_star'])
    if shape_star!='':
       #star_fp = np.memmap(sonpath+base+'_data_star_l.dat', dtype='float32', mode='r', shape=tuple(shape_star))
       if os.path.isfile(os.path.normpath(os.path.join(sonpath,base+'_data_star_lar.dat'))):
          with open(os.path.normpath(os.path.join(sonpath,base+'_data_star_lar.dat')), 'r') as ff:
             star_fp = np.memmap(ff, dtype='float32', mode='r', shape=tuple(shape_star))
       else:
          with open(os.path.normpath(os.path.join(sonpath,base+'_data_star_la.dat')), 'r') as ff:
             star_fp = np.memmap(ff, dtype='float32', mode='r', shape=tuple(shape_star))

    shape = shape_port.copy()
    shape[1] = shape_port[1] + shape_star[1]
    #class_fp = np.memmap(sonpath+base+'_data_class.dat', dtype='float32', mode='r', shape=tuple(shape))
    with open(os.path.normpath(os.path.join(sonpath,base+'_data_class.dat')), 'r') as ff:
       class_fp = np.memmap(ff, dtype='float32', mode='r', shape=tuple(shape))


    tvg = ((8.5*10**-5)+(3/76923)+((8.5*10**-5)/4))*c
    dist_tvg = ((np.tan(np.radians(25)))*dep_m)-(tvg)

    for p in xrange(len(class_fp)):

       e = esi[shape_port[-1]*p:shape_port[-1]*(p+1)]
       n = nsi[shape_port[-1]*p:shape_port[-1]*(p+1)]
       t = theta[shape_port[-1]*p:shape_port[-1]*(p+1)]
       d = dist_tvg[shape_port[-1]*p:shape_port[-1]*(p+1)]

       len_n = len(n)
   
       merge = class_fp[p].copy()

       merge[np.isnan(merge)] = 0
       merge[np.isnan(np.vstack((np.flipud(port_fp[p]),star_fp[p])))] = 0

       extent = shape_port[1]
       R1 = merge[extent:,:]
       R2 = np.flipud(merge[:extent,:])

       merge = np.vstack((R2,R1))
       del R1, R2

       # get number pixels in scan line
       extent = int(np.shape(merge)[0]/2)

       yvec = np.linspace(pix_m,extent*pix_m,extent)

       X, Y  = getXY(e,n,yvec,d,t,extent)

       merge[merge==0] = np.nan

       if len(merge.flatten()) != len(X):
          merge = merge[:,:len_n]

       merge = merge.T.flatten()

       index = np.where(np.logical_not(np.isnan(merge)))[0]

       X = X.flatten()[index]
       Y = Y.flatten()[index]
       merge = merge.flatten()[index]

       X = X[np.where(np.logical_not(np.isnan(Y)))]
       merge = merge.flatten()[np.where(np.logical_not(np.isnan(Y)))]
       Y = Y[np.where(np.logical_not(np.isnan(Y)))]

       Y = Y[np.where(np.logical_not(np.isnan(X)))]
       merge = merge.flatten()[np.where(np.logical_not(np.isnan(X)))]
       X = X[np.where(np.logical_not(np.isnan(X)))]

       X = X[np.where(np.logical_not(np.isnan(merge)))]
       Y = Y[np.where(np.logical_not(np.isnan(merge)))]
       merge = merge[np.where(np.logical_not(np.isnan(merge)))]

       if dowrite==1:
          # write raw bs to file
          #outfile = sonpath+'x_y_class'+str(p)+'.asc' 
          outfile = os.path.normpath(os.path.join(sonpath,'x_y_class'+str(p)+'.asc'))
          with open(outfile, 'w') as f:
             np.savetxt(f, np.hstack((humutils.ascol(X),humutils.ascol(Y), humutils.ascol(merge))), delimiter=' ', fmt="%8.6f %8.6f %8.6f")

       humlon, humlat = trans(X, Y, inverse=True)

       if dogrid==1:

          grid_x, grid_y = np.meshgrid( np.arange(np.min(X), np.max(X), res), np.arange(np.min(Y), np.max(Y), res) )  

          del X, Y
          longrid, latgrid = trans(grid_x, grid_y, inverse=True)
          shape = np.shape(grid_x)
          #del grid_y, grid_x

          targ_def = pyresample.geometry.SwathDefinition(lons=longrid.flatten(), lats=latgrid.flatten())
          del longrid, latgrid

          orig_def = pyresample.geometry.SwathDefinition(lons=humlon.flatten(), lats=humlat.flatten())
          #del humlat, humlon

