Пример #1
0
def plot_initial_geometry(ni=0.0, mu=0.5):
  	"""
	Visualizes the initial spaceraft conditions for the gtoc6 problem. Given a point on the initial spheres, \
	it assumes a velocity (almost) pointing toward Jupiter.
	
	THIS IS ONLY A VISUALIZATION, the initial velocityshould not be taken as realistic.
	"""
  
	from mpl_toolkits.mplot3d import Axes3D
	import matplotlib.pyplot as plt
	from math import sin,cos,acos,pi
	from PyKEP.orbit_plots import plot_kepler, plot_planet
	from PyKEP import DAY2SEC, propagate_lagrangian, epoch
	from scipy.linalg import norm


	ep=epoch(0.0)
	days=300.0
	
	r = [JR*1000*cos(ni)*cos(mu), JR*1000*cos(ni)*sin(mu),JR*1000*sin(ni)]
	
	VINF = 3400.0
	v = [-d/norm(r)*3400 for d in r]
	v = [d+200 for d in v]
	
	fig = plt.figure()
	ax = fig.gca(projection='3d', aspect='equal')
	
	plot_planet(ax,io,color = 'r', units = JR, t0 = ep, legend=True)
	plot_planet(ax,europa,color = 'b', units = JR, t0 = ep, legend=True)
	plot_planet(ax,ganymede,color = 'k', units = JR, t0 = ep, legend=True)
	plot_planet(ax,callisto,color = 'y', units = JR, t0 = ep, legend=True)
	plot_kepler(ax,r,v,days*DAY2SEC,MU_JUPITER, N=200, units = JR, color = 'b')
	plt.plot([r[0]/JR],[r[1]/JR],[r[2]/JR],'o')
	plt.show()
Пример #2
0
def _mga_part_plot(self, x):
    """
	Plots the trajectory represented by the decision vector x
	
	Example::
	
	  prob.plot(x)
	"""
    import matplotlib as mpl
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler
    from PyKEP import epoch, propagate_lagrangian, lambert_problem, fb_prop, AU, MU_SUN, DAY2SEC
    from math import pi, acos, cos, sin
    from scipy.linalg import norm

    mpl.rcParams["legend.fontsize"] = 10
    fig = plt.figure()
    ax = fig.gca(projection="3d", aspect="equal")
    ax.scatter(0, 0, 0, color="y")

    JR = 71492000.0
    legs = len(x) / 4
    seq = self.get_sequence()
    common_mu = seq[0].mu_central_body
    start_mjd2000 = self.t0.mjd2000

    # 1 -  we 'decode' the chromosome recording the various times of flight (days) in the list T
    T = x[3::4]

    # 2 - We compute the epochs and ephemerides of the planetary encounters
    t_P = list([None] * (legs + 1))
    r_P = list([None] * (legs + 1))
    v_P = list([None] * (legs + 1))

    for i, planet in enumerate(seq):
        t_P[i] = epoch(start_mjd2000 + sum(T[:i]))
        r_P[i], v_P[i] = planet.eph(t_P[i])
        plot_planet(ax, planet, t0=t_P[i], color=(0.8, 0.6, 0.8), legend=True, units=JR)

    v_end_l = [a + b for a, b in zip(v_P[0], self.vinf_in)]
    # 4 - And we iterate on the legs
    for i in xrange(0, legs):
        # Fly-by
        v_out = fb_prop(v_end_l, v_P[i], x[1 + 4 * i] * seq[i - 1].radius, x[4 * i], seq[i].mu_self)
        # s/c propagation before the DSM
        r, v = propagate_lagrangian(r_P[i], v_out, x[4 * i + 2] * T[i] * DAY2SEC, common_mu)
        plot_kepler(
            ax, r_P[i], v_out, x[4 * i + 2] * T[i] * DAY2SEC, common_mu, N=500, color="b", legend=False, units=JR
        )
        # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
        dt = (1 - x[4 * i + 2]) * T[i] * DAY2SEC
        l = lambert_problem(r, r_P[i + 1], dt, common_mu, False, False)
        plot_lambert(ax, l, sol=0, color="r", legend=False, units=JR, N=500)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
    plt.show()
    return ax
Пример #3
0
def _mga_1dsm_tof_plot(self, x):
    """
    Plots the trajectory represented by the decision vector x
    """
    import matplotlib as mpl
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler
    from PyKEP import epoch, propagate_lagrangian, lambert_problem, fb_prop, AU, MU_SUN, DAY2SEC
    from math import pi, acos, cos, sin
    from scipy.linalg import norm

    mpl.rcParams['legend.fontsize'] = 10
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.scatter(0, 0, 0, color='y')

    seq = self.get_sequence()

    # 2 - We plot the first leg
    r_P0, v_P0 = seq[0].eph(epoch(x[0]))
    plot_planet(ax,
                seq[0],
                t0=epoch(x[0]),
                color=(0.8, 0.6, 0.8),
                legend=True,
                units=AU)
    r_P1, v_P1 = seq[1].eph(epoch(x[0] + x[5]))
    theta = 2 * pi * x[1]
    phi = acos(2 * x[2] - 1) - pi / 2

    Vinfx = x[3] * cos(phi) * cos(theta)
    Vinfy = x[3] * cos(phi) * sin(theta)
    Vinfz = x[3] * sin(phi)

    v0 = [a + b for a, b in zip(v_P0, [Vinfx, Vinfy, Vinfz])]
    r, v = propagate_lagrangian(r_P0, v0, x[4] * x[5] * DAY2SEC,
                                seq[0].mu_central_body)
    plot_kepler(ax,
                r_P0,
                v0,
                x[4] * x[5] * DAY2SEC,
                seq[0].mu_central_body,
                N=100,
                color='b',
                legend=False,
                units=AU)

    # Lambert arc to reach seq[1]
    dt = (1 - x[4]) * x[5] * DAY2SEC
    l = lambert_problem(r, r_P1, dt, seq[0].mu_central_body)
    plot_lambert(ax, l, sol=0, color='r', legend=False, units=AU)
    v_end_l = l.get_v2()[0]

    vinf_in = [a - b for a, b in zip(v_end_l, v_P1)]
    _part_plot(x[6:], AU, ax, seq[1:], x[0] + x[5], vinf_in)
    return ax
Пример #4
0
def _mga_1dsm_tof_plot(self, x):
    """
    Plots the trajectory represented by the decision vector x
    """
    import matplotlib as mpl
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler
    from PyKEP import epoch, propagate_lagrangian, lambert_problem, fb_prop, AU, MU_SUN, DAY2SEC
    from math import pi, acos, cos, sin
    from scipy.linalg import norm

    mpl.rcParams['legend.fontsize'] = 10
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.scatter(0, 0, 0, color='y')

    seq = self.get_sequence()

    # 2 - We plot the first leg
    r_P0, v_P0 = seq[0].eph(epoch(x[0]))
    plot_planet(ax, seq[0], t0=epoch(x[0]), color=(
        0.8, 0.6, 0.8), legend=True, units = AU)
    r_P1, v_P1 = seq[1].eph(epoch(x[0] + x[5]))
    theta = 2 * pi * x[1]
    phi = acos(2 * x[2] - 1) - pi / 2

    Vinfx = x[3] * cos(phi) * cos(theta)
    Vinfy = x[3] * cos(phi) * sin(theta)
    Vinfz = x[3] * sin(phi)

    v0 = [a + b for a, b in zip(v_P0, [Vinfx, Vinfy, Vinfz])]
    r, v = propagate_lagrangian(
        r_P0, v0, x[4] * x[5] * DAY2SEC, seq[0].mu_central_body)
    plot_kepler(
        ax,
        r_P0,
        v0,
        x[4] *
        x[5] *
        DAY2SEC,
        seq[0].mu_central_body,
        N=100,
        color='b',
        legend=False,
        units=AU)

