def func_browse_eve(self): folder = QDir.toNativeSeparators( QFileDialog.getExistingDirectory(None, "Eve Directory", "", QFileDialog.ShowDirsOnly)) if not folder.endswith(os.sep): folder += os.sep self.ui.txt_client_path.setText(folder) self.settings['eve_path'] = folder
def generateAndExportClicked(self): g = Generator() g.tileWidth = self.tileWidthSpinBox.value() g.tileHeight = self.tileHeightSpinBox.value() g.forcePot = self.forcePotCheckBox.isChecked() g.isTransparent = self.transparentCheckbox.isChecked() g.bgColor = self.backgroundColorEdit.getColor() g.reorder = self.reorderTilesCheckBox.isChecked() g.padding = self.paddingSpinBox.value() target = g.create(self.pixmapWidget.pixmap); # export self.lastDir = os.path.dirname(self.path) targetPath = QFileDialog.getSaveFileName(self, 'Export', self.lastDir, 'PNG (*.png)') if targetPath: target.save(targetPath[0]) showPixmap = QPixmap.fromImage(target) if self.showPixmapWidget: self.showPixmapWidget.deleteLater() del self.showPixmapWidget self.showPixmapWidget = PixmapWidget() self.showPixmapWidget.setWindowIcon(self.windowIcon()) self.showPixmapWidget.setWindowTitle(os.path.basename(targetPath[0])) self.showPixmapWidget.resize(showPixmap.width(), showPixmap.height()) self.showPixmapWidget.setPixmap(showPixmap) self.showPixmapWidget.show()
def onSaveLog(self): fileName = QFileDialog.getSaveFileName(self, "Save as", os.getcwd(), "Log files (*.log);;Text files (*.txt);;All files (*.*)")[0] if fileName: import codecs f = codecs.open(fileName, 'w', 'utf-8') f.write(self.txtEdtOutput.toPlainText()) f.close()
def openFileNameDialog(self): options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog self.fileName, _ = QFileDialog.getOpenFileName(self,"QFileDialog.getOpenFileName()", "","All Files (*);;Python Files (*.py)", options=options) if self.fileName: self.path = os.path.dirname(self.fileName) self.imageFiles = [] self.random_index = [] self.max_index = [] self.imageFiles, self.random_index, self.path, self.max_index = self.getImageNames2() self.slideIndex = self.imageFiles.index(self.fileName) -1
def open(self): fileDialog = QFileDialog(self) supportedMimeTypes = QMediaPlayer.supportedMimeTypes() if not supportedMimeTypes: supportedMimeTypes.append("video/x-msvideo") # AVI fileDialog.setMimeTypeFilters(supportedMimeTypes) moviesLocation = QStandardPaths.writableLocation(QStandardPaths.MoviesLocation) fileDialog.setDirectory(moviesLocation) if fileDialog.exec_() == QDialog.Accepted: self.playlist.addMedia(fileDialog.selectedUrls()[0]) self.player.play()
def bj(self): it=self.ui.tableWidget.item(self.ui.tableWidget.currentRow(),0)#self.ui.tableWidget.currentColumn())) if it==None: return contactid=int(it.text()) (fileName,fileType)= QFileDialog.getOpenFileName(None,"Open Excel file", r"C:\Users\group2\Desktop\备料计划导出文件","Excel Files ( *.xlsx *.xls)") items_chuku=readBeiliaofile(fileName) r=backend.getContactItems(contactid) print(r,items_chuku) (left,notequal,right)=bjitems(r,items_chuku) c=chuku.ContactDlg(self) c.showdata(left,notequal,right) c.showMaximized() c.exec()
def open(self): fileName, _ = QFileDialog.getOpenFileName(self) if fileName: existing = self.findMdiChild(fileName) if existing: self.mdiArea.setActiveSubWindow(existing) return child = self.createMdiChild() if child.loadFile(fileName): self.statusBar().showMessage("File loaded", 2000) child.show() else: child.close()
def chooserootdir(self): currentdir = self.settings['RootFolder'] flags = QFileDialog.DontResolveSymlinks | QFileDialog.ShowDirsOnly newroot = QFileDialog.getExistingDirectory(None, "Open Directory", currentdir, flags) if newroot != "" and str(newroot) != currentdir: self.settings['RootFolder'] = str(newroot) filesettings.settingsToFile(self.settings, self.settings_path) self._window.rootfolder.setText(newroot) # we delete the already present downloadthread and recreate it # because otherwise it uses the old download folder. I don't know # if there's a cleaner approach del self.downloadthread self.downloadthread = DownloadThread(self.user, self.settings['RootFolder'], self) self.downloadthread.dumpuser.sig.connect(self.dumpUser) self.dumpUser()
def loadC3DFile(self): filename = QFileDialog.getOpenFileName(self, 'Open File', '.')[0] self.sceneManager.scene.object_builder.create_object_from_file( "c3d", str(filename))
def loadHeightMap(self): filename = QFileDialog.getOpenFileName(self, 'Open File', '.')[0] self.sceneManager.loadHeightMap(str(filename))
def loadMorphableGraphStateMachine(self): filename = QFileDialog.getOpenFileName(self, 'Open File', '.')[0] self.sceneManager.scene.object_builder.create_object_from_file( "mg.zip", str(filename))
def loadASFFile(self): filename = QFileDialog.getOpenFileName(self, 'Open File', '.')[0] if filename is not None: self.sceneManager.scene.object_builder.create_object_from_file( "asf", str(filename))
def open_file(self, _): file_name = QFileDialog.getOpenFileName(self) if not file_name[0]: return self.loadcov(file_name[0])
def add_category(self): files = QFileDialog.getOpenFileNames( self.window, "Dodaj kategorię", os.getcwd() + "/User_Files/Categories_to_add", "Plik PDF (*.pdf)") self.to_add = files[0] self.window.ui.CategoriesToAdd.setText(str(files[0]))
def openFileNameDialog(self): fileName, _ = QFileDialog.getOpenFileName(self,"Load Bafang Settings", "","Text Files (*.json)") return fileName
def Event_ImagePath(self): self.window.Line_Image.setText(QFileDialog.getOpenFileName()[0])
def _action_select_dir(self): dir_path = QFileDialog.getExistingDirectory(self, "Select a directory") if dir_path: self.setItem(self.currentRow(), 1, QTableWidgetItem(dir_path))
def save_now_image(self): if(self.img.is_load_image == True): imagepath = QFileDialog.getSaveFileName( None, '保存图片', './', "Images (*.jpg)") if(imagepath[0] != ''): self.img.save_image(self.img.nowImage, imagepath[0])
def on_open_img(self): imagepath = QFileDialog.getOpenFileName( None, '打开图片', self.filepath, "Images (*.jpg *.png *.bmp)") self.__init_img(imagepath[0])
def guardar(self): file = QFileDialog.getSaveFileName(self, 'Guardar Archivo...', '.', 'JSON (*.json)') print(file) self.paqueteria.guardar(file[0])
def abrir(self): file = QFileDialog.getOpenFileName(self, 'Abrir archivo', '.', 'JSON(*.json)') self.paqueteria.recuperar(file[0])
def loadCustomUnityFormat(self): filename = QFileDialog.getOpenFileName(self, 'Open File', '.')[0] self.sceneManager.scene.object_builder.create_object_from_file( "_m.json", str(filename))
def saveFile(self): filename, _ = QFileDialog.getSaveFileName(self) if filename: self.addressWidget.writeToFile(filename)
