Пример #1
0
def test_classifier_run():
    # =======================================
    # refresh random select feature json file
    # =======================================
    ECGRF.ECGrf.RefreshRandomFeatureJsonFile()

    # collect test record list
    sel1213 = conf['sel1213']
    target_index = 11
    # init rf classifier
    rf = ECGRF.ECGrf()
    # traning
    traininglist = [x for x in sel1213 \
            if x != sel1213[target_index]]
    traininglist = traininglist[0:5]
    # prompt
    print '>>> Training {}'.format(traininglist)
    rf.training(traininglist)
    print '>>> Training finished.'
    # testing
    print 'testing:', sel1213[target_index]
    rf.testmdl(\
            reclist = [sel1213[target_index],],\
            TestResultFileName = \
                os.path.join(\
                        projhomepath,\
                        'tmp',\
                        'tmp.out'.format(target_index)))
def TestingAndSaveResult():
    sel1213 = conf['sel1213']
    time0 = time.time()
    rf = ECGRF.ECGrf()
    rf.training(sel1213[0:1])
    time1 = time.time()
    print 'Training time:', time1 - time0
    ## test
    rf.testmdl(reclist=sel1213[0:1])
Пример #3
0
def TestAllQTdata(saveresultpath):
    # Leave Ntest out of 30 records to test
    #

    qt_loader = QTloader()
    QTreclist = qt_loader.getQTrecnamelist()
    print 'Totoal QT record number:{}'.format(len(QTreclist))
    ## Training record list
    selall0 = conf["selQTall0"]
    selrecords = list(set(QTreclist) - set(selall0))
    rf = ECGRF.ECGrf()
    # Multi Process
    rf.useParallelTest = True
    rf.TestRange = 'All'

    # ================
    # evaluate time cost for each stage
    # ================

    # clear debug logger
    ECGRF.debugLogger.clear()
    # display the time left to finish program
    one_round_time_cost = []

    # ====================
    # Training
    # ====================
    ECGRF.debugLogger.dump('\n====Test Start ====\n')

    time0 = time.time()
    # training the rf classifier with reclist
    #
    # dump to debug logger
    rf.training(selrecords)
    # timing
    time1 = time.time()
    print 'Total Training time:', time1 - time0
    ECGRF.debugLogger.dump('Total Training time: {:.2f} s\n'.format(time1 -
                                                                    time0))

    # save the trained model
    savemodelpath = os.path.join(saveresultpath, 'QT_sel.mdl')
    with open(savemodelpath, 'w') as fout:
        pickle.dump(rf.mdl, fout)
    return

    ## test
    testinglist = selall0
    print '\n>>Testing:', testinglist
    ECGRF.debugLogger.dump('\n======\n\nTest Set :{}'.format(selrecords))
    rf.testrecords(reclist=selrecords,
                   TestResultFileName=os.path.join(saveresultpath,
                                                   'TestResult.out'))
Пример #4
0
def leaveonetest(saveresultpath, StartFileIndex=0):
    #
    # test speed version of LOOT
    #

    # refresh random select feature json file
    #
    ECGRF.ECGrf.RefreshRandomFeatureJsonFile()

    sel1213 = conf['sel0116']
    rf = ECGRF.ECGrf()

    ECGRF.debugLogger.clear()

    # display the time left to finish program
    one_round_time_cost = []
    # reapeat test
    for i in range(StartFileIndex, len(sel1213)):
        # round start time
        time_round_start = time.time()

        print '====Test Index {} ===='.format(i)
        ECGRF.debugLogger.dump('\n====Test Index {} ====\n'.format(i))

        time0 = time.time()
        # training the rf classifier with reclist
        #
        traininglist = [x for x in sel1213 \
                if x != sel1213[i]]
        rf.training(traininglist)
        # timing
        time1 = time.time()
        print 'Total Training time:', time1 - time0
        ECGRF.debugLogger.dump(\
                    'Total Training time: {:.2f} s\n'.format(time1-time0))

        ## test
        print 'testing:', sel1213[i]
        rf.testmdl(reclist = [sel1213[i],],\
                TestResultFileName = \
                    os.path.join(saveresultpath,'hand{}.out'.format(i)))
        # round end time
        time_round_end = time.time()
        one_round_time_cost.append(time_round_end - time_round_start)
        time_cost_per_round = np.nanmean(one_round_time_cost)
        if time_cost_per_round is not None:
            print '\n[Time left:{:.1f}s({:.1f}min)]'.format(
                (len(sel1213) - i - 1) * time_cost_per_round,
                (len(sel1213) - i - 1) * time_cost_per_round / 60.0)
Пример #5
0
def testEval(picklefilename):
    with open(picklefilename, 'r') as fin:
        Results = pickle.load(fin)
    rfobj = ECGRF.ECGrf()
    fResults = rfobj.resfilter(Results)
    # show filtered results & raw results
    #for recname , recRes in Results:
    #rfobj.plotresult(Results[2],showExpertLabel = True)
    #rfobj.plotresult(fResults[2],figureID = 2,showExpertLabel = True)