    # Lambert arc to reach seq[1]
    dt = (1 - x[4]) * x[5] * DAY2SEC
    l = lambert_problem(r, r_P1, dt, seq[0].mu_central_body)
    plot_lambert(ax, l, sol=0, color='r', legend=False, units=AU)
    v_end_l = l.get_v2()[0]

    vinf_in = [a - b for a, b in zip(v_end_l, v_P1)]
    _part_plot(x[6:], AU, ax, seq[1:], x[0] + x[5], vinf_in)
    return ax
Пример #5
0
def _part_plot(x, units, ax, seq, start_mjd2000, vinf_in):
    """
    Plots the trajectory represented by a decision vector x = [beta,rp,eta,T] * N
    associated to a sequence seq, a start_mjd2000 and an incoming vinf_in
    """
    from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler
    from PyKEP import epoch, propagate_lagrangian, lambert_problem, fb_prop, AU, MU_SUN, DAY2SEC
    from math import pi, acos, cos, sin
    from scipy.linalg import norm

    legs = len(x) / 4
    common_mu = seq[0].mu_central_body

    # 1 -  we 'decode' the chromosome recording the various times of flight
    # (days) in the list T
    T = x[3::4]

    # 2 - We compute the epochs and ephemerides of the planetary encounters
    t_P = list([None] * (legs + 1))
    r_P = list([None] * (legs + 1))
    v_P = list([None] * (legs + 1))

    for i, planet in enumerate(seq):
        t_P[i] = epoch(start_mjd2000 + sum(T[:i]))
        r_P[i], v_P[i] = planet.eph(t_P[i])
        plot_planet(ax,
                    planet,
                    t0=t_P[i],
                    color=(0.8, 0.6, 0.8),
                    legend=True,
                    units=units)

    v_end_l = [a + b for a, b in zip(v_P[0], vinf_in)]
    # 4 - And we iterate on the legs
    for i in range(0, legs):
        # Fly-by
        v_out = fb_prop(v_end_l, v_P[i], x[1 + 4 * i] * seq[i].radius,
                        x[4 * i], seq[i].mu_self)
        # s/c propagation before the DSM
        r, v = propagate_lagrangian(r_P[i], v_out,
                                    x[4 * i + 2] * T[i] * DAY2SEC, common_mu)
        plot_kepler(ax,
                    r_P[i],
                    v_out,
                    x[4 * i + 2] * T[i] * DAY2SEC,
                    common_mu,
                    N=500,
                    color='b',
                    legend=False,
                    units=units)
        # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
        dt = (1 - x[4 * i + 2]) * T[i] * DAY2SEC
        l = lambert_problem(r, r_P[i + 1], dt, common_mu, False, False)
        plot_lambert(ax, l, sol=0, color='r', legend=False, units=units, N=500)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
Пример #6
0
def _part_plot(x, units, axis, seq, start_mjd2000, vinf_in):
    """
    Plots the trajectory represented by a decision vector x = [beta,rp,eta,T] * N
    associated to a sequence seq, a start_mjd2000 and an incoming vinf_in
    """
    from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler
    from PyKEP import epoch, propagate_lagrangian, lambert_problem, fb_prop, AU, MU_SUN, DAY2SEC
    from math import pi, acos, cos, sin
    from scipy.linalg import norm

    legs = len(x) // 4
    common_mu = seq[0].mu_central_body

    # 1 -  we 'decode' the chromosome recording the various times of flight
    # (days) in the list T
    T = x[3::4]

    # 2 - We compute the epochs and ephemerides of the planetary encounters
    t_P = list([None] * (legs + 1))
    r_P = list([None] * (legs + 1))
    v_P = list([None] * (legs + 1))

    for i, planet in enumerate(seq):
        t_P[i] = epoch(start_mjd2000 + sum(T[:i]))
        r_P[i], v_P[i] = planet.eph(t_P[i])
        plot_planet(planet, t0=t_P[i], color=(
            0.8, 0.6, 0.8), legend=True, units = units, ax=axis)

    v_end_l = [a + b for a, b in zip(v_P[0], vinf_in)]
    # 4 - And we iterate on the legs
    for i in range(0, legs):
        # Fly-by
        v_out = fb_prop(v_end_l,
                        v_P[i],
                        x[1 + 4 * i] * seq[i].radius,
                        x[4 * i],
                        seq[i].mu_self)
        # s/c propagation before the DSM
        r, v = propagate_lagrangian(
            r_P[i], v_out, x[4 * i + 2] * T[i] * DAY2SEC, common_mu)
        plot_kepler(r_P[i], v_out, x[4 * i + 2] * T[i] * DAY2SEC,
                    common_mu, N=500, color='b', legend=False, units=units, ax=axis)
        # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
        dt = (1 - x[4 * i + 2]) * T[i] * DAY2SEC
        l = lambert_problem(r, r_P[i + 1], dt, common_mu, False, False)
        plot_lambert(
            l, sol=0, color='r', legend=False, units=units, N=500, ax=axis)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
Пример #7
0
def plot_initial_geometry(ni=0.0, mu=0.5):
    """
	Visualizes the initial spaceraft conditions for the gtoc6 problem. Given a point on the initial spheres, \
	it assumes a velocity (almost) pointing toward Jupiter.
	
	THIS IS ONLY A VISUALIZATION, the initial velocityshould not be taken as realistic.
	"""

    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from math import sin, cos, acos, pi
    from PyKEP.orbit_plots import plot_kepler, plot_planet
    from PyKEP import DAY2SEC, propagate_lagrangian, epoch
    from scipy.linalg import norm

    ep = epoch(0.0)
    days = 300.0

    r = [
        JR * 1000 * cos(ni) * cos(mu), JR * 1000 * cos(ni) * sin(mu),
        JR * 1000 * sin(ni)
    ]

    VINF = 3400.0
    v = [-d / norm(r) * 3400 for d in r]
    v = [d + 200 for d in v]

    fig = plt.figure()
    ax = fig.gca(projection='3d', aspect='equal')

    plot_planet(ax, io, color='r', units=JR, t0=ep, legend=True)
    plot_planet(ax, europa, color='b', units=JR, t0=ep, legend=True)
    plot_planet(ax, ganymede, color='k', units=JR, t0=ep, legend=True)
    plot_planet(ax, callisto, color='y', units=JR, t0=ep, legend=True)
    plot_kepler(ax,
                r,
                v,
                days * DAY2SEC,
                MU_JUPITER,
                N=200,
                units=JR,
                color='b')
    plt.plot([r[0] / JR], [r[1] / JR], [r[2] / JR], 'o')
    plt.show()
Пример #8
0
def _mga_incipit_plot_old(self, x, plot_leg_0=False):
    """
    Plots the trajectory represented by the decision vector x

    Example::

      prob.plot(x)
    """
    import matplotlib as mpl
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler
    from PyKEP import epoch, propagate_lagrangian, lambert_problem, fb_prop, AU, MU_SUN, DAY2SEC
    from math import pi, acos, cos, sin
    from scipy.linalg import norm

    mpl.rcParams['legend.fontsize'] = 10
    fig = plt.figure()
    ax = fig.gca(projection='3d', aspect='equal')
    ax.scatter(0, 0, 0, color='y')

    JR = 71492000.0
    legs = len(x) / 4
    seq = self.get_sequence()
    common_mu = seq[0].mu_central_body

    # 1 -  we 'decode' the chromosome recording the various times of flight
    # (days) in the list T
    T = x[3::4]

    # 2 - We compute the epochs and ephemerides of the planetary encounters
    t_P = list([None] * legs)
    r_P = list([None] * legs)
    v_P = list([None] * legs)
    DV = list([None] * legs)

    for i, planet in enumerate(seq):
        t_P[i] = epoch(x[0] + sum(T[:i + 1]))
        r_P[i], v_P[i] = planet.eph(t_P[i])
        plot_planet(ax, planet, t0=t_P[i], color=(
            0.8, 0.6, 0.8), legend=True, units = JR)