          #influence = 1 #m
          #numneighbours = 64

          if mode==1:
             try:
                # nearest neighbour
                dat = pyresample.kd_tree.resample_nearest(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, fill_value=None, nprocs = cpu_count())
             except:
                # nearest neighbour
                dat, stdev, counts = pyresample.kd_tree.resample_nearest(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, fill_value=None, with_uncert = True, nprocs = 1)

          elif mode==2:
             # custom inverse distance 
             wf = lambda r: 1/r**2

             try:
                dat, stdev, counts = pyresample.kd_tree.resample_custom(orig_def, merge.flatten(),targ_def, radius_of_influence=influence, neighbours=nn, weight_funcs=wf, fill_value=None, with_uncert = True, nprocs = cpu_count())
             except:
                dat, stdev, counts = pyresample.kd_tree.resample_custom(orig_def, merge.flatten(),targ_def, radius_of_influence=influence, neighbours=nn, weight_funcs=wf, fill_value=None, with_uncert = True, nprocs = 1)   

          elif mode==3:
             sigmas = 1 #m
             eps = 2

             try:
                dat, stdev, counts = pyresample.kd_tree.resample_gauss(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, neighbours=nn, sigmas=sigmas, fill_value=None, with_uncert = np.nan, nprocs = cpu_count(), epsilon = eps)
             except:
                dat, stdev, counts = pyresample.kd_tree.resample_gauss(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, neighbours=nn, sigmas=sigmas, fill_value=None, with_uncert = np.nan, nprocs = 1, epsilon = eps)


          dat = dat.reshape(shape)

          if mode>1:
             stdev = stdev.reshape(shape)
             counts = counts.reshape(shape)

          mask = dat.mask.copy()

          dat[mask==1] = 0

          if mode>1:
             dat[(stdev>3) & (mask!=0)] = np.nan
             dat[(counts<nn) & (counts>0)] = np.nan

          dat2 = replace_nans.RN(dat.astype('float64'),1000,0.01,2,'localmean').getdata()
          dat2[dat==0] = np.nan

          # get a new mask
          mask = np.isnan(dat2)

          mask = ~binary_dilation(binary_erosion(~mask,structure=np.ones((15,15))), structure=np.ones((15,15)))
          #mask = binary_fill_holes(mask, structure=np.ones((15,15)))
          #mask = ~binary_fill_holes(~mask, structure=np.ones((15,15)))

          dat2[mask==1] = np.nan
          dat2[dat2<1] = np.nan

          del dat
          dat = dat2
          del dat2

       if dogrid==1:
          ## mask
          #dat[dist> 1 ] = np.nan 

          #del dist, tree

          dat[dat==0] = np.nan
          dat[np.isinf(dat)] = np.nan

          datm = np.ma.masked_invalid(dat)

          glon, glat = trans(grid_x, grid_y, inverse=True)
          del grid_x, grid_y

       try:
          print "drawing and printing map ..."
          fig = plt.figure(frameon=False)
          map = Basemap(projection='merc', epsg=cs2cs_args.split(':')[1], #26949,
           resolution = 'i', #h #f
           llcrnrlon=np.min(humlon)-0.0001, llcrnrlat=np.min(humlat)-0.0001,
           urcrnrlon=np.max(humlon)+0.0001, urcrnrlat=np.max(humlat)+0.0001)

          if dogrid==1:
             gx,gy = map.projtran(glon, glat)

          ax = plt.Axes(fig, [0., 0., 1., 1.], )
          ax.set_axis_off()
          fig.add_axes(ax)

          if dogrid==1:
             map.pcolormesh(gx, gy, datm, cmap='YlOrRd', vmin=0.25, vmax=2)
             del dat
          else: 
             ## draw point cloud
             x,y = map.projtran(humlon, humlat)
             map.scatter(x.flatten(), y.flatten(), 0.5, merge.flatten(), cmap='YlOrRd', linewidth = '0')

          custom_save(sonpath,'class_map'+str(p))
          del fig 

       except:
          print "error: map could not be created..."