def selectProjectPath(self): dialog = QFileDialog(self) dialog.setFileMode(QFileDialog.AnyFile) dialog.setOption(dialog.ShowDirsOnly, True) dialog.selectFile(self.ui.lineEdit_2.text()) dialog.setWindowTitle('Name A New Directory For Project') if dialog.exec_(): self.ui.lineEdit.setText(dialog.selectedFiles()[0])
def saveFileDialog(self): fileName, _ = QFileDialog.getSaveFileName(self,"Backup Bafang settings","","Text Files (*.json)") return fileName
def open_img(self): fname = QFileDialog.getOpenFileName(self) print(fname[0]) self.cv2Label.set_img(fname[0])
def open_image(): name = QFileDialog.getOpenFileName(w, 'Open File') print(name) w.image = QtGui.QImage(name[0]) pixmap = QtGui.QPixmap(w.image) w.imageLabel.setPixmap(pixmap)
def load_file(self): file_name = QFileDialog.getOpenFileName(self) #tr('Open AHLTA template'), '', tr('AHLTA template (*.txt)')) return file_name
class Window(QMainWindow): def __init__(self): super(Window, self).__init__() self.load_ui() self.figlabels() self.imgs = [] self.subj = [] # self.figlabels = cv2.imread('figlabels.png') self.make_connect() self.inputExists = False self.defaultDirectoryExists = False self.annotationExists: False self.isSegmented = False self.files = None self.temperaturesWereAcquired = False def load_ui(self): loader = QUiLoader() path = os.fspath(Path(__file__).resolve().parent / "form.ui") ui_file = QFile(path) ui_file.open(QFile.ReadOnly) self.ui_window = loader.load(ui_file, self) ui_file.close() def make_connect(self): QObject.connect(self.ui_window.actionCargar_imagen, SIGNAL('triggered()'), self.openImage) QObject.connect(self.ui_window.actionCargar_carpeta, SIGNAL('triggered()'), self.openFolder) QObject.connect(self.ui_window.segButton, SIGNAL('clicked()'), self.segment) QObject.connect(self.ui_window.tempButton, SIGNAL('clicked()'), self.temp_extract) QObject.connect(self.ui_window.manualSegButton, SIGNAL('clicked()'), self.manual_segment) QObject.connect(self.ui_window.refreshTimePlot, SIGNAL('clicked()'), self.makeTimePlot) QObject.connect(self.ui_window.nextImageButton, SIGNAL('clicked()'), self.nextImage) QObject.connect(self.ui_window.previousImageButton, SIGNAL('clicked()'), self.previousImage) QObject.connect(self.ui_window.saveButton, SIGNAL('clicked()'), self.saveImage) QObject.connect(self.ui_window.fullPlotButton, SIGNAL('clicked()'), self.fullPlot) QObject.connect(self.ui_window.reportButton, SIGNAL('clicked()'), self.exportReport) def messagePrint(self, message): #INPUT: string to print #OUTPUT: none #ACTION: generate out.html file and refresh it in Messages QTextArea log_path = "outputs/logs.html" out_file = open(log_path, "w") out_file.write(message) out_file.close() self.ui_window.textBrowser.setSource(log_path) self.ui_window.textBrowser.reload() def findImages(self): self.fileList = [] for root, dirs, files in os.walk(self.defaultDirectory): for file in files: if (file.endswith(".jpg")): self.fileList.append(os.path.join(root, file)) self.imageQuantity = len(self.fileList) self.imageIndex = 0 self.files = files self.sortFiles() self.outfiles = [] for i in range(len(files)): self.outfiles.append("outputs/" + files[i]) #Creating future output file names self.ui_window.inputLabel.setText(self.files[self.imageIndex]) def sortFiles(self): """Sort file list to an alphanumeric reasonable sense""" convert = lambda text: int(text) if text.isdigit() else text alphanum_key = lambda key: [ convert(c) for c in re.split('([0-9]+)', key) ] self.fileList = sorted(self.fileList, key=alphanum_key) self.files = sorted(self.files, key=alphanum_key) def getTimes(self): """ Converts standarized names of file list into a list of integers with time capture in minutes """ if (type(self.fileList) == str): self.timeList = int(self.fileList).rsplit(".")[0][1:] elif type(self.fileList) == list: out_list = [] for i in range(len(self.fileList)): out_list.append(int(self.files[i].rsplit(".")[0][1:])) self.timeList = out_list else: return None def nextImage(self): if self.imageIndex < len(self.fileList) - 1: self.imageIndex += 1 self.ui_window.inputImg.setPixmap(self.fileList[self.imageIndex]) self.opdir = self.fileList[self.imageIndex] self.ui_window.inputLabel.setText(self.files[self.imageIndex]) if self.sessionIsSegmented: #Sentences to display next output image if session was already #segmented self.showOutputImageFromSession() if self.temperaturesWereAcquired: self.messagePrint( "La temperatura media es: " + str(self.meanTemperatures[self.imageIndex])) self.ui_window.temperatureLabel.setText( str(np.round(self.meanTemperatures[self.imageIndex], 3))) def previousImage(self): if self.imageIndex >= 1: self.imageIndex -= 1 self.ui_window.inputImg.setPixmap(self.fileList[self.imageIndex]) self.opdir = self.fileList[self.imageIndex] self.ui_window.inputLabel.setText(self.files[self.imageIndex]) if self.sessionIsSegmented: #Sentences to display next output image if session was already #segmented self.showOutputImageFromSession() if self.temperaturesWereAcquired: self.messagePrint( "La temperatura media es: " + str(self.meanTemperatures[self.imageIndex])) self.ui_window.temperatureLabel.setText( str(np.round(self.meanTemperatures[self.imageIndex], 3))) def saveImage(self): #Saves segmented image pass def feetSegment(self): self.messagePrint("Segmentando imagen") self.i2s = ImageToSegment() self.i2s.setPath(self.opdir) self.i2s.extract() self.showSegmentedImage() self.isSegmented = True self.messagePrint("Imagen segmentada exitosamente") def sessionSegment(self): self.messagePrint("Segmentando toda la sesion...") self.s2s = SessionToSegment() self.s2s.setPath(self.defaultDirectory) self.s2s.whole_extract(self.fileList) self.produceSegmentedSessionOutput() self.showOutputImageFromSession() self.messagePrint("Se ha segmentado exitosamente la sesion") self.sessionIsSegmented = True def showSegmentedImage(self): #Applies segmented zone to input image, showing only feet threshold = 0.5 img = plt.imread(self.opdir) / 255 Y = self.i2s.Y_pred Y = Y / Y.max() Y = np.where(Y >= threshold, 1, 0) self.Y = remove_small_objects( Y[0]) #Eventually required by temp_extract Y = cv2.resize( Y[0], (img.shape[1], img.shape[0]), interpolation=cv2.INTER_NEAREST ) # Resize the prediction to have the same dimensions as the input plt.imsave("outputs/output.jpg", Y * img[:, :, 0], cmap='gray') self.ui_window.outputImg.setPixmap("outputs/output.jpg") def produceSegmentedSessionOutput(self): #Recursively applies showSegmentedImage to whole session self.Y = [] for i in range(len(self.outfiles)): threshold = 0.5 img = plt.imread(self.fileList[i]) / 255 Y = self.s2s.Y_pred[i] Y = Y / Y.max() Y = np.where(Y >= threshold, 1, 0) self.Y.append( remove_small_objects(Y)) #Eventually required by temp_extract Y = cv2.resize( Y, (img.shape[1], img.shape[0]), interpolation=cv2.INTER_NEAREST ) # Resize the prediction to have the same dimensions as the input plt.imsave(self.outfiles[i], Y * img[:, :, 0], cmap='gray') def showOutputImageFromSession(self): self.ui_window.outputImg.setPixmap(self.outfiles[self.imageIndex]) def segment(self): if self.ui_window.sessionCheckBox.isChecked(): if self.defaultDirectoryExists: self.sessionSegment() print("Entering session segment") else: self.messagePrint("No se ha seleccionado sesion de entrada") else: if self.inputExists: self.feetSegment() print("Entering image segment") else: self.messagePrint("No se ha seleccionado sesion de entrada") def manual_segment(self): print("Se abrirá diálogo de extracción manual") self.manual = manualSeg() self.manual.show() return def temp_extract(self): if (self.inputExists and (self.isSegmented or self.sessionIsSegmented)): if self.ui_window.sessionCheckBox.isChecked( ): #If segmentation was for full session self.meanTemperatures = [ ] #Whole feet mean temperature for all images in session for i in range(len(self.outfiles)): self.meanTemperatures.append( mean_temperature(self.s2s.Xarray[i, :, :, 0], self.Y[i][:, :, 0], plot=False)) self.messagePrint("La temperatura media es: " + str(self.meanTemperatures[self.imageIndex])) self.temperaturesWereAcquired = True else: #If segmentation was for single image mean = mean_temperature(self.i2s.Xarray[:, :, 0], self.Y[:, :, 0], plot=False) self.messagePrint("La temperatura media es: " + str(mean)) if (self.ui_window.plotCheckBox.isChecked() ): #If user asked for plot self.messagePrint("Se generara plot de temperatura...") self.getTimes() print(self.timeList) self.tempPlot() elif self.inputExists: self.messagePrint("No se ha segmentado previamente la imagen ") else: self.messagePrint("No se han seleccionado imagenes de entrada") def tempPlot(self): plt.figure() plt.plot(self.timeList, self.meanTemperatures, '-o') plt.title("Temperatura media de pies") plt.xlabel("Tiempo (s)") plt.ylabel("Temperatura (°C)") plt.grid() plt.show() #Produce plot def figlabels(self): # Get info from directory path name and obtain time indexes based on name pass def openImage(self): self.fileDialog = QFileDialog(self) if self.defaultDirectoryExists: self.fileDialog.setDirectory(self.defaultDirectory) else: self.fileDialog.setDirectory(QDir.currentPath()) filters = ["*.png", "*.xpm", "*.jpg"] self.fileDialog.setNameFilters("Images (*.png *.jpg)") self.fileDialog.selectNameFilter("Images (*.png *.jpg)") #self.fileDialog.setFilter(self.fileDialog.selectedNameFilter()) self.opdir = self.fileDialog.getOpenFileName()[0] self.imagesDir = os.path.dirname(self.opdir) if self.opdir: self.inputExists = True self.ui_window.inputImg.setPixmap(self.opdir) def openFolder(self): self.folderDialog = QFileDialog(self) self.folderDialog.setDirectory(QDir.currentPath()) self.folderDialog.setFileMode(QFileDialog.FileMode.Directory) self.defaultDirectory = self.folderDialog.getExistingDirectory() self.imagesDir = self.defaultDirectory if self.defaultDirectory: self.defaultDirectoryExists = True first_image = str(self.defaultDirectory + "/t0.jpg") print(first_image) self.ui_window.inputImg.setPixmap(first_image) self.opdir = first_image self.inputExists = True self.findImages() def makeTimePlot(self): if self.inputExists: x = np.array([0, 1, 5, 10, 15, 20]) y = np.array([35.5, 35.7, 36, 37.2, 37.3, 37.5]) fig = plt.figure(figsize=(9.6, 4)) plt.plot(x, y, label='Paciente 1') plt.legend() plt.grid() plt.xlabel("Tiempo [minutos]") plt.ylabel("Temperatura [°C]") plt.title("Time plot") #plt.show() plt.savefig('/ouputs/fresh.png') self.ui_window.timePlot.setPixmap('/outputs/outputs//fresh.png') self.messagePrint("Se ha actualizado el TimePlot") else: self.messagePrint( "No se puede actualizar el TimePlot. No se ha seleccionado una imagen de entrada" ) def fullPlot(self): self.messagePrint("Preparando full plot...") #show_temperatures("paciente" , fn="mean" , range_ = [22.5 , 33.5]) self.messagePrint("Full plot generado exitosamente") pass def exportReport(self): self.messagePrint("Generando reporte...") #GENERATE A PDF REPORT FOR THE PATIENT #INPUT: SELF, PATIENT DIR #RETURN: NONE #ACTION: COMPILE PDF TEXT BASED ON self.messagePrint("Reporte generado exitosamente") pass def animate(self): """ Produces gif animation based on mean temperatures for whole session Initially, all feet has same color, for section segmentation has been not implemented yet """ self.messagePrint("Iniciando animacion...") pass
def pick_location(self): dialog = QFileDialog() folder_path = dialog.getExistingDirectory(self, "Select Folder") self.location_input.setText(folder_path) return folder_path
def loadMorphableModelFile(self): filename = QFileDialog.getOpenFileName(self, 'Open File', '.')[0] self.sceneManager.scene.object_builder.create_object_from_file( "mm.json", str(filename))
def loadFromDialog(self): # TODO(jacob): Make this menu remember the last file opened filepaths, _ = QFileDialog.getOpenFileNames(self.parent(), 'Load PDL files') if len(filepaths) > 0: self.load_from_files(filepaths)
def loadBlendController(self): filename = QFileDialog.getOpenFileName(self, 'Open File', '.')[0] self.sceneManager.loadBlendController(str(filename))
def saveButton(self): try: saveFilePath = QFileDialog.getExistingDirectory(self.ui, "选择存储路径") number = self.ui.spinBox.value() #获取数字,int类型 text = self.ui.KeyLineEdit.text()#读取关键词文本框内容 #读取Excel数据 book = xlrd.open_workbook(self.filePath) sheet = book.sheet_by_index(0) sheet_col = sheet.col_values(colx=number) sheet_row = sheet.row_values(rowx=0)#表头 #检索有指定有该关键词的行 liRowAccess = []#记录检索通过的数据的行数索引 i = 0 for row, content in enumerate(sheet_col): #真实row要加1] if row>0 and type(content) is str and (text in content): liRowAccess.append(row) else: continue i+=1 #过滤后的每行存入二维数组中,【行坐标,0开始,到最后一个数据结束】【列坐标,0开始到最后一个标题结束】 filter = [[' ' for i in range(len(sheet_row))] for i in range(len(liRowAccess))]#二维数组初始化 for r in range(len(liRowAccess)): for c in range(len(sheet_row)): filter[r][c] = sheet.row_values(rowx=liRowAccess[r])[c] #新建excel # 创建一个Excel workbook 对象 book = openpyxl.Workbook() # 创建时,会自动产生一个sheet,通过active获取 sh = book.active formName = self.ui.KeyLineEdit_2.text()#获取表名 fileName = self.ui.FileLineEdit.text() # 获取文件名 sh.title = formName #写入标题栏 for i in range(len(sheet_row)): sh.cell(1, i+1).value = sheet_row[i]#openpyxl库中行号列号从1开始 sh.cell(1, i+1).font = Font( size=12, # 设定文字大小 bold=True, # 设定为粗体 ) #写入数据 for r in range(len(liRowAccess)): for c in range(len(sheet_row)): sh.cell(r+2,c+1).value = filter[r][c] book.save(saveFilePath+'/'+fileName+'.xlsx') #导出成功提示 QMessageBox.information( self.ui, '导出成功', '导出Excel成功,请到您指定的路径下查看') except: #给个弹出框显示无导入文件,请先导入文件。 QMessageBox.critical( self.ui, '错误', '导入文件错误!')