    # 3 - We start with the first leg: a lambert arc
    theta = 2 * pi * x[1]
    phi = acos(2 * x[2] - 1) - pi / 2
    # phi close to zero is in the moon orbit plane injection
    r = [cos(phi) * sin(theta), cos(phi) * cos(theta), sin(phi)]
    r = [JR * 1000 * d for d in r]

    l = lambert_problem(r, r_P[0], T[0] * DAY2SEC, common_mu, False, False)
    if (plot_leg_0):
        plot_lambert(ax, l, sol=0, color='k', legend=False, units=JR, N=500)

    # Lambert arc to reach seq[1]
    v_end_l = l.get_v2()[0]
    v_beg_l = l.get_v1()[0]

    # 4 - And we proceed with each successive leg
    for i in range(1, legs):
        # Fly-by
        v_out = fb_prop(v_end_l,
                        v_P[i - 1],
                        x[1 + 4 * i] * seq[i - 1].radius,
                        x[4 * i],
                        seq[i - 1].mu_self)
        # s/c propagation before the DSM
        r, v = propagate_lagrangian(
            r_P[i - 1], v_out, x[4 * i + 2] * T[i] * DAY2SEC, common_mu)
        plot_kepler(ax,
                    r_P[i - 1],
                    v_out,
                    x[4 * i + 2] * T[i] * DAY2SEC,
                    common_mu,
                    N=500,
                    color='b',
                    legend=False,
                    units=JR)
        # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
        dt = (1 - x[4 * i + 2]) * T[i] * DAY2SEC
        l = lambert_problem(r, r_P[i], dt, common_mu, False, False)
        plot_lambert(ax, l, sol=0, color='r', legend=False, units=JR, N=500)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
    plt.show()
    return ax
Пример #9
0
def _mga_1dsm_tof_plot_old(self, x):
    """
    Plots the trajectory represented by the decision vector x
    """
    import matplotlib as mpl
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler
    from PyKEP import epoch, propagate_lagrangian, lambert_problem, fb_prop, AU, MU_SUN, DAY2SEC
    from math import pi, acos, cos, sin
    from scipy.linalg import norm

    mpl.rcParams['legend.fontsize'] = 10
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.scatter(0, 0, 0, color='y')

    seq = self.get_sequence()

    n = (len(seq) - 1)
    # 1 -  we 'decode' the chromosome recording the various times of flight
    # (days) in the list T
    T = x[5::4]

    # 2 - We compute the epochs and ephemerides of the planetary encounters
    t_P = list([None] * (n + 1))
    r_P = list([None] * (n + 1))
    v_P = list([None] * (n + 1))
    DV = list([None] * (n + 1))

    for i, planet in enumerate(seq):
        t_P[i] = epoch(x[0] + sum(T[0:i]))
        r_P[i], v_P[i] = planet.eph(t_P[i])
        plot_planet(ax, planet, t0=t_P[i], color=(
            0.8, 0.6, 0.8), legend=True, units = AU)

    # 3 - We start with the first leg
    theta = 2 * pi * x[1]
    phi = acos(2 * x[2] - 1) - pi / 2

    Vinfx = x[3] * cos(phi) * cos(theta)
    Vinfy = x[3] * cos(phi) * sin(theta)
    Vinfz = x[3] * sin(phi)

    v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])]
    r, v = propagate_lagrangian(
        r_P[0], v0, x[4] * T[0] * DAY2SEC, seq[0].mu_central_body)
    plot_kepler(
        ax,
        r_P[0],
        v0,
        x[4] *
        T[0] *
        DAY2SEC,
        seq[0].mu_central_body,
        N=100,
        color='b',
        legend=False,
        units=AU)

    # Lambert arc to reach seq[1]
    dt = (1 - x[4]) * T[0] * DAY2SEC
    l = lambert_problem(r, r_P[1], dt, seq[0].mu_central_body)
    plot_lambert(ax, l, sol=0, color='r', legend=False, units=AU)
    v_end_l = l.get_v2()[0]
    v_beg_l = l.get_v1()[0]

    # First DSM occuring at time nu1*T1
    DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])

    # 4 - And we proceed with each successive leg
    for i in range(1, n):
        # Fly-by
        v_out = fb_prop(v_end_l,
                        v_P[i],
                        x[7 + (i - 1) * 4] * seq[i].radius,
                        x[6 + (i - 1) * 4],
                        seq[i].mu_self)
        # s/c propagation before the DSM
        r, v = propagate_lagrangian(
            r_P[i], v_out, x[8 + (i - 1) * 4] * T[i] * DAY2SEC, seq[0].
            mu_central_body)
        plot_kepler(ax,
                    r_P[i],
                    v_out,
                    x[8 + (i - 1) * 4] * T[i] * DAY2SEC,
                    seq[0].mu_central_body,
                    N=100,
                    color='b',
                    legend=False,
                    units=AU)
        # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
        dt = (1 - x[8 + (i - 1) * 4]) * T[i] * DAY2SEC
        l = lambert_problem(r, r_P[i + 1], dt, seq[0].mu_central_body)
        plot_lambert(ax, l, sol=0, color='r', legend=False, units=AU)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
        # DSM occurring at time nu2*T2
        DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])
    return ax
Пример #10
0
def _mga_part_plot_old(self, x):
    """
    Plots the trajectory represented by the decision vector x

    Example::

      prob.plot(x)
    """
    import matplotlib as mpl
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler
    from PyKEP import epoch, propagate_lagrangian, lambert_problem, fb_prop, AU, MU_SUN, DAY2SEC
    from math import pi, acos, cos, sin
    from scipy.linalg import norm

    mpl.rcParams['legend.fontsize'] = 10
    fig = plt.figure()
    ax = fig.gca(projection='3d', aspect='equal')
    ax.scatter(0, 0, 0, color='y')

    JR = 71492000.0
    legs = len(x) / 4
    seq = self.get_sequence()
    common_mu = seq[0].mu_central_body
    start_mjd2000 = self.t0.mjd2000

    # 1 -  we 'decode' the chromosome recording the various times of flight
    # (days) in the list T
    T = x[3::4]

    # 2 - We compute the epochs and ephemerides of the planetary encounters
    t_P = list([None] * (legs + 1))
    r_P = list([None] * (legs + 1))
    v_P = list([None] * (legs + 1))

    for i, planet in enumerate(seq):
        t_P[i] = epoch(start_mjd2000 + sum(T[:i]))
        r_P[i], v_P[i] = planet.eph(t_P[i])
        plot_planet(ax,
                    planet,
                    t0=t_P[i],
                    color=(0.8, 0.6, 0.8),
                    legend=True,
                    units=JR)

    v_end_l = [a + b for a, b in zip(v_P[0], self.vinf_in)]
    # 4 - And we iterate on the legs
    for i in range(0, legs):
        # Fly-by
        v_out = fb_prop(v_end_l, v_P[i], x[1 + 4 * i] * seq[i - 1].radius,
                        x[4 * i], seq[i].mu_self)
        # s/c propagation before the DSM
        r, v = propagate_lagrangian(r_P[i], v_out,
                                    x[4 * i + 2] * T[i] * DAY2SEC, common_mu)
        plot_kepler(ax,
                    r_P[i],
                    v_out,
                    x[4 * i + 2] * T[i] * DAY2SEC,
                    common_mu,
                    N=500,
                    color='b',
                    legend=False,
                    units=JR)
        # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
        dt = (1 - x[4 * i + 2]) * T[i] * DAY2SEC
        l = lambert_problem(r, r_P[i + 1], dt, common_mu, False, False)
        plot_lambert(ax, l, sol=0, color='r', legend=False, units=JR, N=500)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
    plt.show()
    return ax
Пример #11
0
def _mga_incipit_plot_old(self, x, plot_leg_0=False):
    """
    Plots the trajectory represented by the decision vector x