       kml = simplekml.Kml()
       ground = kml.newgroundoverlay(name='GroundOverlay')
       ground.icon.href = 'class_map'+str(p)+'.png'
       ground.latlonbox.north = np.min(humlat)-0.00001
       ground.latlonbox.south = np.max(humlat)+0.00001
       ground.latlonbox.east =  np.max(humlon)+0.00001
       ground.latlonbox.west =  np.min(humlon)-0.00001
       ground.latlonbox.rotation = 0

       #kml.save(sonpath+'class_GroundOverlay'+str(p)+'.kml')
       kml.save(os.path.normpath(os.path.join(sonpath,'class_GroundOverlay'+str(p)+'.kml')))

    if dowrite==1:

       X = []; Y = []; S = [];
       for p in xrange(len(class_fp)):
          #dat = np.genfromtxt(sonpath+'x_y_class'+str(p)+'.asc', delimiter=' ')
          dat = np.genfromtxt(os.path.normpath(os.path.join(sonpath,'x_y_class'+str(p)+'.asc')), delimiter=' ')
          X.append(dat[:,0])
          Y.append(dat[:,1])
          S.append(dat[:,2])
          del dat

       # merge flatten and stack
       X = np.asarray(np.hstack(X),'float')
       X = X.flatten()

       # merge flatten and stack
       Y = np.asarray(np.hstack(Y),'float')
       Y = Y.flatten()

       # merge flatten and stack
       S = np.asarray(np.hstack(S),'float')
       S = S.flatten()

       humlon, humlat = trans(X, Y, inverse=True)

       if dogrid==1:

          grid_x, grid_y = np.meshgrid( np.arange(np.min(X), np.max(X), res), np.arange(np.min(Y), np.max(Y), res) )  

          del X, Y
          longrid, latgrid = trans(grid_x, grid_y, inverse=True)
          shape = np.shape(grid_x)
          #del grid_y, grid_x

          targ_def = pyresample.geometry.SwathDefinition(lons=longrid.flatten(), lats=latgrid.flatten())
          del longrid, latgrid

          orig_def = pyresample.geometry.SwathDefinition(lons=humlon.flatten(), lats=humlat.flatten())
          #del humlat, humlon

          #influence = 1 #m
          #numneighbours = 64

          if mode==1:
             try:
                # nearest neighbour
                dat = pyresample.kd_tree.resample_nearest(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, fill_value=None, nprocs = cpu_count())
             except:
                # nearest neighbour
                dat, stdev, counts = pyresample.kd_tree.resample_nearest(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, fill_value=None, with_uncert = True, nprocs = 1)

          elif mode==2:
             # custom inverse distance 
             wf = lambda r: 1/r**2

             try:
                dat, stdev, counts = pyresample.kd_tree.resample_custom(orig_def, merge.flatten(),targ_def, radius_of_influence=influence, neighbours=nn, weight_funcs=wf, fill_value=None, with_uncert = True, nprocs = cpu_count())
             except:
                dat, stdev, counts = pyresample.kd_tree.resample_custom(orig_def, merge.flatten(),targ_def, radius_of_influence=influence, neighbours=nn, weight_funcs=wf, fill_value=None, with_uncert = True, nprocs = 1)   

          elif mode==3:
             sigmas = 1 #m
             eps = 2

             try:
                dat, stdev, counts = pyresample.kd_tree.resample_gauss(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, neighbours=nn, sigmas=sigmas, fill_value=None, with_uncert = np.nan, nprocs = cpu_count(), epsilon = eps)
             except:
                dat, stdev, counts = pyresample.kd_tree.resample_gauss(orig_def, merge.flatten(), targ_def, radius_of_influence=influence, neighbours=nn, sigmas=sigmas, fill_value=None, with_uncert = np.nan, nprocs = 1, epsilon = eps)


          dat = dat.reshape(shape)

          if mode>1:
             stdev = stdev.reshape(shape)
             counts = counts.reshape(shape)

          mask = dat.mask.copy()

          dat[mask==1] = 0

          if mode>1:
             dat[(stdev>5) & (mask!=0)] = np.nan
             dat[(counts<nn) & (counts>0)] = np.nan

          dat2 = replace_nans.RN(dat.astype('float64'),1000,0.01,2,'localmean').getdata()
          dat2[dat==0] = np.nan

