Пример #1
0
    def update_status(self, info: GameInfo):

        if norm(info.ball.pos) > 140 and norm(
                info.ball.vel) > 9:  # this only works for soccar

            if norm(info.ball.pos - info.my_car.pos) < 240:
                self.finished = True
            else:
                self.failed = True
Пример #2
0
    def step(self, dt):

        max_throttle_speed = 1410
        max_boost_speed = 2300

        # get the local coordinates of where the ball is, relative to the car
        # delta_local[0]: how far in front
        # delta_local[1]: how far to the left
        # delta_local[2]: how far above
        delta_local = dot(self.target_pos - self.car.pos, self.car.theta)

        # angle between car's forward direction and target position
        phi = math.atan2(delta_local[1], delta_local[0])

        if phi < -math.radians(10):
            # If the target is more than 10 degrees right from the centre, steer left
            self.controls.steer = -1
        elif phi > math.radians(10):
            # If the target is more than 10 degrees left from the centre, steer right
            self.controls.steer = 1
        else:
            # If the target is less than 10 degrees from the centre, steer straight
            self.controls.steer = phi / math.radians(10)

        if abs(phi) < math.radians(3) and not self.car.supersonic:
            self.controls.boost = True
        else:
            self.controls.boost = False

        if abs(phi) > 1.75:
            self.controls.handbrake = 1
        else:
            self.controls.handbrake = 0

        # forward velocity
        vf = dot(self.car.vel, self.car.forward())

        if vf < self.target_speed:
            self.controls.throttle = 1.0
            if self.target_speed > max_throttle_speed:
                self.controls.boost = 1
            else:
                self.controls.boost = 0
        else:
            self.controls.throttle = -1
            self.controls.boost = 0
            if norm(delta_local) < 20:
                self.controls.throttle = -norm(delta_local) / 20
            if norm(delta_local) < 10:
                self.controls.throttle = -norm(delta_local) / 10

        if self.car.supersonic:
            self.controls.boost = False

        if norm(self.car.pos - self.target_pos) < 100:
            self.finished = True
Пример #3
0
def closest_available_boost(my_pos: vec3, boost_pads: list) -> BoostPad:
    """ Returns the closest available boost pad to my_pos"""
    closest_boost = None
    for boost in boost_pads:
        distance = norm(boost.pos - my_pos)
        if boost.is_active or distance / 2300 > 10 - boost.timer:
            if closest_boost is None:
                closest_boost = boost
                closest_distance = norm(closest_boost.pos - my_pos)
            else:
                if distance < closest_distance:
                    closest_boost = boost
                    closest_distance = norm(closest_boost.pos - my_pos)
    return closest_boost
Пример #4
0
def turn_circles(self):
    """renders turning circles in cyan"""
    speed = norm(self.info.my_car.vel)
    r = -6.901E-11 * speed**4 + 2.1815E-07 * speed**3 - 5.4437E-06 * speed**2 + 0.12496671 * speed + 157
    k = self.turn_c_quality

    circleR = []
    centreR = vec3(0, r, 0)
    for i in range(k):
        theta = (2 / k) * math.pi * i
        point = centreR + vec3(r * math.sin(theta), -r * math.cos(theta), 0)
        point = self.info.my_car.pos + dot(self.info.my_car.theta, point)
        circleR.append(point)

    circleL = []
    centreL = vec3(0, -r, 0)
    for i in range(k):
        theta = (2 / k) * math.pi * i
        point = centreL + vec3(r * math.sin(theta), r * math.cos(theta), 0)
        point = self.info.my_car.pos + dot(self.info.my_car.theta, point)
        circleL.append(point)

    self.renderer.begin_rendering("turn circles")
    self.renderer.draw_polyline_3d(circleR, self.renderer.cyan())
    self.renderer.draw_polyline_3d(circleL, self.renderer.cyan())
    self.renderer.end_rendering()
Пример #5
0
def can_dodge(agent, target):
    bot_to_target = target - agent.info.my_car.pos
    local_bot_to_target = dot(bot_to_target, agent.info.my_car.theta)
    angle_front_to_target = math.atan2(local_bot_to_target[1], local_bot_to_target[0])
    distance_bot_to_target = norm(vec2(bot_to_target))
    good_angle = math.radians(-10) < angle_front_to_target < math.radians(10)
    on_ground = agent.info.my_car.on_ground and agent.info.my_car.pos[2] < 100
    going_fast = velocity_2d(agent.info.my_car.vel) > 1250
    target_not_in_goal = not agent.info.my_goal.inside(target)
    return good_angle and distance_bot_to_target > 2000 and on_ground and going_fast and target_not_in_goal
Пример #6
0
 def convboost(self):
     for guide in self.guides:
         for pad in self.active_pads:
             if pad not in self.plan_pads and norm(
                     guide - pad.pos
             ) <= 300:  #number not final, distance from guide to potential convenient boost has to be less or equal to this number
                 self.plan_pads.append(pad)
                 self.targets.insert(0, pad.pos)
                 self.pathplan()
                 self.convboost()
                 break
         else:
             continue
         break
    def bounce_off(self, normal):
        # See https://samuelpmish.github.io/notes/RocketLeague/ball_bouncing/
        # For dropshot the slip velocity becomes zero after the first bounce, so chips model is slightly tweaked
        MU = 0.285
        CR = 0.605