def loadConstraintsFormat(self): filename = QFileDialog.getOpenFileName(self, 'Open File', '.')[0] self.sceneManager.loadConstraintsFormat(str(filename))
def openCSV(self): fileName = QFileDialog.getOpenFileName(self, "Select a file", os.getcwd(), "CSV Files (*.csv)")[0] if fileName: self.loadCSV(fileName, notifyExcept = True)
def runPythonScript(self): filename = QFileDialog.getOpenFileName(self, 'Open File', '.')[0] self.sceneManager.runPythonScript(str(filename))
def saveAs(self): fileName, _ = QFileDialog.getSaveFileName(self, "Save As", self.curFile) if not fileName: return False return self.saveFile(fileName)
def select_dir(self): dir_path = QFileDialog.getExistingDirectory(self, 'Select Directory', os.path.expanduser(self.root_save_dir) ) if dir_path: self.root_save_dir = dir_path self.save_dir_label.setText("Save Dir : {}".format(self.root_save_dir))
def openFile(self): filename, _ = QFileDialog.getOpenFileName(self) if filename: self.addressWidget.readFromFile(filename)
class FittingResultViewer(QDialog): PAGE_ROWS = 20 logger = logging.getLogger("root.QGrain.ui.FittingResultViewer") result_marked = Signal(SSUResult) def __init__(self, reference_viewer: ReferenceResultViewer, parent=None): super().__init__(parent=parent, f=Qt.Window) self.setWindowTitle(self.tr("SSU Fitting Result Viewer")) self.__fitting_results = [] # type: list[SSUResult] self.retry_tasks = {} # type: dict[UUID, SSUTask] self.__reference_viewer = reference_viewer self.init_ui() self.boxplot_chart = BoxplotChart(parent=self, toolbar=True) self.typical_chart = SSUTypicalComponentChart(parent=self, toolbar=True) self.distance_chart = DistanceCurveChart(parent=self, toolbar=True) self.mixed_distribution_chart = MixedDistributionChart( parent=self, toolbar=True, use_animation=True) self.file_dialog = QFileDialog(parent=self) self.async_worker = AsyncWorker() self.async_worker.background_worker.task_succeeded.connect( self.on_fitting_succeeded) self.async_worker.background_worker.task_failed.connect( self.on_fitting_failed) self.update_page_list() self.update_page(self.page_index) self.normal_msg = QMessageBox(self) self.remove_warning_msg = QMessageBox(self) self.remove_warning_msg.setStandardButtons(QMessageBox.No | QMessageBox.Yes) self.remove_warning_msg.setDefaultButton(QMessageBox.No) self.remove_warning_msg.setWindowTitle(self.tr("Warning")) self.remove_warning_msg.setText( self.tr("Are you sure to remove all SSU results?")) self.outlier_msg = QMessageBox(self) self.outlier_msg.setStandardButtons(QMessageBox.Discard | QMessageBox.Retry | QMessageBox.Ignore) self.outlier_msg.setDefaultButton(QMessageBox.Ignore) self.retry_progress_msg = QMessageBox() self.retry_progress_msg.addButton(QMessageBox.Ok) self.retry_progress_msg.button(QMessageBox.Ok).hide() self.retry_progress_msg.setWindowTitle(self.tr("Progress")) self.retry_timer = QTimer(self) self.retry_timer.setSingleShot(True) self.retry_timer.timeout.connect( lambda: self.retry_progress_msg.exec_()) def init_ui(self): self.data_table = QTableWidget(100, 100) self.data_table.setEditTriggers(QAbstractItemView.NoEditTriggers) self.data_table.setSelectionBehavior(QAbstractItemView.SelectRows) self.data_table.setAlternatingRowColors(True) self.data_table.setContextMenuPolicy(Qt.CustomContextMenu) self.main_layout = QGridLayout(self) self.main_layout.addWidget(self.data_table, 0, 0, 1, 3) self.previous_button = QPushButton( qta.icon("mdi.skip-previous-circle"), self.tr("Previous")) self.previous_button.setToolTip( self.tr("Click to back to the previous page.")) self.previous_button.clicked.connect(self.on_previous_button_clicked) self.current_page_combo_box = QComboBox() self.current_page_combo_box.addItem(self.tr("Page {0}").format(1)) self.current_page_combo_box.currentIndexChanged.connect( self.update_page) self.next_button = QPushButton(qta.icon("mdi.skip-next-circle"), self.tr("Next")) self.next_button.setToolTip(self.tr("Click to jump to the next page.")) self.next_button.clicked.connect(self.on_next_button_clicked) self.main_layout.addWidget(self.previous_button, 1, 0) self.main_layout.addWidget(self.current_page_combo_box, 1, 1) self.main_layout.addWidget(self.next_button, 1, 2) self.distance_label = QLabel(self.tr("Distance")) self.distance_label.setToolTip( self. tr("It's the function to calculate the difference (on the contrary, similarity) between two samples." )) self.distance_combo_box = QComboBox() self.distance_combo_box.addItems(built_in_distances) self.distance_combo_box.setCurrentText("log10MSE") self.distance_combo_box.currentTextChanged.connect( lambda: self.update_page(self.page_index)) self.main_layout.addWidget(self.distance_label, 2, 0) self.main_layout.addWidget(self.distance_combo_box, 2, 1, 1, 2) self.menu = QMenu(self.data_table) self.menu.setShortcutAutoRepeat(True) self.mark_action = self.menu.addAction( qta.icon("mdi.marker-check"), self.tr("Mark Selection(s) as Reference")) self.mark_action.triggered.connect(self.mark_selections) self.remove_selection_action = self.menu.addAction( qta.icon("fa.remove"), self.tr("Remove Selection(s)")) self.remove_selection_action.triggered.connect(self.remove_selections) self.remove_all_action = self.menu.addAction(qta.icon("fa.remove"), self.tr("Remove All")) self.remove_all_action.triggered.connect(self.remove_all_results) self.plot_loss_chart_action = self.menu.addAction( qta.icon("mdi.chart-timeline-variant"), self.tr("Plot Loss Chart")) self.plot_loss_chart_action.triggered.connect(self.show_distance) self.plot_distribution_chart_action = self.menu.addAction( qta.icon("fa5s.chart-area"), self.tr("Plot Distribution Chart")) self.plot_distribution_chart_action.triggered.connect( self.show_distribution) self.plot_distribution_animation_action = self.menu.addAction( qta.icon("fa5s.chart-area"), self.tr("Plot Distribution Chart (Animation)")) self.plot_distribution_animation_action.triggered.connect( self.show_history_distribution) self.detect_outliers_menu = self.menu.addMenu( qta.icon("mdi.magnify"), self.tr("Detect Outliers")) self.check_nan_and_inf_action = self.detect_outliers_menu.addAction( self.tr("Check NaN and Inf")) self.check_nan_and_inf_action.triggered.connect(self.check_nan_and_inf) self.check_final_distances_action = self.detect_outliers_menu.addAction( self.tr("Check Final Distances")) self.check_final_distances_action.triggered.connect( self.check_final_distances) self.check_component_mean_action = self.detect_outliers_menu.addAction( self.tr("Check Component Mean")) self.check_component_mean_action.triggered.connect( lambda: self.check_component_moments("mean")) self.check_component_std_action = self.detect_outliers_menu.addAction( self.tr("Check Component STD")) self.check_component_std_action.triggered.connect( lambda: self.check_component_moments("std")) self.check_component_skewness_action = self.detect_outliers_menu.addAction( self.tr("Check Component Skewness")) self.check_component_skewness_action.triggered.connect( lambda: self.check_component_moments("skewness")) self.check_component_kurtosis_action = self.detect_outliers_menu.addAction( self.tr("Check Component Kurtosis")) self.check_component_kurtosis_action.triggered.connect( lambda: self.check_component_moments("kurtosis")) self.check_component_fractions_action = self.detect_outliers_menu.addAction( self.tr("Check Component Fractions")) self.check_component_fractions_action.triggered.connect( self.check_component_fractions) self.degrade_results_action = self.detect_outliers_menu.addAction( self.tr("Degrade