    Example::

      prob.plot(x)
    """
    import matplotlib as mpl
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler
    from PyKEP import epoch, propagate_lagrangian, lambert_problem, fb_prop, AU, MU_SUN, DAY2SEC
    from math import pi, acos, cos, sin
    from scipy.linalg import norm

    mpl.rcParams['legend.fontsize'] = 10
    fig = plt.figure()
    ax = fig.gca(projection='3d', aspect='equal')
    ax.scatter(0, 0, 0, color='y')

    JR = 71492000.0
    legs = len(x) / 4
    seq = self.get_sequence()
    common_mu = seq[0].mu_central_body

    # 1 -  we 'decode' the chromosome recording the various times of flight
    # (days) in the list T
    T = x[3::4]

    # 2 - We compute the epochs and ephemerides of the planetary encounters
    t_P = list([None] * legs)
    r_P = list([None] * legs)
    v_P = list([None] * legs)
    DV = list([None] * legs)

    for i, planet in enumerate(seq):
        t_P[i] = epoch(x[0] + sum(T[:i + 1]))
        r_P[i], v_P[i] = planet.eph(t_P[i])
        plot_planet(ax,
                    planet,
                    t0=t_P[i],
                    color=(0.8, 0.6, 0.8),
                    legend=True,
                    units=JR)

    # 3 - We start with the first leg: a lambert arc
    theta = 2 * pi * x[1]
    phi = acos(2 * x[2] - 1) - pi / 2
    # phi close to zero is in the moon orbit plane injection
    r = [cos(phi) * sin(theta), cos(phi) * cos(theta), sin(phi)]
    r = [JR * 1000 * d for d in r]

    l = lambert_problem(r, r_P[0], T[0] * DAY2SEC, common_mu, False, False)
    if (plot_leg_0):
        plot_lambert(ax, l, sol=0, color='k', legend=False, units=JR, N=500)

    # Lambert arc to reach seq[1]
    v_end_l = l.get_v2()[0]
    v_beg_l = l.get_v1()[0]

    # 4 - And we proceed with each successive leg
    for i in range(1, legs):
        # Fly-by
        v_out = fb_prop(v_end_l, v_P[i - 1], x[1 + 4 * i] * seq[i - 1].radius,
                        x[4 * i], seq[i - 1].mu_self)
        # s/c propagation before the DSM
        r, v = propagate_lagrangian(r_P[i - 1], v_out,
                                    x[4 * i + 2] * T[i] * DAY2SEC, common_mu)
        plot_kepler(ax,
                    r_P[i - 1],
                    v_out,
                    x[4 * i + 2] * T[i] * DAY2SEC,
                    common_mu,
                    N=500,
                    color='b',
                    legend=False,
                    units=JR)
        # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
        dt = (1 - x[4 * i + 2]) * T[i] * DAY2SEC
        l = lambert_problem(r, r_P[i], dt, common_mu, False, False)
        plot_lambert(ax, l, sol=0, color='r', legend=False, units=JR, N=500)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
    plt.show()
    return ax
Пример #12
0
def _mga_1dsm_tof_plot_old(self, x):
    """
    Plots the trajectory represented by the decision vector x
    """
    import matplotlib as mpl
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler
    from PyKEP import epoch, propagate_lagrangian, lambert_problem, fb_prop, AU, MU_SUN, DAY2SEC
    from math import pi, acos, cos, sin
    from scipy.linalg import norm

    mpl.rcParams['legend.fontsize'] = 10
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.scatter(0, 0, 0, color='y')

    seq = self.get_sequence()

    n = (len(seq) - 1)
    # 1 -  we 'decode' the chromosome recording the various times of flight
    # (days) in the list T
    T = x[5::4]

    # 2 - We compute the epochs and ephemerides of the planetary encounters
    t_P = list([None] * (n + 1))
    r_P = list([None] * (n + 1))
    v_P = list([None] * (n + 1))
    DV = list([None] * (n + 1))

    for i, planet in enumerate(seq):
        t_P[i] = epoch(x[0] + sum(T[0:i]))
        r_P[i], v_P[i] = planet.eph(t_P[i])
        plot_planet(ax,
                    planet,
                    t0=t_P[i],
                    color=(0.8, 0.6, 0.8),
                    legend=True,
                    units=AU)

    # 3 - We start with the first leg
    theta = 2 * pi * x[1]
    phi = acos(2 * x[2] - 1) - pi / 2

    Vinfx = x[3] * cos(phi) * cos(theta)
    Vinfy = x[3] * cos(phi) * sin(theta)
    Vinfz = x[3] * sin(phi)

    v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])]
    r, v = propagate_lagrangian(r_P[0], v0, x[4] * T[0] * DAY2SEC,
                                seq[0].mu_central_body)
    plot_kepler(ax,
                r_P[0],
                v0,
                x[4] * T[0] * DAY2SEC,
                seq[0].mu_central_body,
                N=100,
                color='b',
                legend=False,
                units=AU)

    # Lambert arc to reach seq[1]
    dt = (1 - x[4]) * T[0] * DAY2SEC
    l = lambert_problem(r, r_P[1], dt, seq[0].mu_central_body)
    plot_lambert(ax, l, sol=0, color='r', legend=False, units=AU)
    v_end_l = l.get_v2()[0]
    v_beg_l = l.get_v1()[0]

    # First DSM occuring at time nu1*T1
    DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])

    # 4 - And we proceed with each successive leg
    for i in range(1, n):
        # Fly-by
        v_out = fb_prop(v_end_l, v_P[i], x[7 + (i - 1) * 4] * seq[i].radius,
                        x[6 + (i - 1) * 4], seq[i].mu_self)
        # s/c propagation before the DSM
        r, v = propagate_lagrangian(r_P[i], v_out,
                                    x[8 + (i - 1) * 4] * T[i] * DAY2SEC,
                                    seq[0].mu_central_body)
        plot_kepler(ax,
                    r_P[i],
                    v_out,
                    x[8 + (i - 1) * 4] * T[i] * DAY2SEC,
                    seq[0].mu_central_body,
                    N=100,
                    color='b',
                    legend=False,
                    units=AU)
        # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
        dt = (1 - x[8 + (i - 1) * 4]) * T[i] * DAY2SEC
        l = lambert_problem(r, r_P[i + 1], dt, seq[0].mu_central_body)
        plot_lambert(ax, l, sol=0, color='r', legend=False, units=AU)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
        # DSM occurring at time nu2*T2
        DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])
    return ax
Пример #13
0
    def plot(self, x, ax=None):
        """
        ax = prob.plot(x, ax=None)

        - x: encoded trajectory
        - ax: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if ax is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axis = fig.gca(projection='3d')
        else:
            axis = ax

        axis.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various times of flight
        # (days) in the list T and the cartesian components of vinf
        T, Vinfx, Vinfy, Vinfz = self._decode_times_and_vinf(x)

        # 2 - We compute the epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self.__n_legs + 1))
        r_P = list([None] * (self.__n_legs + 1))
        v_P = list([None] * (self.__n_legs + 1))
        DV = list([None] * (self.__n_legs + 1))

        for i, planet in enumerate(self.seq):
            t_P[i] = epoch(x[0] + sum(T[0:i]))
            r_P[i], v_P[i] = planet.eph(t_P[i])
            plot_planet(planet,
                        t0=t_P[i],
                        color=(0.8, 0.6, 0.8),
                        legend=True,
                        units=AU,
                        ax=axis)

        # 3 - We start with the first leg
        v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])]
        r, v = propagate_lagrangian(r_P[0], v0, x[5] * T[0] * DAY2SEC,
                                    self.common_mu)

        plot_kepler(r_P[0],
                    v0,
                    x[5] * T[0] * DAY2SEC,
                    self.common_mu,
                    N=100,
                    color='b',
                    legend=False,
                    units=AU,
                    ax=axis)

        # Lambert arc to reach seq[1]
        dt = (1 - x[5]) * T[0] * DAY2SEC
        l = lambert_problem(r, r_P[1], dt, self.common_mu, False, False)
        plot_lambert(l, sol=0, color='r', legend=False, units=AU, ax=axis)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        # First DSM occuring at time nu1*T1
        DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])

