def test_batterystateful_model_change_chemistry(): model = battstfl.default("leadacid") original_capacity = model.ParamsPack.nominal_energy BatteryTools.battery_model_change_chemistry(model, 'nmcgraphite') params_new = battstfl.default('nmcgraphite').export() cell_params = params_new['ParamsCell'] pack_params = params_new['ParamsPack'] assert (model.value('nominal_energy') == pytest.approx( original_capacity, 0.1)) assert (model.ParamsCell.Vnom_default == cell_params['Vnom_default']) assert (model.ParamsPack.Cp == pack_params['Cp'])
def chem_batterystateful(model: BattStfl.BatteryStateful, chem): """ Helper function for battery_model_change_chemistry """ if type(model) != BattStfl.BatteryStateful: raise TypeError chem = chem.lower() if chem != 'LeadAcid' and chem != 'lfpgraphite' and chem != 'nmcgraphite': raise NotImplementedError if chem == 'leadacid': model.ParamsCell.chem = 0 else: model.ParamsCell.chem = 1 original_capacity = model.ParamsPack.nominal_energy original_voltage = model.ParamsPack.nominal_voltage params_dict = BattStfl.default(chem).export() for group in ('ParamsCell', 'ParamsPack'): for k, v in params_dict[group].items(): model.value(k, v) battery_model_sizing(model, -1, original_capacity, original_voltage)
def test_stateful_from_data(): b = bt.new() d = {'Controls': {'control_mode': 1.0, 'dt_hr': 0.016666666666666666, 'input_power': 0.0}, 'ParamsCell': {'C_rate': 0.2, 'Qexp': 2.584, 'Qfull': 3.2, 'Qnom': 3.126, 'Vexp': 3.53, 'Vfull': 4.2, 'Vnom': 3.342, 'Vcut': 0, 'Vnom_default': 3.6, 'life_model': 1, 'chem': 1.0, 'cycling_matrix': ((10.0, 0.0, 100.85333333333334), (10.0, 1250.0, 94.88402967051991), (10.0, 2500.0, 88.91472600735459), (10.0, 3750.0, 82.94542234383735), (10.0, 5000.0, 76.97611867996821), (20.0, 0.0, 100.85333333333334), (20.0, 1250.0, 94.87983534903533), (20.0, 2500.0, 88.90633717426442), (20.0, 3750.0, 82.93283880899575), (20.0, 5000.0, 76.95934025320447), (40.0, 0.0, 100.85333333333334), (40.0, 1250.0, 94.78221121806645), (40.0, 2500.0, 88.71098572007159), (40.0, 3750.0, 82.63965652437861), (40.0, 5000.0, 76.56822331441485), (80.0, 0.0, 100.85333333333334), (80.0, 1250.0, 92.48380979037378), (80.0, 2500.0, 84.0542799046757), (80.0, 3750.0, 75.5600050138485), (80.0, 5000.0, 66.99558786034476), (100.0, 0.0, 100.85333333333334), (100.0, 1250.0, 88.12558851005116), (100.0, 2500.0, 74.87324171194942), (100.0, 3750.0, 60.95107257220129), (100.0, 5000.0, 46.13117125424217)), 'initial_SOC': 50.0, 'maximum_SOC': 90.0, 'minimum_SOC': 10.0, 'resistance': 0.001155, 'voltage_choice': 0.0}, 'ParamsPack': {'Cp': 1500.0, 'T_room_init': 12.717792686395654, 'cap_vs_temp': ((0.0, 80.2), (23.0, 100.0), (30.0, 103.1), (45.0, 105.4)), 'h': 7.5, 'mass': 6470.406178696914, 'nominal_energy': 653.5763816865569, 'nominal_voltage': 500.0, 'surface_area': 33.602970087562625}, 'StatePack': {}, 'StateCell': {}} dd = dict() for gr, vr in d.items(): for k, v in vr.items(): dd[k] = v b.assign(d) b.setup() assert b.Controls.control_mode == 1
