Пример #1
0
red = Mod.reduced(A, E, Qs)

import random
import math


def Gs(i, j):
    return lambda: random.gauss(Qs[0][i, j], math.sqrt(Qs[1][i, j]))


import Pymatr.synthesis as Syn

from Pymatr.utils import numerical
L = red.dEigen
nsyn = 100
Gen = Syn.MatrixRngOpt(numerical(A), numerical(E / L), Gs, nsyn)


def average():
    s = sum(Gen())
    av = s / nsyn
    #	print(" \n sum {},  average: {}\n".format(r, av) )
    return av


lln = red.lln()
import Pymatr.byPieces as Bp
Bp.plot(lln)

import Pymatr.histogram as H
nsample = 1000
Пример #2
0

def GsCLT(i, j):
    return lambda: random.gauss(0, math.sqrt(Qs[1][i, j]))


import Pymatr.synthesis as Syn

nsyn = 500
nhist = 1000

from Pymatr.utils import numerical

E0n = numerical(E0)
A0n = numerical(A0)
GenLLN = Syn.MatrixRngOpt(A0n, E0n, GsLLN, nsyn)
GenCLT = Syn.MatrixRngOpt(A0n, E0n, GsCLT, nsyn)
__latex__(r'''%
\begin{equation}
\mEx = ''')
__pynclusion__(pr.mat(E0, spacing="0.1cm"))
__latex__(r''', \quad \mAx_{i,j} = 1   
\end{equation}

 
\section{Strongly connected classes $\Xi_i$}
The first step is to identify the irreducible classes (called strongly connected components in graph theory) of $\mE$.
In order to do so, an interesting method is to compute a connectivity matrix $\Conn$
\begin{equation} 
\Conn \equiv \sum_{k=0}^{+\infty} (\epsilon\mE)^k = (\mId- \epsilon\mE )^{-1} .
\end{equation}