        # 4 - And we proceed with each successive leg
        for i in range(1, self.__n_legs):
            # Fly-by
            v_out = fb_prop(v_end_l, v_P[i],
                            x[8 + (i - 1) * 4] * self.seq[i].radius,
                            x[7 + (i - 1) * 4], self.seq[i].mu_self)
            # s/c propagation before the DSM
            r, v = propagate_lagrangian(r_P[i], v_out,
                                        x[9 + (i - 1) * 4] * T[i] * DAY2SEC,
                                        self.common_mu)
            plot_kepler(r_P[i],
                        v_out,
                        x[9 + (i - 1) * 4] * T[i] * DAY2SEC,
                        self.common_mu,
                        N=100,
                        color='b',
                        legend=False,
                        units=AU,
                        ax=axis)
            # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
            dt = (1 - x[9 + (i - 1) * 4]) * T[i] * DAY2SEC

            l = lambert_problem(r, r_P[i + 1], dt, self.common_mu, False,
                                False)
            plot_lambert(l,
                         sol=0,
                         color='r',
                         legend=False,
                         units=AU,
                         N=1000,
                         ax=axis)

            v_end_l = l.get_v2()[0]
            v_beg_l = l.get_v1()[0]
            # DSM occuring at time nu2*T2
            DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])
        plt.show()
        return axis
Пример #14
0
    def plot(self, x, ax=None):
        """
        ax = prob.plot(x, ax=None)

        - x: encoded trajectory
        - ax: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if ax is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axis = fig.gca(projection='3d')
        else:
            axis = ax

        axis.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various deep space
        # manouvres timing (days) in the list T
        T = list([0] * (self.N_max - 1))

        for i in range(len(T)):
            T[i] = log(x[2 + 4 * i])
        total = sum(T)
        T = [x[1] * time / total for time in T]

        # 2 - We compute the starting and ending position
        r_start, v_start = self.start.eph(epoch(x[0]))
        if self.phase_free:
            r_target, v_target = self.target.eph(epoch(x[-1]))
        else:
            r_target, v_target = self.target.eph(epoch(x[0] + x[1]))
        plot_planet(self.start, t0=epoch(x[0]), color=(0.8, 0.6, 0.8), legend=True, units = AU, ax=axis)
        plot_planet(self.target, t0=epoch(x[0] + x[1]), color=(0.8, 0.6, 0.8), legend=True, units = AU, ax=axis)

        # 3 - We loop across inner impulses
        rsc = r_start
        vsc = v_start
        for i, time in enumerate(T[:-1]):
            theta = 2 * pi * x[3 + 4 * i]
            phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2

            Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta)
            Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta)
            Vinfz = x[5 + 4 * i] * sin(phi)

            # We apply the (i+1)-th impulse
            vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])]
            plot_kepler(rsc, vsc, T[
                        i] * DAY2SEC, self.__common_mu, N=200, color='b', legend=False, units=AU, ax=axis)
            rsc, vsc = propagate_lagrangian(
                rsc, vsc, T[i] * DAY2SEC, self.__common_mu)

        cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2)
        # We now compute the remaining two final impulses
        # Lambert arc to reach seq[1]
        dt = T[-1] * DAY2SEC
        l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False)
        plot_lambert(
            l, sol=0, color='r', legend=False, units=AU, ax=axis, N=200)
        plt.show()
        return axis
Пример #15
0
	def plot(self,x):
		"""
		Plots the trajectory represented by the decision vector x
		
		Example::
		
		  prob.plot(x)
		"""
		import matplotlib as mpl
		from mpl_toolkits.mplot3d import Axes3D
		import matplotlib.pyplot as plt
		from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

		mpl.rcParams['legend.fontsize'] = 10
		fig = plt.figure()
		ax = fig.gca(projection='3d')
		ax.scatter(0,0,0, color='y')
		
		#1 -  we 'decode' the chromosome recording the various times of flight (days) in the list T for convenience
		T = list([0]*(self.__n_legs))

		for i in xrange(self.__n_legs):
			T[i] = (x[4+4*i]/sum(x[4::4]))*x[3]

		
		#2 - We compute the epochs and ephemerides of the planetary encounters
		t_P = list([None] * (self.__n_legs))
		r_P = list([None] * (self.__n_legs))
		v_P = list([None] * (self.__n_legs))
		DV  = list([None] * (self.__n_legs))
		
		for i,planet in enumerate(self.seq):
			t_P[i] = epoch(x[0]+sum(T[:i+1]))
			r_P[i],v_P[i] = self.seq[i].eph(t_P[i])
			plot_planet(ax, planet, t0=t_P[i], color=(0.8,0.6,0.8), legend=True, units = JR)

		#3 - We start with the first leg: a lambert arc
		theta = 2*pi*x[1]
		phi = acos(2*x[2]-1)-pi/2
		r = [cos(phi)*sin(theta), cos(phi)*cos(theta), sin(phi)] #phi close to zero is in the moon orbit plane injection
		r = [JR*1000*d for d in r]
		
		l = lambert_problem(r,r_P[0],T[0]*DAY2SEC,self.common_mu, False, False)
		plot_lambert(ax,l, sol = 0, color='k', legend=False, units = JR, N=500)

		#Lambert arc to reach seq[1]
		v_end_l = l.get_v2()[0]
		v_beg_l = l.get_v1()[0]

		#First DSM occuring at the very beginning (will be cancelled by the optimizer)
		DV[0] = abs(norm(v_beg_l) - 3400)

		#4 - And we proceed with each successive leg
		for i in xrange(1,self.__n_legs):
			#Fly-by 

			v_out = fb_prop(v_end_l,v_P[i-1],x[6+(i-1)*4]*self.seq[i-1].radius,x[5+(i-1)*4],self.seq[i-1].mu_self)
			#s/c propagation before the DSM
			r,v = propagate_lagrangian(r_P[i-1],v_out,x[4*i+3]*T[i]*DAY2SEC,self.common_mu)
			plot_kepler(ax,r_P[i-1],v_out,x[7+(i-1)*4]*T[i]*DAY2SEC,self.common_mu,N = 500, color='b', legend=False, units = JR)
			#Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
			dt = (1-x[7+(i-1)*4])*T[i]*DAY2SEC
			l = lambert_problem(r,r_P[i],dt,self.common_mu, False, False)
			plot_lambert(ax,l, sol = 0, color='r', legend=False, units = JR, N=500)
			v_end_l = l.get_v2()[0]
			v_beg_l = l.get_v1()[0]
			#DSM occuring at time nu2*T2
			DV[i] = norm([a-b for a,b in zip(v_beg_l,v)])
 
		plt.show()
Пример #16
0
    def plot(self, x):
        """
		Plots the trajectory represented by the decision vector x
		
		Example::
		
		  prob.plot(x)
		"""
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

        mpl.rcParams['legend.fontsize'] = 10
        fig = plt.figure()
        ax = fig.gca(projection='3d')
        ax.scatter(0, 0, 0, color='y')

        #1 -  we 'decode' the chromosome recording the various times of flight (days) in the list T
        T = x[3::4]

        #2 - We compute the epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self.__n_legs))
        r_P = list([None] * (self.__n_legs))
        v_P = list([None] * (self.__n_legs))
        DV = list([None] * (self.__n_legs))

        for i, planet in enumerate(self.seq):
            t_P[i] = epoch(x[0] + sum(T[:i + 1]))
            r_P[i], v_P[i] = self.seq[i].eph(t_P[i])
            plot_planet(ax,
                        planet,
                        t0=t_P[i],
                        color=(0.8, 0.6, 0.8),
                        legend=True,
                        units=JR)