          # get a new mask
          mask = np.isnan(dat2)

          mask = ~binary_dilation(binary_erosion(~mask,structure=np.ones((15,15))), structure=np.ones((15,15)))
          #mask = binary_fill_holes(mask, structure=np.ones((15,15)))
          #mask = ~binary_fill_holes(~mask, structure=np.ones((15,15)))

          dat2[mask==1] = np.nan
          dat2[dat2<1] = np.nan

          del dat
          dat = dat2
          del dat2


       if dogrid==1:
          ## mask
          #dat[dist> 1 ] = np.nan

          #el dist, tree

          dat[dat==0] = np.nan
          dat[np.isinf(dat)] = np.nan

          datm = np.ma.masked_invalid(dat)

          glon, glat = trans(grid_x, grid_y, inverse=True)
          del grid_x, grid_y

       levels = [0.5,0.75,1.25,1.5,1.75,2,3]

       try:
          print "drawing and printing map ..."
          fig = plt.figure()
          map = Basemap(projection='merc', epsg=cs2cs_args.split(':')[1],
           resolution = 'i',
           llcrnrlon=np.min(humlon)-0.00001, llcrnrlat=np.min(humlat)-0.00001,
           urcrnrlon=np.max(humlon)+0.00001, urcrnrlat=np.max(humlat)+0.00001)

          map.arcgisimage(server='http://server.arcgisonline.com/ArcGIS', service='World_Imagery', xpixels=1000, ypixels=None, dpi=300)
          if dogrid==1:
             gx,gy = map.projtran(glon, glat)

          if dogrid==1:
             map.contourf(gx, gy, datm, levels, cmap='YlOrRd')
          else: 
             ## draw point cloud
             x,y = map.projtran(humlon, humlat)
             map.scatter(x.flatten(), y.flatten(), 0.5, S.flatten(), cmap='YlOrRd', linewidth = '0')

          custom_save2(sonpath,'class_map_imagery'+str(p))
          del fig 
       except:
          print "error: map could not be created..."
Пример #11
0
    Y = Y[np.where(np.logical_not(np.isnan(X)))]
    merge = merge.flatten()[np.where(np.logical_not(np.isnan(X)))]
    X = X[np.where(np.logical_not(np.isnan(X)))]

    X = X[np.where(np.logical_not(np.isnan(merge)))]
    Y = Y[np.where(np.logical_not(np.isnan(merge)))]
    merge = merge[np.where(np.logical_not(np.isnan(merge)))]

    # plot to check
    #plt.scatter(X[::20],Y[::20],10,merge[::20], linewidth=0)

    print "writing point cloud"
    ## write raw bs to file
    outfile = os.path.normpath(os.path.join(sonpath,'x_y_slicsegmentnumber.asc'))

    np.savetxt(outfile, np.hstack((humutils.ascol(X.flatten()),humutils.ascol(Y.flatten()), humutils.ascol(merge.flatten()) )) , fmt="%8.6f %8.6f %8.6f") 
  
    trans =  pyproj.Proj(init="epsg:26949")
    humlon, humlat = trans(X, Y, inverse=True)
    res = 0.25

    orig_def, targ_def, grid_x, grid_y, res, shape = get_griddefs(np.min(X), np.max(X), np.min(Y), np.max(Y), res, humlon, humlat, trans)

    grid_x = grid_x.astype('float32')
    grid_y = grid_y.astype('float32')
                                  
    sigmas = 1 #m
    eps = 2
    mode = 1
    
    print 'Now Gridding slic superpixels...'