Пример #1
0
class TestSSUResult:
    dataset = random_dataset(**SIMPLE_PRESET, n_samples=100)

    def test_ctor(self):
        as0 = self.dataset[0]
        result = SSUResult(as0, self.dataset.distribution_type,
                           self.dataset.parameters, 1.0)
        assert result.name == as0.name
        assert result.sample is as0
        assert result.n_iterations == self.dataset.n_samples

    def test_get_item(self):
        as0 = self.dataset[0]
        result = SSUResult(as0, self.dataset.distribution_type,
                           self.dataset.parameters, 1.0)
        sample = result[0]
        assert isinstance(sample, SSUResultComponent)

    def test_iter(self):
        as0 = self.dataset[0]
        result = SSUResult(as0, self.dataset.distribution_type,
                           self.dataset.parameters, 1.0)
        for i, component in enumerate(result):
            assert isinstance(component, SSUResultComponent)

    def test_reverse_iter(self):
        as0 = self.dataset[0]
        result = SSUResult(as0, self.dataset.distribution_type,
                           self.dataset.parameters, 1.0)
        for i, component in enumerate(reversed(result)):
            assert isinstance(component, SSUResultComponent)

    def test_slice(self):
        as0 = self.dataset[0]
        result = SSUResult(as0, self.dataset.distribution_type,
                           self.dataset.parameters, 1.0)
        for component in result[1:]:
            assert isinstance(component, SSUResultComponent)

    def test_none_error(self):
        parameters = self.dataset.parameters.copy()
        with pytest.raises(AssertionError):
            SSUResult(None, self.dataset.distribution_type, parameters, 1.0)
        with pytest.raises(AssertionError):
            SSUResult(self.dataset[0], None, parameters, 1.0)
        with pytest.raises(AssertionError):
            SSUResult(self.dataset[0], self.dataset.distribution_type, None,
                      1.0)
        with pytest.raises(AssertionError):
            SSUResult(self.dataset[0], self.dataset.distribution_type,
                      parameters, None)

    def test_ndim_error(self):
        parameters = self.dataset.parameters.copy()
        with pytest.raises(AssertionError):
            SSUResult(self.dataset[0], self.dataset.distribution_type,
                      parameters[0], 1.0)

    def test_n_parameters_error(self):
        parameters = self.dataset.parameters.copy()
        with pytest.raises(AssertionError):
            SSUResult(self.dataset[0], DistributionType.Normal, parameters,
                      1.0)

    def test_index_error(self):
        as0 = self.dataset[0]
        result = SSUResult(as0, self.dataset.distribution_type,
                           self.dataset.parameters, 1.0)
        with pytest.raises(TypeError):
            result["C1"]
        with pytest.raises(TypeError):
            result[:, 0]

    def test_apis(self):
        # `ArtificialSample` has similar apis with `SSUResult`, to make them can be used in plotting charts
        as0 = self.dataset[0]
        result = SSUResult(as0, self.dataset.distribution_type,
                           self.dataset.parameters, 1.0)
        apis = [
            "name", "classes", "classes_phi", "distribution", "sample",
            ("sample", "distribution"), "is_valid"
        ]
        component_apis = [
            "classes", "classes_phi", "distribution", "proportion", "mean",
            "sorting_coefficient", "skewness", "kurtosis"
        ]
        for api in apis:
            if isinstance(api, tuple):
                api, sub_api = api
                hasattr(getattr(result, api), sub_api)
                hasattr(getattr(as0, api), sub_api)
            assert hasattr(result, api)
            assert hasattr(as0, api)
        for api in component_apis:
            for component in result:
                hasattr(component, api)
            for component in as0:
                hasattr(component, api)

    def test_history(self):
        as0 = self.dataset[0]
        result = SSUResult(as0, self.dataset.distribution_type,
                           self.dataset.parameters, 1.0)
        result_bytes = result.distribution.tobytes()
        for h in result.history:
            assert isinstance(h, SSUResult)
            assert h is not result
            # will not modify the data of original object
            assert result.distribution.tobytes() == result_bytes

    def test_loss(self):
        as0 = self.dataset[0]
        result = SSUResult(as0, self.dataset.distribution_type,
                           self.dataset.parameters, 1.0)
        for name in built_in_losses:
            loss = result.loss(name)
            assert isinstance(loss, float)

    def test_loss_series(self):
        as0 = self.dataset[0]
        result = SSUResult(as0, self.dataset.distribution_type,
                           self.dataset.parameters, 1.0)
        for name in built_in_losses:
            loss_series = result.loss_series(name)
            assert isinstance(loss_series, ndarray)
            assert len(loss_series) == result.n_iterations
Пример #2
0
class TestTryEMMA:
    dataset = random_dataset(**SIMPLE_PRESET, n_samples=100)
    x0 = np.array([[mean for (mean, std) in component]
                   for component in SIMPLE_PRESET["target"]]).T
    x0 = x0[1:-1]