        #3 - We start with the first leg: a lambert arc
        theta = 2 * pi * x[1]
        phi = acos(2 * x[2] - 1) - pi / 2
        r = [cos(phi) * sin(theta),
             cos(phi) * cos(theta),
             sin(phi)]  #phi close to zero is in the moon orbit plane injection
        r = [JR * 1000 * d for d in r]

        l = lambert_problem(r, r_P[0], T[0] * DAY2SEC, self.common_mu, False,
                            False)
        plot_lambert(ax, l, sol=0, color='k', legend=False, units=JR, N=500)

        #Lambert arc to reach seq[1]
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        #First DSM occuring at the very beginning (will be cancelled by the optimizer)
        DV[0] = abs(norm(v_beg_l) - 3400)

        #4 - And we proceed with each successive leg
        for i in xrange(1, self.__n_legs):
            #Fly-by
            v_out = fb_prop(v_end_l, v_P[i - 1],
                            x[1 + 4 * i] * self.seq[i - 1].radius, x[4 * i],
                            self.seq[i - 1].mu_self)
            #s/c propagation before the DSM
            r, v = propagate_lagrangian(r_P[i - 1], v_out,
                                        x[4 * i + 2] * T[i] * DAY2SEC,
                                        self.common_mu)
            plot_kepler(ax,
                        r_P[i - 1],
                        v_out,
                        x[4 * i + 2] * T[i] * DAY2SEC,
                        self.common_mu,
                        N=500,
                        color='b',
                        legend=False,
                        units=JR)
            #Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
            dt = (1 - x[4 * i + 2]) * T[i] * DAY2SEC
            l = lambert_problem(r, r_P[i], dt, self.common_mu, False, False)
            plot_lambert(ax,
                         l,
                         sol=0,
                         color='r',
                         legend=False,
                         units=JR,
                         N=500)
            v_end_l = l.get_v2()[0]
            v_beg_l = l.get_v1()[0]
            #DSM occuring at time nu2*T2
            DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])
        plt.show()
        return ax
Пример #17
0
    def plot(self, x):
        """
		Plots the trajectory represented by the decision vector x
		
		Example::
		
		  prob.plot(x)
		"""
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

        mpl.rcParams['legend.fontsize'] = 10
        fig = plt.figure()
        ax = fig.gca(projection='3d')
        ax.scatter(0, 0, 0, color='y')

        #1 -  we 'decode' the chromosome recording the various times of flight (days) in the list T
        T = list([0] * (self.__n_legs))
        #a[-i] = x[-1-(i-1)*4]
        for i in xrange(self.__n_legs - 1):
            j = i + 1
            T[-j] = (x[5] - sum(T[-(j - 1):])) * x[-1 - (j - 1) * 4]
        T[0] = x[5] - sum(T)

        #2 - We compute the epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self.__n_legs + 1))
        r_P = list([None] * (self.__n_legs + 1))
        v_P = list([None] * (self.__n_legs + 1))
        DV = list([None] * (self.__n_legs + 1))

        for i, planet in enumerate(self.seq):
            t_P[i] = epoch(x[0] + sum(T[0:i]))
            r_P[i], v_P[i] = planet.eph(t_P[i])
            plot_planet(ax,
                        planet,
                        t0=t_P[i],
                        color=(0.8, 0.6, 0.8),
                        legend=True,
                        units=AU)

        #3 - We start with the first leg
        theta = 2 * pi * x[1]
        phi = acos(2 * x[2] - 1) - pi / 2

        Vinfx = x[3] * cos(phi) * cos(theta)
        Vinfy = x[3] * cos(phi) * sin(theta)
        Vinfz = x[3] * sin(phi)

        v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])]
        r, v = propagate_lagrangian(r_P[0], v0, x[4] * T[0] * DAY2SEC,
                                    self.common_mu)
        plot_kepler(ax,
                    r_P[0],
                    v0,
                    x[4] * T[0] * DAY2SEC,
                    self.common_mu,
                    N=100,
                    color='b',
                    legend=False,
                    units=AU)

        #Lambert arc to reach seq[1]
        dt = (1 - x[4]) * T[0] * DAY2SEC
        l = lambert_problem(r, r_P[1], dt, self.common_mu, False, False)
        plot_lambert(ax, l, sol=0, color='r', legend=False, units=AU)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        #First DSM occuring at time nu1*T1
        DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])

        #4 - And we proceed with each successive leg
        for i in range(1, self.__n_legs):
            #Fly-by
            v_out = fb_prop(v_end_l, v_P[i],
                            x[7 + (i - 1) * 4] * self.seq[i].radius,
                            x[6 + (i - 1) * 4], self.seq[i].mu_self)
            #s/c propagation before the DSM
            r, v = propagate_lagrangian(r_P[i], v_out,
                                        x[8 + (i - 1) * 4] * T[i] * DAY2SEC,
                                        self.common_mu)
            plot_kepler(ax,
                        r_P[i],
                        v_out,
                        x[8 + (i - 1) * 4] * T[i] * DAY2SEC,
                        self.common_mu,
                        N=100,
                        color='b',
                        legend=False,
                        units=AU)
            #Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
            dt = (1 - x[8 + (i - 1) * 4]) * T[i] * DAY2SEC

            l = lambert_problem(r, r_P[i + 1], dt, self.common_mu, False,
                                False)
            plot_lambert(ax,
                         l,
                         sol=0,
                         color='r',
                         legend=False,
                         units=AU,
                         N=1000)

            v_end_l = l.get_v2()[0]
            v_beg_l = l.get_v1()[0]
            #DSM occuring at time nu2*T2
            DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])

        plt.show()
Пример #18
0
    def plot(self, x, ax=None):
        """
        ax = prob.plot(x, ax=None)

        - x: encoded trajectory
        - ax: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if ax is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axis = fig.gca(projection='3d')
        else:
            axis = ax

        axis.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various times of flight
        # (days) in the list T and the cartesian components of vinf
        T, Vinfx, Vinfy, Vinfz = self._decode_times_and_vinf(x)

        # 2 - We compute the epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self.__n_legs + 1))
        r_P = list([None] * (self.__n_legs + 1))
        v_P = list([None] * (self.__n_legs + 1))
        DV = list([None] * (self.__n_legs + 1))

        for i, planet in enumerate(self.seq):
            t_P[i] = epoch(x[0] + sum(T[0:i]))
            r_P[i], v_P[i] = planet.eph(t_P[i])
            plot_planet(planet, t0=t_P[i], color=(0.8, 0.6, 0.8), legend=True, units = AU, ax=axis)

        # 3 - We start with the first leg
        v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])]
        r, v = propagate_lagrangian(r_P[0], v0, x[5] * T[0] * DAY2SEC, self.common_mu)

        plot_kepler(r_P[0], v0, x[5] * T[0] * DAY2SEC, self.common_mu, N=100, color='b', legend=False, units=AU, ax=axis)

        # Lambert arc to reach seq[1]
        dt = (1 - x[5]) * T[0] * DAY2SEC
        l = lambert_problem(r, r_P[1], dt, self.common_mu, False, False)
        plot_lambert(l, sol=0, color='r', legend=False, units=AU, ax=axis)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        # First DSM occuring at time nu1*T1
        DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])

        # 4 - And we proceed with each successive leg
        for i in range(1, self.__n_legs):
            # Fly-by
            v_out = fb_prop(v_end_l, v_P[i], x[8 + (i - 1) * 4] * self.seq[i].radius, x[7 + (i - 1) * 4], self.seq[i].mu_self)
            # s/c propagation before the DSM
            r, v = propagate_lagrangian(r_P[i], v_out, x[9 + (i - 1) * 4] * T[i] * DAY2SEC, self.common_mu)
            plot_kepler(r_P[i], v_out, x[9 + (i - 1) * 4] * T[i] * DAY2SEC, self.common_mu, N=100, color='b', legend=False, units=AU, ax=axis)
            # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
            dt = (1 - x[9 + (i - 1) * 4]) * T[i] * DAY2SEC

            l = lambert_problem(r, r_P[i + 1], dt, self.common_mu, False, False)
            plot_lambert(l, sol=0, color='r', legend=False, units=AU, N=1000, ax=axis)

            v_end_l = l.get_v2()[0]
            v_beg_l = l.get_v1()[0]
            # DSM occuring at time nu2*T2
            DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])
        plt.show()
        return axis
Пример #19
0
	def plot(self,x):
		"""
		Plots the trajectory represented by the decision vector x
		