        v_perp = normal * dot(self.vel, normal)
        v_para = self.vel - v_perp
        v_spin = cross(normal, self.omega) * DropshotBall.RADIUS

        s = v_para - v_spin
        delta_v_para = vec3(0, 0, 0)
        if norm(s) != 0:

            delta_v_para = -MU * s

        delta_v_perp = v_perp * -(1.0 + CR)

        self.vel += delta_v_perp + delta_v_para
        self.omega = cross(self.vel, normal) * (1. / DropshotBall.RADIUS)
        return self
Пример #8
0
 def get_controls(self):
     if self.step == "Steer" or self.step == "Dodge2":
         self.step = "Catching"
     if self.step == "Catching":
         target = get_bounce(self)
         if target is None:
             self.step = "Defending"
         else:
             self.catching.target_pos = target[0]
             self.catching.target_speed = (distance_2d(
                 self.info.my_car.pos, target[0]) + 50) / target[1]
             self.catching.step(self.FPS)
             self.controls = self.catching.controls
             ball = self.info.ball
             car = self.info.my_car
             if distance_2d(ball.pos,
                            car.pos) < 150 and 65 < abs(ball.pos[2] -
                                                        car.pos[2]) < 127:
                 self.step = "Dribbling"
                 self.dribble = Dribbling(self.info.my_car, self.info.ball,
                                          self.info.their_goal)
             if self.defending:
                 self.step = "Defending"
             if not self.info.my_car.on_ground:
                 self.step = "Recovery"
             ball = self.info.ball
             if abs(ball.vel[2]) < 100 and sign(
                     self.team) * ball.vel[1] < 0 and sign(
                         self.team) * ball.pos[1] < 0:
                 self.step = "Shooting"
     elif self.step == "Dribbling":
         self.dribble.step(self.FPS)
         self.controls = self.dribble.controls
         ball = self.info.ball
         car = self.info.my_car
         bot_to_opponent = self.info.opponents[0].pos - self.info.my_car.pos
         local_bot_to_target = dot(bot_to_opponent, self.info.my_car.theta)
         angle_front_to_target = math.atan2(local_bot_to_target[1],
                                            local_bot_to_target[0])
         opponent_is_near = norm(vec2(bot_to_opponent)) < 2000
         opponent_is_in_the_way = math.radians(
             -10) < angle_front_to_target < math.radians(10)
         if not (distance_2d(ball.pos, car.pos) < 150
                 and 65 < abs(ball.pos[2] - car.pos[2]) < 127):
             self.step = "Catching"
         if self.defending:
             self.step = "Defending"
         if opponent_is_near and opponent_is_in_the_way:
             self.step = "Dodge"
             self.dodge = AirDodge(self.info.my_car, 0.25,
                                   self.info.their_goal.center)
         if not self.info.my_car.on_ground:
             self.step = "Recovery"
     elif self.step == "Defending":
         defending(self)
     elif self.step == "Dodge":
         self.dodge.step(self.FPS)
         self.controls = self.dodge.controls
         self.controls.boost = 0
         if self.dodge.finished and self.info.my_car.on_ground:
             self.step = "Catching"
     elif self.step == "Recovery":
         self.recovery.step(self.FPS)
         self.controls = self.recovery.controls
         if self.info.my_car.on_ground:
             self.step = "Catching"
     elif self.step == "Shooting":
         shooting(self)
Пример #9
0
    def get_output(self, packet: GameTickPacket):
        self.time = packet.game_info.seconds_elapsed
        dt = self.time - self.prev_time
        if packet.game_info.is_kickoff_pause and not isinstance(self.maneuver, Kickoff):
            self.maneuver = None

        self.prev_time = self.time
        if self.ticks < 6:
            self.ticks += 1
        self.info.read_packet(packet)
        self.strategy.packet = packet
        

        #reset maneuver when another car hits the ball
        touch = packet.game_ball.latest_touch
        if ((
            touch.time_seconds > self.last_touch_time
            and touch.player_name != packet.game_cars[self.index].name
        ) or (
            touch.player_name == '' and # if latest touch info is missing
            any([distance(self.info.ball, car) < 300 for car in self.info.opponents + self.info.teammates])
        )):
            self.last_touch_time = touch.time_seconds
            if (
                self.info.my_car.on_ground
                and (not isinstance(self.maneuver, ShadowDefense) or self.maneuver.travel._driving)
            ):
                self.maneuver = None
                #self.reset_time = self.time


        # choose maneuver
        if self.maneuver is None and self.time > self.reset_time + 0.01 and self.ticks > 5:

            if self.RENDERING:
                self.draw.clear()

            self.info.predict_ball(self.PREDICTION_RATE * self.PREDITION_DURATION, 1 / self.PREDICTION_RATE)

            self.maneuver = self.strategy.choose_maneuver()
            
            name = str(type(self.maneuver).__name__)

            self.last_ball_vel = norm(self.info.ball.vel)