    @classmethod
    def log_message(cls, result: EMMAResult):
        print(
            "\n",
            f"The fitting task [{result.n_samples}, {result.n_members}, {result.kernel_type.name}] of "
            f"dataset [{result.dataset.name}] was finished using {result.n_iterations} iterations and "
            f"{result.time_spent:.2f} s.\nFitting settings: {result.settings}.\n"
            f"MSE: {result.loss('mse')}, LMSE: {result.loss('lmse')}, angular: {result.loss('angular')}.\n",
            sep="",
            end="\n")

    def test_one(self):
        result = try_emma(self.dataset, KernelType.Normal,
                          self.dataset.n_components)
        self.log_message(result)
        assert isinstance(result, EMMAResult)

    def test_has_x0(self):
        result = try_emma(self.dataset,
                          KernelType.Normal,
                          self.dataset.n_components,
                          x0=self.x0,
                          pretrain_epochs=100)
        self.log_message(result)
        assert isinstance(result, EMMAResult)

    def test_cuda(self):
        result = try_emma(self.dataset,
                          KernelType.Normal,
                          self.dataset.n_components,
                          x0=self.x0,
                          device="cuda",
                          pretrain_epochs=100)
        self.log_message(result)
        assert isinstance(result, EMMAResult)

    def test_cuda0(self):
        result = try_emma(self.dataset,
                          KernelType.Normal,
                          self.dataset.n_components,
                          x0=self.x0,
                          device="cuda:0",
                          pretrain_epochs=100)
        self.log_message(result)
        assert isinstance(result, EMMAResult)

    def test_no_device(self):
        with pytest.raises(AssertionError):
            result = try_emma(self.dataset,
                              KernelType.Normal,
                              self.dataset.n_components,
                              x0=self.x0,
                              device="cuda:1",
                              pretrain_epochs=100)

    def test_progress_callback(self):
        def callback(p: float):
            assert 0.0 <= p <= 1.0

        result = try_emma(self.dataset,
                          KernelType.Normal,
                          self.dataset.n_components,
                          pretrain_epochs=100,
                          progress_callback=callback)

    def test_result_properties(self):
        result = try_emma(self.dataset, KernelType.Normal,
                          self.dataset.n_components)
        properties = [
            "dataset", "n_samples", "n_members", "n_classes", "n_iterations",
            "kernel_type", "proportions", "end_members", "time_spent", "x0",
            "history", "settings"
        ]
        for prop in properties:
            assert hasattr(result, prop)

    def test_no_history(self):
        result = try_emma(self.dataset,
                          KernelType.Normal,
                          self.dataset.n_components,
                          need_history=False)
        assert result.n_iterations == 1

    def test_history(self):
        result = try_emma(self.dataset, KernelType.Normal,
                          self.dataset.n_components)
        proportions_bytes = result.proportions.tobytes()
        end_members_bytes = result.end_members.tobytes()
        for h in result.history:
            assert isinstance(h, EMMAResult)
            assert h is not result
            # will not modify the data of original object
            assert result.proportions.tobytes() == proportions_bytes
            assert result.end_members.tobytes() == end_members_bytes

    def test_loss(self):
        result = try_emma(self.dataset, KernelType.Normal,
                          self.dataset.n_components)
        for loss_name in built_in_losses:
            loss_series = result.loss_series(loss_name)
            assert isinstance(loss_series, np.ndarray)
            assert len(loss_series) == result.n_iterations
            class_wise_losses = result.class_wise_losses(loss_name)
            assert isinstance(class_wise_losses, np.ndarray)
            assert len(class_wise_losses) == result.n_classes
            sample_wise_losses = result.sample_wise_losses(loss_name)
            assert isinstance(sample_wise_losses, np.ndarray)
            assert len(sample_wise_losses) == result.n_samples

    def test_all_kernels(self):
        for kernel_type in [
                KernelType.Nonparametric, KernelType.Normal,
                KernelType.SkewNormal, KernelType.Weibull,
                KernelType.GeneralWeibull
        ]:
            result = try_emma(self.dataset, kernel_type,
                              self.dataset.n_components)
Пример #3
0
from QGrain.models import DistributionType
from QGrain.generate import random_dataset

preset = dict(target=[[(0.0, 0.0), (10.2, 0.0), (1.1, 0.0), (1.0, 0.1)],
                      [(0.0, 0.0), (7.5, 0.0), (1.2, 0.0), (2.0, 0.2)],
                      [(0.0, 0.0), (5.0, 0.0), (1.0, 0.0), (2.5, 0.5)]],
              distribution_type=DistributionType.SkewNormal)

dataset = random_dataset(**preset,
                         n_samples=100,
                         min_size=0.02,
                         max_size=2000.0,
                         n_classes=101,
                         precision=4,
                         noise=5)
Пример #4
0
class TestTrySSU:
    dataset = random_dataset(**SIMPLE_PRESET, n_samples=10)
    x0 = np.array([[mean for (mean, std) in component] for component in SIMPLE_PRESET["target"]]).T
    x0 = x0[1:]