		Example::
		
		  prob.plot(x)
		"""
		import matplotlib as mpl
		from mpl_toolkits.mplot3d import Axes3D
		import matplotlib.pyplot as plt
		from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

		mpl.rcParams['legend.fontsize'] = 10
		fig = plt.figure()
		axis = fig.gca(projection='3d')
		axis.scatter(0,0,0, color='y')
		
		#1 -  we 'decode' the chromosome recording the various times of flight (days) in the list T
		
		T = list([0]*(self.__n_legs))
		for i in range(0, self.__n_legs):
			T[i] = x[4+3*(self.__n_legs - 1) + i+1]
		
		#2 - We compute the epochs and ephemerides of the planetary encounters
		t_P = list([None] * (self.__n_legs+1))
		r_P = list([None] * (self.__n_legs+1))
		v_P = list([None] * (self.__n_legs+1))
		DV = list([None] * (self.__n_legs+1))
		
		for i,planet in enumerate(self.seq):
			t_P[i] = epoch(x[0] + sum(T[0:i]))
			r_P[i],v_P[i] = planet.eph(t_P[i])
			plot_planet(planet, t0=t_P[i], color=(0.8,0.6,0.8), legend=True, units = AU, ax=axis)

		#3 - We start with the first leg
		theta = 2*pi*x[1]
		phi = acos(2*x[2]-1)-pi/2

		Vinfx = x[3]*cos(phi)*cos(theta)
		Vinfy =	x[3]*cos(phi)*sin(theta)
		Vinfz = x[3]*sin(phi)

		v0 = [a+b for a,b in zip(v_P[0],[Vinfx,Vinfy,Vinfz])]
		r,v = propagate_lagrangian(r_P[0],v0,x[4]*T[0]*DAY2SEC,self.common_mu)
		plot_kepler(r_P[0],v0,x[4]*T[0]*DAY2SEC,self.common_mu,N = 100, color='b', legend=False, units = AU, ax=axis)

		#Lambert arc to reach seq[1]
		dt = (1-x[4])*T[0]*DAY2SEC
		l = lambert_problem(r,r_P[1],dt,self.common_mu, False, False)
		plot_lambert(l, sol = 0, color='r', legend=False, units = AU, ax=axis)
		v_end_l = l.get_v2()[0]
		v_beg_l = l.get_v1()[0]

		#First DSM occurring at time nu1*T1
		DV[0] = norm([a-b for a,b in zip(v_beg_l,v)])

		#4 - And we proceed with each successive leg
		for i in range(1,self.__n_legs):
			#Fly-by 
			v_out = fb_prop(v_end_l,v_P[i],x[6+(i-1)*3]*self.seq[i].radius,x[5+(i-1)*3],self.seq[i].mu_self)
			#s/c propagation before the DSM
			r,v = propagate_lagrangian(r_P[i],v_out,x[7+(i-1)*3]*T[i]*DAY2SEC,self.common_mu)
			plot_kepler(r_P[i],v_out,x[7+(i-1)*3]*T[i]*DAY2SEC,self.common_mu,N = 100, color='b', legend=False, units = AU, ax=axis)
			#Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
			dt = (1-x[7+(i-1)*3])*T[i]*DAY2SEC

			l = lambert_problem(r,r_P[i+1],dt,self.common_mu, False, False)
			plot_lambert(l, sol = 0, color='r', legend=False, units = AU, N=1000, ax=axis)

			v_end_l = l.get_v2()[0]
			v_beg_l = l.get_v1()[0]
			#DSM occurring at time nu2*T2
			DV[i] = norm([a-b for a,b in zip(v_beg_l,v)])
		plt.show()
		return axis
Пример #20
0
v3 = np.array([-7557.86574,0,0])


r1a = math.sqrt(r1[0]**2+r1[1]**2+r1[2]**2)

MU_EARTH = 3.986004418e14

dt = 3.1415926535* math.sqrt((r1a+100000)**3/MU_EARTH) # seconds
l = lambert_problem(r1, r2, dt*.5, MU_EARTH)
fig2 = plt.figure(2)
axis2 = fig2.gca(projection='3d')
axis2.scatter([0], [0], [0], color='y') 
plot_lambert(l, sol=0, ax=axis2, color='r')
# plot_lambert(l, sol=1, ax=axis2, color='r')
x0 = l.get_x()[0]
plot_kepler(r1, v0, dt*2, MU_EARTH, N=600, units=1, color='b',legend=False, ax=axis2)
plot_kepler(r2, v3, dt*2.2, MU_EARTH, N=600, units=1, color='b',legend=False, ax=axis2)
axis2.set_ylim3d(-1.2*6378000,1.2*6378000)
axis2.set_xlim3d(-1.2*6378000,1.2*6378000)
plt.xlabel('X coordinate [m]')
plt.ylabel('Y coordinate [m]')
# plt.zlabel('Z coordinate [m]')
# plt.ylabel('DV [m/s]')
plt.title('Lambert transfers for 200km altitude increase with different time of flight')
plt.show()

# dt = 3*3.1415926535* math.sqrt((r1a+100000)**3/MU_EARTH) # seconds
l = lambert_problem(r1, r2, dt*2.4, MU_EARTH)
fig2 = plt.figure(2)
axis2 = fig2.gca(projection='3d')
axis2.scatter([0], [0], [0], color='y') 
Пример #21
0
    def AIO(self,x, doplot = True, doprint = True, rtrn_desc = True, dists_class = None):
        P = doprint
        plots_datas = list([None] * (self.__n))
        PLDists = list([None] * (self.__n-1))
        FBDates = list([None] * (self.__n-1))

        #1 -  we 'decode' the chromosome recording the various times of flight (days) in the list T
        T = list([0]*(self.__n))
        #a[-i] = x[-1-(i-1)*4]
        for i in xrange(self.__n-1):
            j = i+1;
            T[-j] = (x[5] - sum(T[-(j-1):])) * x[-1-(j-1)*4]
        T[0] = x[5] - sum(T)

        #2 - We compute the epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self.__n+1))
        r_P = list([None] * (self.__n+1))
        v_P = list([None] * (self.__n+1))
        DV = list([None] * (self.__n+1))

        for i,planet in enumerate(self.seq):
            t_P[i] = epoch(x[0] + sum(T[0:i]))
            r_P[i],v_P[i] = self.seq[i].eph(t_P[i])

        #3 - We start with the first leg
        if P: print "First Leg:        " + self.seq[0].name + " to " + self.seq[1].name

        theta = 2*pi*x[1]
        phi = acos(2*x[2]-1)-pi/2

        Vinfx = x[3]*cos(phi)*cos(theta)
        Vinfy = x[3]*cos(phi)*sin(theta)
        Vinfz = x[3]*sin(phi)

        if P:
            print("Departure:        " + str(t_P[0]) + " (" + str(t_P[0].mjd2000) + " mjd2000) \n"
                  "Duration:         " + str(T[0]) + " days\n"
                  "VINF:             " + str(x[3] / 1000) + " km/sec\n"
                  "C3:               " + str((x[3] / 1000)**2) + " km^2/s^2")

        v0 = [a+b for a,b in zip(v_P[0], [Vinfx,Vinfy,Vinfz])]
        r,v = propagate_lagrangian(r_P[0], v0, x[4]*T[0]*DAY2SEC, MU_SUN)
        if P: print "DSM after         " + str(x[4]*T[0]) + " days"

        #Lambert arc to reach seq[1]
        dt = (1-x[4])*T[0]*DAY2SEC
        l = lambert_problem(r, r_P[1], dt, MU_SUN)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        # Append data needed for potential plot generation
        plots_datas[0] = [v0, x[4]*T[0]*DAY2SEC, l]