def __init__(self, site: SiteInfo, battery_config: dict, chemistry: str = 'lfpgraphite', system_voltage_volts: float = 500): """ Battery Storage class based on PySAM's BatteryStateful Model :param site: Power source site information (SiteInfo object) :param battery_config: Battery configuration with the following keys: #. ``system_capacity_kwh``: float, Battery energy capacity [kWh] #. ``system_capacity_kw``: float, Battery rated power capacity [kW] :param chemistry: Battery storage chemistry, options include: #. ``LFPGraphite``: Lithium Iron Phosphate (Lithium Ion) #. ``LMOLTO``: LMO/Lithium Titanate (Lithium Ion) #. ``LeadAcid``: Lead Acid #. ``NMCGraphite``: Nickel Manganese Cobalt Oxide (Lithium Ion) :param system_voltage_volts: Battery system voltage [VDC] """ for key in ('system_capacity_kwh', 'system_capacity_kw'): if key not in battery_config.keys(): raise ValueError system_model = BatteryModel.default(chemistry) financial_model = Singleowner.from_existing(system_model, "StandaloneBatterySingleOwner") super().__init__("Battery", site, system_model, financial_model) self.Outputs = BatteryOutputs(n_timesteps=site.n_timesteps) self.system_capacity_kw: float = battery_config['system_capacity_kw'] self.chemistry = chemistry BatteryTools.battery_model_sizing(self._system_model, battery_config['system_capacity_kw'], battery_config['system_capacity_kwh'], system_voltage_volts, module_specs=Battery.module_specs) self._system_model.ParamsPack.h = 20 self._system_model.ParamsPack.Cp = 900 self._system_model.ParamsCell.resistance = 0.001 self._system_model.ParamsCell.C_rate = battery_config['system_capacity_kw'] / battery_config['system_capacity_kwh'] # Minimum set of parameters to set to get statefulBattery to work self._system_model.value("control_mode", 0.0) self._system_model.value("input_current", 0.0) self._system_model.value("dt_hr", 1.0) self._system_model.value("minimum_SOC", 10.0) self._system_model.value("maximum_SOC", 90.0) self._system_model.value("initial_SOC", 10.0) self._dispatch = None logger.info("Initialized battery with parameters and state {}".format(self._system_model.export()))
def test_battery_model_change_chemistry(): model = batt.default("GenericBatterySingleOwner") original_capacity = model.value('batt_computed_bank_capacity') original_power = model.BatterySystem.batt_power_discharge_max_kwac BatteryTools.battery_model_change_chemistry(model, 'leadacid') params_new = battstfl.default('leadacid').export() cell_params = params_new['ParamsCell'] pack_params = params_new['ParamsPack'] assert (model.value('batt_computed_bank_capacity') == pytest.approx( original_capacity, 0.1)) assert (model.value('batt_power_discharge_max_kwac') == pytest.approx( original_power, 0.1)) assert (model.BatteryCell.batt_chem == cell_params['chem']) assert (model.BatteryCell.batt_calendar_choice == cell_params['calendar_choice']) assert (model.BatteryCell.batt_Vnom_default == cell_params['Vnom_default']) assert ( model.BatteryCell.LeadAcid_q10_computed == cell_params['leadacid_q10']) assert (model.BatteryCell.batt_Cp == pack_params['Cp']) BatteryTools.battery_model_change_chemistry(model, 'nmcgraphite') params_new = battstfl.default('nmcgraphite').export() cell_params = params_new['ParamsCell'] pack_params = params_new['ParamsPack'] assert (model.value('batt_computed_bank_capacity') == pytest.approx( original_capacity, 0.1)) assert (model.value('batt_power_discharge_max_kwac') == pytest.approx( original_power, 0.1)) assert (model.BatteryCell.batt_C_rate == cell_params['C_rate']) assert (model.BatteryCell.batt_calendar_choice == cell_params['calendar_choice']) assert (model.BatteryCell.batt_Vexp == cell_params['Vexp']) assert (model.BatteryCell.batt_Cp == pack_params['Cp'])
def test_stateful(): b = bt.default("NMCGraphite") b.Controls.control_mode = 1 b.Controls.dt_hr = 1 b.ParamsCell.minimum_SOC = 10 b.ParamsCell.maximum_SOC = 90 b.ParamsCell.initial_SOC = 50 b.Controls.input_power = 0 b.setup() assert (b.StatePack.SOC == approx(50)) b.Controls.input_power = 0.5 b.execute(0) assert (b.StatePack.SOC == approx(44.811, 1e-2))