    @classmethod
    def log_message(cls, result: SSUResult, message: str):
        print("\n", f"The fitting task [{len(result)}, {result.distribution_type.name}] of sample [{result.name}] "
                    f"was finished using {result.n_iterations} iterations, message: {message}.\n"
                    f"MSE: {result.loss('mse')}, LMSE: {result.loss('lmse')}, angular: {result.loss('angular')}.\n"
                    f"Target Mz: ({', '.join([f'{c.mean:.2f}' for c in result.sample])}), "
                    f"Estimated Mz: ({', '.join([f'{c.mean:.2f}' for c in result])}).\n"
                    f"Target So: ({', '.join([f'{c.sorting_coefficient:.2f}' for c in result.sample])}), "
                    f"Estimated So: ({', '.join([f'{c.sorting_coefficient:.2f}' for c in result])}).\n"
                    f"Target p: ({', '.join([f'{c.proportion:.2f}' for c in result.sample])}), "
                    f"Estimated p: ({', '.join([f'{c.proportion:.2f}' for c in result])}).", sep="", end="\n")

    def test_one(self):
        result, message = try_ssu(self.dataset[0], DistributionType.Normal, self.dataset.n_components,
                                  loss="lmse")
        self.log_message(result, message)
        assert isinstance(result, SSUResult)

    def test_no_history(self):
        result, message = try_ssu(self.dataset[0], DistributionType.Normal, self.dataset.n_components,
                                  loss="lmse", need_history=False)
        self.log_message(result, message)
        assert isinstance(result, SSUResult)
        assert result.n_iterations == 1

    def test_has_x0(self):
        result, message = try_ssu(self.dataset[0], DistributionType.Normal, self.dataset.n_components,
                                  x0=self.dataset.parameters[0, 1:, :], loss="lmse")
        self.log_message(result, message)
        assert isinstance(result, SSUResult)

    def test_try_global(self):
        result, message = try_ssu(self.dataset[0], DistributionType.Normal, self.dataset.n_components, try_global=True)
        self.log_message(result, message)
        assert isinstance(result, SSUResult)

    def test_all_samples(self):
        for i, sample in enumerate(self.dataset):
            result, message = try_ssu(sample, DistributionType.Normal, self.dataset.n_components, x0=self.x0)
            assert isinstance(result, SSUResult)

    def test_try_dataset(self):
        options = dict(x0=self.x0)
        results, failed_indexes = try_dataset(self.dataset, DistributionType.Normal,
                                              self.dataset.n_components, n_processes=4,
                                              options=options)
        print("\n", "Using try_dataset to fit all samples", len(results), len(failed_indexes))

    def test_all_losses(self):
        for loss in built_in_losses:
            result, message = try_ssu(self.dataset[0], DistributionType.Normal, self.dataset.n_components,
                                      x0=self.x0, loss=loss)
            if isinstance(result, SSUResult):
                print(loss)
                self.log_message(result, message)
            else:
                print("\n", loss, message, end="\n")

    def test_all_optimizers(self):
        for optimizer in built_in_optimizers:
            result, message = try_ssu(self.dataset[0], DistributionType.Normal, self.dataset.n_components,
                                      x0=self.x0, loss="rmse", optimizer=optimizer)
            if isinstance(result, SSUResult):
                print(optimizer)
                self.log_message(result, message)
            else:
                print("\n", optimizer, message, end="\n")
Пример #5
0
  ('Fine', 'Silt'): 0.11250000000000002,
  ('Very fine', 'Silt'): 0.0868,
  ('Very coarse', 'Clay'): 0.0669,
  ('Coarse', 'Clay'): 0.052,
  ('Medium', 'Clay'): 0.0251,
  ('Fine', 'Clay'): 0.006,
  ('Very fine', 'Clay'): 0.0007999999999999999},
 'group_folk54': 'Slit',
 '_group_bp12_symbols': ['(s)', '(c)', 'SI'],
 'group_bp12_symbol': '(s)(c)SI',
 'group_bp12': 'Slightly Sandy Slightly Clayey Silt'}

from QGrain.generate import SIMPLE_PRESET, random_dataset
from QGrain.io import save_statistics

dataset = random_dataset(**SIMPLE_PRESET, n_samples=200)
save_statistics(dataset, "./Statistics.xlsx")

from QGrain.generate import SIMPLE_PRESET, random_sample
from QGrain.statistics import *

sample = random_sample(**SIMPLE_PRESET)
# statistical parameters
s = arithmetic(sample.classes, sample.distribution)
s = geometric(sample.classes, sample.distribution)
s = logarithmic(sample.classes_phi, sample.distribution)
ppf = reversed_phi_ppf(sample.classes_phi, sample.distribution)
s = geometric_fw57(ppf)
s = logarithmic_fw57(ppf)

# proportions