Results")) self.degrade_results_action.triggered.connect(self.degrade_results) self.try_align_components_action = self.detect_outliers_menu.addAction( self.tr("Try Align Components")) self.try_align_components_action.triggered.connect( self.try_align_components) self.analyse_typical_components_action = self.menu.addAction( qta.icon("ei.tags"), self.tr("Analyse Typical Components")) self.analyse_typical_components_action.triggered.connect( self.analyse_typical_components) self.load_dump_action = self.menu.addAction( qta.icon("fa.database"), self.tr("Load Binary Dump")) self.load_dump_action.triggered.connect(self.load_dump) self.save_dump_action = self.menu.addAction( qta.icon("fa.save"), self.tr("Save Binary Dump")) self.save_dump_action.triggered.connect(self.save_dump) self.save_excel_action = self.menu.addAction( qta.icon("mdi.microsoft-excel"), self.tr("Save Excel")) self.save_excel_action.triggered.connect( lambda: self.on_save_excel_clicked(align_components=False)) self.save_excel_align_action = self.menu.addAction( qta.icon("mdi.microsoft-excel"), self.tr("Save Excel (Force Alignment)")) self.save_excel_align_action.triggered.connect( lambda: self.on_save_excel_clicked(align_components=True)) self.data_table.customContextMenuRequested.connect(self.show_menu) # necessary to add actions of menu to this widget itself, # otherwise, the shortcuts will not be triggered self.addActions(self.menu.actions()) def show_menu(self, pos: QPoint): self.menu.popup(QCursor.pos()) def show_message(self, title: str, message: str): self.normal_msg.setWindowTitle(title) self.normal_msg.setText(message) self.normal_msg.exec_() def show_info(self, message: str): self.show_message(self.tr("Info"), message) def show_warning(self, message: str): self.show_message(self.tr("Warning"), message) def show_error(self, message: str): self.show_message(self.tr("Error"), message) @property def distance_name(self) -> str: return self.distance_combo_box.currentText() @property def distance_func(self) -> typing.Callable: return get_distance_func_by_name(self.distance_combo_box.currentText()) @property def page_index(self) -> int: return self.current_page_combo_box.currentIndex() @property def n_pages(self) -> int: return self.current_page_combo_box.count() @property def n_results(self) -> int: return len(self.__fitting_results) @property def selections(self): start = self.page_index * self.PAGE_ROWS temp = set() for item in self.data_table.selectedRanges(): for i in range(item.topRow(), min(self.PAGE_ROWS + 1, item.bottomRow() + 1)): temp.add(i + start) indexes = list(temp) indexes.sort() return indexes def update_page_list(self): last_page_index = self.page_index if self.n_results == 0: n_pages = 1 else: n_pages, left = divmod(self.n_results, self.PAGE_ROWS) if left != 0: n_pages += 1 self.current_page_combo_box.blockSignals(True) self.current_page_combo_box.clear() self.current_page_combo_box.addItems( [self.tr("Page {0}").format(i + 1) for i in range(n_pages)]) if last_page_index >= n_pages: self.current_page_combo_box.setCurrentIndex(n_pages - 1) else: self.current_page_combo_box.setCurrentIndex(last_page_index) self.current_page_combo_box.blockSignals(False) def update_page(self, page_index: int): def write(row: int, col: int, value: str): if isinstance(value, str): pass elif isinstance(value, int): value = str(value) elif isinstance(value, float): value = f"{value: 0.4f}" else: value = value.__str__() item = QTableWidgetItem(value) item.setTextAlignment(Qt.AlignCenter) self.data_table.setItem(row, col, item) # necessary to clear self.data_table.clear() if page_index == self.n_pages - 1: start = page_index * self.PAGE_ROWS end = self.n_results else: start, end = page_index * self.PAGE_ROWS, (page_index + 1) * self.PAGE_ROWS self.data_table.setRowCount(end - start) self.data_table.setColumnCount(7) self.data_table.setHorizontalHeaderLabels([ self.tr("Resolver"), self.tr("Distribution Type"), self.tr("N_components"), self.tr("N_iterations"), self.tr("Spent Time [s]"), self.tr("Final Distance"), self.tr("Has Reference") ]) sample_names = [ result.sample.name for result in self.__fitting_results[start:end] ] self.data_table.setVerticalHeaderLabels(sample_names) for row, result in enumerate(self.__fitting_results[start:end]): write(row, 0, result.task.resolver) write(row, 1, self.get_distribution_name(result.task.distribution_type)) write(row, 2, result.task.n_components) write(row, 3, result.n_iterations) write(row, 4, result.time_spent) write( row, 5, self.distance_func(result.sample.distribution, result.distribution)) has_ref = result.task.initial_guess is not None or result.task.reference is not None write(row, 6, self.tr("Yes") if has_ref else self.tr("No")) self.data_table.resizeColumnsToContents() def on_previous_button_clicked(self): if self.page_index > 0: self.current_page_combo_box.setCurrentIndex(self.page_index - 1) def on_next_button_clicked(self): if self.page_index < self.n_pages - 1: self.current_page_combo_box.setCurrentIndex(self.page_index + 1) def get_distribution_name(self, distribution_type: DistributionType): if distribution_type == DistributionType.Normal: return self.tr("Normal") elif distribution_type == DistributionType.Weibull: return self.tr("Weibull") elif distribution_type == DistributionType.SkewNormal: return self.tr("Skew Normal") else: raise NotImplementedError(distribution_type) def add_result(self, result: SSUResult): if self.n_results == 0 or \ (self.page_index == self.n_pages - 1 and \ divmod(self.n_results, self.PAGE_ROWS)[-1] != 0): need_update = True else: need_update = False self.__fitting_results.append(result) self.update_page_list() if need_update: self.update_page(self.page_index) def add_results(self, results: typing.List[SSUResult]): if self.n_results == 0 or \ (self.page_index == self.n_pages - 1 and \ divmod(self.n_results, self.PAGE_ROWS)[-1] != 0): need_update = True else: need_update = False self.__fitting_results.extend(results) self.update_page_list() if need_update: self.update_page(self.page_index) def mark_selections(self): for index in self.selections: self.result_marked.emit(self.__fitting_results[index]) def remove_results(self, indexes): results = [] for i in reversed(indexes): res = self.__fitting_results.pop(i) results.append(res) self.update_page_list() self.update_page(self.page_index) def remove_selections(self): indexes = self.selections self.remove_results(indexes) def remove_all_results(self): res = self.remove_warning_msg.exec_() if res == QMessageBox.Yes: self.__fitting_results.clear() self.update_page_list() self.update_page(0) def show_distance(self): results = [self.__fitting_results[i] for i in self.selections] if results is None or len(results) == 0: return result = results[0] self.distance_chart.show_distance_series(result.get_distance_series( self.distance_name), title=result.sample.name) self.distance_chart.show() def show_distribution(self): results = [self.__fitting_results[i] for i in self.selections] if results is None or len(results) == 0: return result = results[0] self.mixed_distribution_chart.show_model(result.view_model) self.mixed_distribution_chart.show() def show_history_distribution(self): results = [self.