    # Evaluate prediction result statistics
    #
    ECGstats = ecgEval.ECGstatistics(fResults[0:2])
    ECGstats.eval(debug=True)
    ECGstats.dispstat0()
    ECGstats.plotevalresofrec(fResults[1][0], Results)
Пример #6
0
def leaveonetest():
    sel1213 = conf['sel1213']
    rf = ECGRF.ECGrf()

    # reapeat test
    for i in range(0, len(sel1213)):
        print '====Test Index {} ===='.format(i)
        time0 = time.time()
        traininglist = [x for x in sel1213 \
                if x != sel1213[i]]
        rf.training(traininglist)
        time1 = time.time()
        print 'Training time:', time1 - time0
        ## test
        print 'testing:', sel1213[i]
        rf.testmdl(reclist=[
            sel1213[i],
        ])
Пример #7
0
def TestAllQTdata(saveresultpath):
    # Leave Ntest out of 30 records to test
    #
    qt_loader = QTloader()
    QTreclist = qt_loader.getQTrecnamelist()
    print 'Totoal QT record number:{}'.format(len(QTreclist))
    ## Training record list
    testinglist = conf["selQTall0_test_set"]
    traininglist = list(set(QTreclist) - set(testinglist))

    rf = ECGRF.ECGrf()
    # Multi Process
    rf.useParallelTest = True
    rf.TestRange = 'All'

    # clear debug logger
    ECGRF.debugLogger.clear()
    # ====================
    # Training
    # ====================
    ECGRF.debugLogger.dump('\n====Test Start ====\n')

    # training the rf classifier with reclist
    #
    # dump to debug logger
    time_cost_output = []
    timing_for(rf.training, [
        traininglist,
    ],
               prompt='Total Training time:',
               time_cost_output=time_cost_output)
    ECGRF.debugLogger.dump('Total Training time: {:.2f} s\n'.format(
        time_cost_output[-1]))
    # save trained mdl
    backupobj(rf.mdl, os.path.join(saveresultpath, 'trained_model.mdl'))

    ## test
    print '\n>>Testing:', testinglist
    ECGRF.debugLogger.dump('\n======\n\nTest Set :{}'.format(testinglist))
    rf.testrecords(saveresultpath, reclist=testinglist)
Пример #8
0
def leaveNtest(saveresultpath, Ntest, StartFileIndex=0, TestRoundNum=30):
    # Leave Ntest out of 30 records to test
    #

    # refresh random select feature json file
    ECGRF.ECGrf.RefreshRandomFeatureJsonFile()

    selrecords = conf['sel0116']
    rf = ECGRF.ECGrf()

    # clear debug logger
    ECGRF.debugLogger.clear()
    # display the time left to finish program
    one_round_time_cost = []

    # reapeat test
    for i in range(StartFileIndex, TestRoundNum):
        # round start time
        time_round_start = time.time()
        print '====Test Index {} ===='.format(i)
        ECGRF.debugLogger.dump('\n====Test Index {} ====\n'.format(i))

        # get N random selected test records
        indexlist = range(0, len(selrecords))
        random.shuffle(indexlist)
        testindexlist = indexlist[0:Ntest]
        # training set
        trainingindexset = set(indexlist)
        testingindexset = set(testindexlist)
        trainingindexset -= testingindexset

        time0 = time.time()
        # training the rf classifier with reclist
        #
        traininglist = [selrecords[x] for x in trainingindexset]
        # dump to debug logger
        ECGRF.debugLogger.dump(
            '\n======\nTrainingset:{}\nTrainingRecords:{}\n'.format(
                trainingindexset, traininglist))
        rf.training(traininglist)
        # timing
        time1 = time.time()
        print 'Total Training time:', time1 - time0
        ECGRF.debugLogger.dump('Total Training time: {:.2f} s\n'.format(time1 -
                                                                        time0))

        ## test
        testinglist = [selrecords[x] for x in testingindexset]
        print '\n>>Testing:', testinglist
        ECGRF.debugLogger.dump(
            '\n======\nTestingindexs:{}\nTestingRecords:{}\n'.format(
                testingindexset, testinglist))
        rf.testmdl(reclist=testinglist,
                   TestResultFileName=os.path.join(saveresultpath,
                                                   'hand{}.out'.format(i)))
        # round end time
        time_round_end = time.time()
        one_round_time_cost.append(time_round_end - time_round_start)
        time_cost_per_round = np.nanmean(one_round_time_cost)
        if time_cost_per_round is not None:
            debug_timeleft_info = '\n[Time left:{:.1f}s({:.1f}min)]\n'.format(
                (TestRoundNum - i - 1) * time_cost_per_round,
                (TestRoundNum - i - 1) * time_cost_per_round / 60.0)
            print debug_timeleft_info
            ECGRF.debugLogger.dump(debug_timeleft_info)
Пример #9
0
 def __init__(self):
     self.rfobj = ECGRF.ECGrf()
     pass