def test_stateful_lmolto(): b = bt.default("LMOLTO") b.Controls.control_mode = 1 b.Controls.dt_hr = 1 b.ParamsCell.minimum_SOC = 10 b.ParamsCell.maximum_SOC = 90 b.ParamsCell.initial_SOC = 50 b.Controls.input_power = 0 b.setup() assert (b.StatePack.SOC == approx(50)) b.Controls.input_power = 0.5 b.execute(0) assert (b.StatePack.SOC == approx(45.216, 1e-2))
def chem_battery(model: Batt.Battery, chem): """ Helper function for battery_model_change_chemistry """ if type(model) != Batt.Battery: raise TypeError chem = chem.lower() if chem != 'leadacid' and chem != 'lfpgraphite' and chem != 'nmcgraphite': raise NotImplementedError if chem == 'leadacid': model.BatteryCell.batt_chem = 0 else: model.BatteryCell.batt_chem = 1 original_capacity = model.value('batt_computed_bank_capacity') original_voltage = model.BatteryCell.batt_Vnom_default * model.BatterySystem.batt_computed_series if model.BatterySystem.batt_ac_or_dc: original_power = model.BatterySystem.batt_power_discharge_max_kwac else: original_power = model.BatterySystem.batt_power_discharge_max_kwdc params_dict = BattStfl.default(chem).export() for group in ('ParamsCell', 'ParamsPack'): for k, v in params_dict[group].items(): if k == 'nominal_voltage' or k == "T_room_init": continue elif k == 'cycling_matrix': k = 'batt_lifetime_matrix' elif 'leadacid' in k: k = 'LeadAcid' + k[8:] if 'tn' not in k: k += '_computed' elif k == 'h': k = 'batt_h_to_ambient' elif k == 'nominal_energy': k = 'batt_computed_bank_capacity' elif k == 'cap_vs_temp': pass else: k = 'batt_' + k model.value(k, v) battery_model_sizing(model, original_power, original_capacity, original_voltage)
def test_stateful(): import PySAM.BatteryStateful as bt import PySAM.BatteryTools as BatteryTools b = bt.new() params = {"control_mode": 1, "input_current": 1, "input_power": 1, "chem": 1, "nominal_energy": 10, "nominal_voltage": 500, "initial_SOC": 50.000, "maximum_SOC": 95.000, "minimum_SOC": 5.000, "dt_hr": 1.000, "leadacid_tn": 0.000, "leadacid_qn": 0.000, "leadacid_q10": 0.000, "leadacid_q20": 0.000, "voltage_choice": 0, "Vnom_default": 3.600, "resistance": 0.0001, "Vfull": 4.100, "Vexp": 4.050, "Vnom": 3.400, "Qfull": 2.250, "Qexp": 0.040, "Qnom": 2.000, "C_rate": 0.200, "mass": 507.000, "surface_area": 2.018, "Cp": 1004.000, "h": 5.000, "cap_vs_temp": [[-10, 60], [0, 80], [25, 1E+2], [40, 1E+2]], "T_room_init": 20, "cycling_matrix": [[20, 0, 1E+2], [20, 5E+3, 80], [20, 1E+4, 60], [80, 0, 1E+2], [80, 1E+3, 80], [80, 2E+3, 60]], "calendar_choice": 1, "calendar_q0": 1.020, "calendar_a": 0.003, "calendar_b": -7280.000, "calendar_c": 930.000, "calendar_matrix": [[-3.1E+231]], "loss_choice": 0, "monthly_charge_loss": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "monthly_discharge_loss": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "monthly_idle_loss": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], "schedule_loss": [], "replacement_option": 0, "replacement_capacity": 0.000, "replacement_schedule": [], "replacement_schedule_percent": []} for k, v in params.items(): b.value(k, v) b.setup() b.execute() if params['control_mode'] == 0.0: b.value("input_current", -4.0) else: b.value("input_power", -4.0) b.execute() b.execute() if params['control_mode'] == 0.0: b.value("input_current", 4.0) else: b.value("input_power", 4.0) b.execute() b.execute() b.setup() b.execute() print(b.StatePack.export()) b.execute() print(b.StatePack.export())