__fitting_results[i] for i in self.selections] if results is None or len(results) == 0: return result = results[0] self.mixed_distribution_chart.show_result(result) self.mixed_distribution_chart.show() def load_dump(self): filename, _ = self.file_dialog.getOpenFileName( self, self.tr("Select a binary dump file of SSU results"), None, self.tr("Binary dump (*.dump)")) if filename is None or filename == "": return with open(filename, "rb") as f: results = pickle.load(f) # type: list[SSUResult] valid = True if isinstance(results, list): for result in results: if not isinstance(result, SSUResult): valid = False break else: valid = False if valid: if self.n_results != 0 and len(results) != 0: old_classes = self.__fitting_results[0].classes_φ new_classes = results[0].classes_φ classes_inconsistent = False if len(old_classes) != len(new_classes): classes_inconsistent = True else: classes_error = np.abs(old_classes - new_classes) if not np.all(np.less_equal(classes_error, 1e-8)): classes_inconsistent = True if classes_inconsistent: self.show_error( self. tr("The results in the dump file has inconsistent grain-size classes with that in your list." )) return self.add_results(results) else: self.show_error(self.tr("The binary dump file is invalid.")) def save_dump(self): if self.n_results == 0: self.show_warning(self.tr("There is not any result in the list.")) return filename, _ = self.file_dialog.getSaveFileName( self, self.tr("Save the SSU results to binary dump file"), None, self.tr("Binary dump (*.dump)")) if filename is None or filename == "": return with open(filename, "wb") as f: pickle.dump(self.__fitting_results, f) def save_excel(self, filename, align_components=False): if self.n_results == 0: return results = self.__fitting_results.copy() classes_μm = results[0].classes_μm n_components_list = [ result.n_components for result in self.__fitting_results ] count_dict = Counter(n_components_list) max_n_components = max(count_dict.keys()) self.logger.debug( f"N_components: {count_dict}, Max N_components: {max_n_components}" ) flags = [] if not align_components: for result in results: flags.extend(range(result.n_components)) else: n_components_desc = "\n".join([ self.tr("{0} Component(s): {1}").format(n_components, count) for n_components, count in count_dict.items() ]) self.show_info( self.tr("N_components distribution of Results:\n{0}").format( n_components_desc)) stacked_components = [] for result in self.__fitting_results: for component in result.components: stacked_components.append(component.distribution) stacked_components = np.array(stacked_components) cluser = KMeans(n_clusters=max_n_components) flags = cluser.fit_predict(stacked_components) # check flags to make it unique flag_index = 0 for i, result in enumerate(self.__fitting_results): result_flags = set() for component in result.components: if flags[flag_index] in result_flags: if flags[flag_index] == max_n_components: flags[flag_index] = max_n_components - 1 else: flag_index[flag_index] += 1 result_flags.add(flags[flag_index]) flag_index += 1 flag_set = set(flags) picked = [] for target_flag in flag_set: for i, flag in enumerate(flags): if flag == target_flag: picked.append( (target_flag, logarithmic(classes_μm, stacked_components[i])["mean"])) break picked.sort(key=lambda x: x[1]) flag_map = {flag: index for index, (flag, _) in enumerate(picked)} flags = np.array([flag_map[flag] for flag in flags]) wb = openpyxl.Workbook() prepare_styles(wb) ws = wb.active ws.title = self.tr("README") description = \ """ This Excel file was generated by QGrain ({0}). Please cite: Liu, Y., Liu, X., Sun, Y., 2021. QGrain: An open-source and easy-to-use software for the comprehensive analysis of grain size distributions. Sedimentary Geology 423, 105980. https://doi.org/10.1016/j.sedgeo.2021.105980 It contanins 4 + max(N_components) sheets: 1. The first sheet is the sample distributions of SSU results. 2. The second sheet is used to put the infomation of fitting. 3. The third sheet is the statistic parameters calculated by statistic moment method. 4. The fouth sheet is the distributions of unmixed components and their sum of each sample. 5. Other sheets are the unmixed end-member distributions which were discretely stored. The SSU algorithm is implemented by QGrain. """.format(QGRAIN_VERSION) def write(row, col, value, style="normal_light"): cell = ws.cell(row + 1, col + 1, value=value) cell.style = style lines_of_desc = description.split("\n") for row, line in enumerate(lines_of_desc): write(row, 0, line, style="description") ws.column_dimensions[column_to_char(0)].width = 200 ws = wb.create_sheet(self.tr("Sample Distributions")) write(0, 0, self.tr("Sample Name"), style="header") ws.column_dimensions[column_to_char(0)].width = 16 for col, value in enumerate(classes_μm, 1): write(0, col, value, style="header") ws.column_dimensions[column_to_char(col)].width = 10 for row, result in enumerate(results, 1): if row % 2 == 0: style = "normal_dark" else: style = "normal_light" write(row, 0, result.sample.name, style=style) for col, value in enumerate(result.sample.distribution, 1): write(row, col, value, style=style) QCoreApplication.processEvents() ws = wb.create_sheet(self.tr("Information of Fitting")) write(0, 0, self.tr("Sample Name"), style="header") ws.column_dimensions[column_to_char(0)].width = 16 headers = [ self.tr("Distribution Type"), self.tr("N_components"), self.tr("Resolver"), self.tr("Resolver Settings"), self.tr("Initial Guess"), self.tr("Reference"), self.tr("Spent Time [s]"), self.tr("N_iterations"), self.tr("Final Distance [log10MSE]") ] for col, value in enumerate(headers, 1): write(0, col, value, style="header") if col in (4, 5, 6): ws.column_dimensions[column_to_char(col)].width = 10 else: ws.column_dimensions[column_to_char(col)].width = 10 for row, result in enumerate(results, 1): if row % 2 == 0: style = "normal_dark" else: style = "normal_light" write(row, 0, result.sample.name, style=style) write(row, 1, result.distribution_type.name, style=style) write(row, 2, result.n_components, style=style) write(row, 3, result.task.resolver, style=style) write(row, 4, self.tr("Default") if result.task.resolver_setting is None else result.task.resolver_setting.__str__(), style=style) write(row, 5, self.tr("None") if result.task.initial_guess is None else result.task.initial_guess.__str__(), style=style) write(row, 6, self.tr("None") if result.task.reference is None else result.task.reference.__str__(), style=style) write(row, 7, result.time_spent, style=style) write(row, 8, result.n_iterations, style=style) write(row, 9, result.get_distance("log10MSE"), style=style) ws = wb.create_sheet(self.tr("Statistic Moments")) write(0, 0, self.tr("Sample Name"), style="header") ws.merge_cells(start_row=1, start_column=1, end_row=2, end_column=1) ws.column_dimensions[column_to_char(0)].width = 16 headers = [] sub_headers = [ self.tr("Proportion"), self.tr("Mean [φ]"), self.tr("Mean [μm]"), self.tr("STD [φ]"), self.tr("STD [μm]"), self.tr("Skewness"), self.tr("Kurtosis") ] for i in range(max_n_components): write(0, i * len(sub_headers) + 1, self.tr("C{0}").format(i + 1), style="header") ws.merge_cells(start_row=1, start_column=i * len(sub_headers) + 2, end_row=1, end_column=(i + 1) * len(sub_headers) + 1) headers.extend(sub_headers) for col, value in enumerate(headers, 1): write(1, col, value, style="header") ws.column_dimensions[column_to_char(col)].width = 10 flag_index = 0 for row, result in enumerate(results, 2): if row % 2 == 0: style = "normal_light" else: style = "normal_dark" write(row, 0, result.sample.name, style=style) for component in result.components: index = flags[flag_index] write(row, index * len(sub_headers) + 1, component.fraction, style=style) write(row, index * len(sub_headers) + 2, component.logarithmic_moments["mean"], style=style) write(row, index * len(sub_headers) + 