        #First DSM occuring at time nu1*T1
        DV[0] = norm([a-b for a,b in zip(v_beg_l,v)])
        if P: print "DSM magnitude:    " + str(DV[0]) + "m/s"

        #4 - And we proceed with each successive leg
        for i in range(1,self.__n):
            if P:
                print("\nleg no.           " + str(i+1) + ": " + self.seq[i].name + " to " + self.seq[i+1].name + "\n"
                      "Duration:         " + str(T[i]) + "days")

            #Fly-by
            v_out = fb_prop(v_end_l, v_P[i], x[7+(i-1)*4]*self.seq[i].radius, x[6+(i-1)*4], self.seq[i].mu_self)
            PLDists[i-1] = (x[7+(i-1)*4] -1)*self.seq[i].radius/1000.
            FBDates[i-1] = t_P[i]

            if P:
                print("Fly-by epoch:     " + str(t_P[i]) + " (" + str(t_P[i].mjd2000) + " mjd2000) \n"
                      "Fly-by radius:    " + str(x[7+(i-1)*4]) + " planetary radii\n"
                      "Fly-by distance:  " + str( (x[7+(i-1)*4] -1)*self.seq[i].radius/1000.) + " km")

            #s/c propagation before the DSM
            r,v = propagate_lagrangian(r_P[i], v_out, x[8+(i-1)*4]*T[i]*DAY2SEC, MU_SUN)
            if P: print "DSM after         " + str(x[8+(i-1)*4]*T[i]) + " days"

            #Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
            dt = (1-x[8+(i-1)*4])*T[i]*DAY2SEC
            l = lambert_problem(r, r_P[i+1], dt, MU_SUN)
            v_end_l = l.get_v2()[0]
            v_beg_l = l.get_v1()[0]

            # Append data needed for potential plot generation
            plots_datas[i] = [v_out, x[8+(i-1)*4]*T[i]*DAY2SEC, l]

            #DSM occuring at time nu2*T2
            DV[i] = norm([a-b for a,b in zip(v_beg_l,v)])
            if P: print "DSM magnitude:    " + str(DV[i]) + "m/s"

        #Last Delta-v
        if P:  print "\nArrival at " + self.seq[-1].name
        DV[-1] = norm([a-b for a,b in zip(v_end_l,v_P[-1])])

        if P:
            print("Arrival Vinf:     " + str(DV[-1]) + "m/s  \n"
                  "Total mission time: " + str(sum(T)/365.25) + " years (" + str(sum(T)) + " days) \n"
                  "DSMs mag:         " + str(sum(DV[:-1])) + "m/s  \n"
                  "Entry Vel:        " + str(sqrt(2*(0.5*(DV[-1])**2 + 61933310.95))) + "m/s  \n"
                  "Entry epoch:      " + str(epoch(t_P[0].mjd2000 + sum(T))) )

        if doplot:
            import matplotlib as mpl
            from mpl_toolkits.mplot3d import Axes3D
            import matplotlib.pyplot as plt
            from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure(figsize=(8, 8), dpi=80)
            ax = fig.gca(projection='3d')
            ax.scatter(0,0,0, color='y')

            for i,planet in enumerate(self.seq):
                plot_planet(ax, planet, t0=t_P[i], color=(0.8,0.6,0.8), legend=True, units = AU)

            for i, tpl in enumerate(plots_datas):
                plot_kepler(ax, r_P[i], tpl[0], tpl[1], MU_SUN ,N = 100, color='b', legend=False, units = AU)
                plot_lambert(ax, tpl[2], sol = 0, color='r', legend=False, units = AU)

            fig.tight_layout()
            plt.show()

        if dists_class is not None:
            for i, tpl in enumerate(plots_datas):
                dists_class.positions_kepler(r_P[i], tpl[0], tpl[1], MU_SUN ,index = 2*i)
                dists_class.positions_lambert(tpl[2], sol = 0, index = 2*(i+.5))
            dists_class.set_launch_epoch(t_P[0].mjd2000)
            return dists_class

        if rtrn_desc:
            import numpy as np
            from math import atan2

            desc = dict()
            for i in range(len(x)):
                desc[i] = x[i]

            theta = 2*pi*x[1]
            phi = acos(2*x[2]-1)-pi/2

            axtl = 23.43929*DEG2RAD # Earth axial tlit
            mactran = np.matrix([ [1,         0,          0],
                                  [0, cos(axtl), -sin(axtl)],
                                  [0, sin(axtl),  cos(axtl)] ]) # Macierz przejscia z helio do ECI

            macdegs = np.matrix([ [cos(phi)*cos(theta)],
                                  [cos(phi)*sin(theta)],
                                  [sin(phi)] ])
            aaa = mactran.dot(macdegs)
            theta_earth = atan2(aaa[1,0], aaa[0,0])    # Rektascensja asym
            phi_earth = asin(aaa[2,0])                 # Deklinacja asym
            desc['RA'] = 360+RAD2DEG*theta_earth
            desc['DEC'] = phi_earth*RAD2DEG

            desc['Ldate'] = str(t_P[0])
            desc['C3'] = (x[3] / 1000)**2

            desc['dVmag'] = sum(DV[:-1])
            desc['VinfRE'] = DV[-1]
            desc['VRE'] = (DV[-1]**2 + 2*61933310.95)**.5
            desc['REDate'] = str(epoch(t_P[0].mjd2000 + sum(T)))

            for i in range(1,self.__n):
                desc[self.seq[i].name[0].capitalize()+'Dist'] = PLDists[i-1]
                desc[self.seq[i].name[0].capitalize()+'FBDate'] = str(FBDates[i-1])

            return desc
Пример #22
0
    def plot(self, x, ax=None):
        """
        ax = prob.plot(x, ax=None)

        - x: encoded trajectory
        - ax: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if ax is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axis = fig.gca(projection='3d')
        else:
            axis = ax

        axis.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various deep space
        # manouvres timing (days) in the list T
        T = list([0] * (self.N_max - 1))

        for i in range(len(T)):
            T[i] = log(x[2 + 4 * i])
        total = sum(T)
        T = [x[1] * time / total for time in T]

        # 2 - We compute the starting and ending position
        r_start, v_start = self.start.eph(epoch(x[0]))
        if self.phase_free:
            r_target, v_target = self.target.eph(epoch(x[-1]))
        else:
            r_target, v_target = self.target.eph(epoch(x[0] + x[1]))
        plot_planet(self.start,
                    t0=epoch(x[0]),
                    color=(0.8, 0.6, 0.8),
                    legend=True,
                    units=AU,
                    ax=axis)
        plot_planet(self.target,
                    t0=epoch(x[0] + x[1]),
                    color=(0.8, 0.6, 0.8),
                    legend=True,
                    units=AU,
                    ax=axis)

        # 3 - We loop across inner impulses
        rsc = r_start
        vsc = v_start
        for i, time in enumerate(T[:-1]):
            theta = 2 * pi * x[3 + 4 * i]
            phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2

            Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta)
            Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta)
            Vinfz = x[5 + 4 * i] * sin(phi)

            # We apply the (i+1)-th impulse
            vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])]
            plot_kepler(rsc,
                        vsc,
                        T[i] * DAY2SEC,
                        self.__common_mu,
                        N=200,
                        color='b',
                        legend=False,
                        units=AU,
                        ax=axis)
            rsc, vsc = propagate_lagrangian(rsc, vsc, T[i] * DAY2SEC,
                                            self.__common_mu)

        cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2)
        # We now compute the remaining two final impulses
        # Lambert arc to reach seq[1]
        dt = T[-1] * DAY2SEC
        l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False)
        plot_lambert(l,
                     sol=0,
                     color='r',
                     legend=False,
                     units=AU,
                     ax=axis,
                     N=200)
        plt.show()
        return axis