3, component.geometric_moments["mean"], style=style) write(row, index * len(sub_headers) + 4, component.logarithmic_moments["std"], style=style) write(row, index * len(sub_headers) + 5, component.geometric_moments["std"], style=style) write(row, index * len(sub_headers) + 6, component.logarithmic_moments["skewness"], style=style) write(row, index * len(sub_headers) + 7, component.logarithmic_moments["kurtosis"], style=style) flag_index += 1 ws = wb.create_sheet(self.tr("Unmixed Components")) ws.merge_cells(start_row=1, start_column=1, end_row=1, end_column=2) write(0, 0, self.tr("Sample Name"), style="header") ws.column_dimensions[column_to_char(0)].width = 16 for col, value in enumerate(classes_μm, 2): write(0, col, value, style="header") ws.column_dimensions[column_to_char(col)].width = 10 row = 1 for result_index, result in enumerate(results, 1): if result_index % 2 == 0: style = "normal_dark" else: style = "normal_light" write(row, 0, result.sample.name, style=style) ws.merge_cells(start_row=row + 1, start_column=1, end_row=row + result.n_components + 1, end_column=1) for component_i, component in enumerate(result.components, 1): write(row, 1, self.tr("C{0}").format(component_i), style=style) for col, value in enumerate( component.distribution * component.fraction, 2): write(row, col, value, style=style) row += 1 write(row, 1, self.tr("Sum"), style=style) for col, value in enumerate(result.distribution, 2): write(row, col, value, style=style) row += 1 ws_dict = {} flag_set = set(flags) for flag in flag_set: ws = wb.create_sheet(self.tr("Unmixed EM{0}").format(flag + 1)) write(0, 0, self.tr("Sample Name"), style="header") ws.column_dimensions[column_to_char(0)].width = 16 for col, value in enumerate(classes_μm, 1): write(0, col, value, style="header") ws.column_dimensions[column_to_char(col)].width = 10 ws_dict[flag] = ws flag_index = 0 for row, result in enumerate(results, 1): if row % 2 == 0: style = "normal_dark" else: style = "normal_light" for component in result.components: flag = flags[flag_index] ws = ws_dict[flag] write(row, 0, result.sample.name, style=style) for col, value in enumerate(component.distribution, 1): write(row, col, value, style=style) flag_index += 1 wb.save(filename) wb.close() def on_save_excel_clicked(self, align_components=False): if self.n_results == 0: self.show_warning(self.tr("There is not any SSU result.")) return filename, _ = self.file_dialog.getSaveFileName( None, self.tr("Choose a filename to save SSU Results"), None, "Microsoft Excel (*.xlsx)") if filename is None or filename == "": return try: self.save_excel(filename, align_components) self.show_info( self.tr("SSU results have been saved to:\n {0}").format( filename)) except Exception as e: self.show_error( self. tr("Error raised while save SSU results to Excel file.\n {0}" ).format(e.__str__())) def on_fitting_succeeded(self, result: SSUResult): result_replace_index = self.retry_tasks[result.task.uuid] self.__fitting_results[result_replace_index] = result self.retry_tasks.pop(result.task.uuid) self.retry_progress_msg.setText( self.tr("Tasks to be retried: {0}").format(len(self.retry_tasks))) if len(self.retry_tasks) == 0: self.retry_progress_msg.close() self.logger.debug( f"Retried task succeeded, sample name={result.task.sample.name}, distribution_type={result.task.distribution_type.name}, n_components={result.task.n_components}" ) self.update_page(self.page_index) def on_fitting_failed(self, failed_info: str, task: SSUTask): # necessary to remove it from the dict self.retry_tasks.pop(task.uuid) if len(self.retry_tasks) == 0: self.retry_progress_msg.close() self.show_error( self.tr("Failed to retry task, sample name={0}.\n{1}").format( task.sample.name, failed_info)) self.logger.warning( f"Failed to retry task, sample name={task.sample.name}, distribution_type={task.distribution_type.name}, n_components={task.n_components}" ) def retry_results(self, indexes, results): assert len(indexes) == len(results) if len(results) == 0: return self.retry_progress_msg.setText( self.tr("Tasks to be retried: {0}").format(len(results))) self.retry_timer.start(1) for index, result in zip(indexes, results): query = self.__reference_viewer.query_reference(result.sample) ref_result = None if query is None: nearby_results = self.__fitting_results[ index - 5:index] + self.__fitting_results[index + 1:index + 6] ref_result = self.__reference_viewer.find_similar( result.sample, nearby_results) else: ref_result = query keys = ["mean", "std", "skewness"] # reference = [{key: comp.logarithmic_moments[key] for key in keys} for comp in ref_result.components] task = SSUTask( result.sample, ref_result.distribution_type, ref_result.n_components, resolver=ref_result.task.resolver, resolver_setting=ref_result.task.resolver_setting, # reference=reference) initial_guess=ref_result.last_func_args) self.logger.debug( f"Retry task: sample name={task.sample.name}, distribution_type={task.distribution_type.name}, n_components={task.n_components}" ) self.retry_tasks[task.uuid] = index self.async_worker.execute_task(task) def degrade_results(self): degrade_results = [] # type: list[SSUResult] degrade_indexes = [] # type: list[int] for i, result in enumerate(self.__fitting_results): for component in result.components: if component.fraction < 1e-3: degrade_results.append(result) degrade_indexes.append(i) break self.logger.debug( f"Results should be degrade (have a redundant component): {[result.sample.name for result in degrade_results]}" ) if len(degrade_results) == 0: self.show_info( self.tr("No fitting result was evaluated as an outlier.")) return self.show_info( self. tr("The results below should be degrade (have a redundant component:\n {0}" ).format(", ".join( [result.sample.name for result in degrade_results]))) self.retry_progress_msg.setText( self.tr("Tasks to be retried: {0}").format(len(degrade_results))) self.retry_timer.start(1) for index, result in zip(degrade_indexes, degrade_results): reference = [] n_redundant = 0 for component in result.components: if component.fraction < 1e-3: n_redundant += 1 else: reference.append( dict(mean=component.logarithmic_moments["mean"], std=component.logarithmic_moments["std"], skewness=component.logarithmic_moments["skewness"] )) task = SSUTask( result.sample, result.distribution_type, result.n_components - n_redundant if result.n_components > n_redundant else 1, resolver=result.task.resolver, resolver_setting=result.task.resolver_setting, reference=reference) self.logger.debug( f"Retry task: sample name={task.sample.name}, distribution_type={task.distribution_type.name}, n_components={task.n_components}" ) self.retry_tasks[task.uuid] = index self.async_worker.execute_task(task) def ask_deal_outliers(self, outlier_results: typing.List[SSUResult], outlier_indexes: typing.List[int]): assert len(outlier_indexes) == len(outlier_results) if len(outlier_results) == 0: self.show_info( self.tr("No fitting result was evaluated as an outlier.")) else: if len(outlier_results) > 100: self.outlier_msg.setText( self. tr("The fitting results have the component that its fraction is near zero:\n {0}...(total {1} outliers)\nHow to deal with them?" ).format( ", ".join([ result.sample.name for result in outlier_results[:100] ]), len(outlier_results))) else: self.outlier_msg.setText( self. tr("The fitting results have the component that its fraction is near zero:\n {0}\nHow to deal with them?" ).format(", ".join([ result.sample.name for result in outlier_results ]))) res = self.outlier_msg.exec_() if res == QMessageBox.Discard: self.remove_results(outlier_indexes) elif res == QMessageBox.Retry: self.retry_results(outlier_indexes, outlier_results) else: pass def check_nan_and_inf(self): if self.n_results == 0: self.show_warning(self.tr("There is not any result in the list.")) return outlier_results = [] outlier_indexes = [] for i, result in enumerate(self.__fitting_results): if not result.is_valid: outlier_results.append(result) outlier_indexes.append(i) self.logger.debug( f"Outlier results with the nan or inf value(s): {[result.sample.name for result in outlier_results]}" ) self.ask_deal_outliers(outlier_results, outlier_indexes) def check_final_distances(self): if self.n_results == 0: self.show_warning(self.tr("There is not any result in the list.")) return elif self.n_results < 10: self.show_warning(self.tr("The results in list are too less.")) return distances = [] for result in self.__fitting_results: distances.append(result.get_distance(self.distance_name)) distances = np.array(distances) self.boxplot_chart.show_dataset([distances], xlabels=[self.distance_name], ylabel=self.tr("Distance")) self.boxplot_chart.show() # calculate the 1/4, 1/2, and 3/4 postion value to judge which result is invalid # 1. the mean squared errors are much higher in the results which are lack of components # 2. with the component number getting higher, the mean squared error will get lower and finally reach the minimum median = np.median(distances) upper_group = distances[np.greater(distances, median)] lower_group = distances[np.less(distances, median)] value_1_4 = np.median(lower_group) value_3_4 = np.median(upper_group) distance_QR = value_3_4 - value_1_4 outlier_results = [] outlier_indexes = [] for i, (result, distance) in enumerate(zip(self.__fitting_results, distances)): if distance > value_3_4 + distance_QR * 1.5: # which error too small is not outlier # if distance > value_3_4 + distance_QR * 1.5 or distance < value_1_4 - distance_QR * 1.5: outlier_results.append(result) outlier_indexes.append(i) self.logger.debug( f"Outlier results with too greater distances: {[result.sample.name for result in outlier_results]}" ) self.ask_deal_outliers(outlier_results, outlier_indexes) def check_component_moments(self, key: str): if self.n_results == 0: self.show_warning(self.tr("There is not any result in the list.")) return elif self.n_results < 10: self.show_warning(self.tr("The results in list are too less.")) return max_n_components = 0 for result in self.__fitting_results: if result.n_components > max_n_components: max_n_components = result.n_components moments = [] for i in range(max_n_components): moments.append([]) for result in self.__fitting_results: for i, component in enumerate(result.components): if np.isnan(component.logarithmic_moments[key]) or np.isinf( component.logarithmic_moments[key]): pass else: moments[i].append(component.logarithmic_moments[key]) # key_trans = {"mean": self.tr("Mean"), "std": self.tr("STD"), "skewness": self.tr("Skewness"), "kurtosis": self.tr("Kurtosis")} key_label_trans = { "mean": self.tr("Mean [φ]"), "std": self.tr("STD [φ]"), "skewness": self.tr("Skewness"), "kurtosis": self.tr("Kurtosis") } self.boxplot_chart.show_dataset( moments, xlabels=[f"C{i+1}" for i in range(max_n_components)], ylabel=key_label_trans[key]) self.boxplot_chart.show() outlier_dict = {} for i in range(max_n_components): stacked_moments = np.array(moments[i]) # calculate the 1/4, 1/2, and 3/4 postion value to judge which result is invalid # 1. the mean squared errors are much higher in the results which are lack of components # 2. with the component number getting higher, the mean squared error will get lower and finally reach the minimum median = np.median(stacked_moments) upper_group = stacked_moments[np.greater(stacked_moments, median)] lower_group = stacked_moments[np.less(stacked_moments, median)] value_1_4 = np.median(lower_group) value_3_4 = np.median(upper_group) distance_QR = value_3_4 - value_1_4 for j, result in enumerate(self.__fitting_results): if result.n_components > i: distance = result.components[i].logarithmic_moments[key] if distance > value_3_4 + distance_QR * 1.5 or distance < value_1_4 - distance_QR * 1.5: outlier_dict[j] = result outlier_results = [] outlier_indexes = [] for index, result in sorted(outlier_dict.items(), key=lambda x: x[0]): outlier_indexes.append(index) outlier_results.append(result) self.logger.debug( f"Outlier results with abnormal {key} values of their components: {[result.sample.name for result in outlier_results]}" ) self.ask_deal_outliers(outlier_results, outlier_indexes) def check_component_fractions(self): outlier_results = [] outlier_indexes = [] for i, result in enumerate(self.__fitting_results): for component in result.components: if component.fraction < 1e-3: outlier_results.append(result) outlier_indexes.append(i) break self.logger.debug( f"Outlier results with the component that its fraction is near zero: {[result.sample.name for result in outlier_results]}" ) self.ask_deal_outliers(outlier_results, outlier_indexes) def try_align_components(self): if self.n_results == 0: self.show_warning(self.tr("There is not any result in the list.")) return elif self.n_results < 10: self.show_warning(self.tr("The results in list are too less.")) return import matplotlib.pyplot as plt n_components_list = [ result.n_components for result in self.__fitting_results ] count_dict = Counter(n_components_list) max_n_components = max(count_dict.keys()) self.logger.debug( f"N_components: {count_dict}, Max N_components: {max_n_components}" ) n_components_desc = "\n".join([ self.tr("{0} Component(s): {1}").format(n_components, count) for n_components, count in count_dict.items() ]) self.show_info( self.tr("N_components distribution of Results:\n{0}").format( n_components_desc)) x = self.__fitting_results[0].classes_μm stacked_components = [] for result in self.__fitting_results: for component in result.components: stacked_components.append(component.distribution) stacked_components = np.array(stacked_components) cluser = KMeans(n_clusters=max_n_components) flags = cluser.fit_predict(stacked_components) figure = plt.figure(figsize=(6, 4)) cmap = plt.get_cmap("tab10") axes = figure.add_subplot(1, 1, 1) for flag, distribution in zip(flags, stacked_components): plt.plot(x, distribution, c=cmap(flag), zorder=flag) axes.set_xscale("log") axes.set_xlabel(self.tr("Grain-size [μm]")) axes.set_ylabel(self.tr("Frequency")) figure.tight_layout() figure.show() outlier_results = [] outlier_indexes = [] flag_index = 0 for i, result in enumerate(self.__fitting_results): result_flags = set() for component in result.components: if flags[flag_index] in result_flags: outlier_results.append(result) outlier_indexes.append(i) break else: result_flags.add(flags[flag_index]) flag_index += 1 self.logger.debug( f"Outlier results that have two components in the same cluster: {[result.sample.name for result in outlier_results]}" ) self.ask_deal_outliers(outlier_results, outlier_indexes) def analyse_typical_components(self): if self.n_results == 0: self.show_warning(self.tr("There is not any result in the list.")) return elif self.n_results < 10: self.show_warning(self.tr("The results in list are too less.")) return self.typical_chart.show_typical(self.__fitting_results) self.typical_chart.show()
def on_save_project_triggered(self): file_name = QFileDialog.getSaveFileName( self, 'select location and give file name', '../saves', 'Ryven Project(*.rpo)')[0] if file_name != '': self.save_project(file_name)