        
        # execute maneuver
        if self.maneuver is not None:
            self.maneuver.step(dt)

            # I have to convert from RLU Input to SimpleControllerState, because Input doesnt have 'use_item'
            self.controls.steer = self.maneuver.controls.steer
            self.controls.throttle = self.maneuver.controls.throttle
            self.controls.jump = self.maneuver.controls.jump
            self.controls.pitch = self.maneuver.controls.pitch
            self.controls.yaw = self.maneuver.controls.yaw
            self.controls.roll = self.maneuver.controls.roll
            self.controls.handbrake = self.maneuver.controls.handbrake
            self.controls.boost = self.maneuver.controls.boost

            if self.RENDERING:
                self.maneuver.render(self.draw)

            if self.maneuver.finished:
                self.maneuver = None


        if self.RENDERING:
            self.draw.execute()

        self.maybe_chat(packet)
        self.chat.step(packet)

        return self.controls
Пример #10
0
def ground_distance(obj1, obj2) -> float:
    return norm(ground(obj1) - ground(obj2))
Пример #11
0
def distance(obj1, obj2) -> float:
    return norm(loc(obj1) - loc(obj2))
Пример #12
0
    def get_output(self, packet):
        self.info.read_packet(packet)

        #additional processing not done by RLU
        self.kickoff_pause  = packet.game_info.is_kickoff_pause
        self.round_active   = packet.game_info.is_round_active
        self.dt             = self.info.time - self.last_time
        self.last_time      = self.info.time
        self.last_touch     = packet.game_ball.latest_touch.player_name
        
        #trashtalk
        if packet.game_cars[self.index].score_info.goals == self.goals + 1:
            self.send_quick_chat(QuickChats.CHAT_EVERYONE, QuickChats.Reactions_Calculated)
            
        self.goals          = packet.game_cars[self.index].score_info.goals

        #resets controls each tick
        self.controls = SimpleControllerState()

        #choose state
        if not self.round_active:
            self.state = None
        elif not self.state == "kickoff":
            if self.kickoff_pause:
                self.kickoff_pos    = None
                self.action         = None
                self.timer          = 0.0
                self.state          = "kickoff"
        
            elif not self.info.my_car.on_ground and not isinstance(self.action, AirDodge):
                self.state          = "recovery"
                self.action         = self.action = AerialTurn(self.info.my_car)

            elif norm(self.info.my_goal.center - self.info.my_car.pos) > norm(self.info.my_goal.center - self.info.ball.pos) + self.def_extra_dist:
                self.action         = None
                self.target_speed   = 2300
                self.state          = "defence"
		
                if self.team == 0:
                    sign = -1
                else:
                    sign = 1
                
                #temporary 2v2 for Cow
                if len(self.info.teammates) > 0:
                    if self.info.ball.pos[1] > 0:
                        self.target = vec3(3000,sign*4000,0)
                    else:
                        self.target = vec3(-3000,sign*4000,0)
                else:
                    self.target = vec3(0,sign*4000,0)

            elif self.info.my_car.pos[1] > 5120 or self.info.my_car.pos[1] < -5120:
                self.target         = vec3(0,5000,0) if self.info.my_car.pos[1] > 5120 else vec3(0,-5000,0)
                self.action         = self.action = Drive(self.info.my_car,self.target,1000)
                self.state          = "goal escape"

            elif self.state == None:
                self.action         = None
                self.target         = None
                self.target_speed   = 2300
                self.state          = "offence"


        #kickoff state
        if self.state == "kickoff":
            Kickoff.kickoff(self)

            #exit kickoff state
            if self.timer >= 2.6 or self.last_touch != '':
                self.state  = None
                self.action = None

        #recovery state
        elif self.state == "recovery":
            self.action.step(self.dt)
            self.controls           = self.action.controls
            self.controls.throttle  = 1.0
            
            #exit recovery state
            if self.info.my_car.on_ground == True:
                self.state  = None
                self.action = None


        #defence state and offence state
        elif self.state == "defence" or self.state == "offence":  
            #select target
            if self.target == None:
                #large boost
                if self.info.my_car.boost <= self.low_boost and norm(self.info.my_car.pos - self.info.ball.pos) > self.max_ball_dist:
                    active_pads = []
                    for pad in self.info.boost_pads:
                        if pad.is_active:
                            active_pads.append(pad)

                    if len(active_pads) != 0:
                        closest_pad = active_pads[0]
                        for pad in active_pads:
                            if norm(pad.pos - self.info.ball.pos) < norm(closest_pad.pos - self.info.ball.pos):
                                closest_pad = pad
                        self.target = closest_pad.pos
                    else:
                        self.target = self.info.ball.pos

                #ball        
                else:
                    self.target = self.info.ball.pos

            forward_target  = dot(self.target - self.info.my_car.pos, self.info.my_car.theta)[0]
            right_target    = dot(self.target - self.info.my_car.pos, self.info.my_car.theta)[1]
            angle_to_target = math.atan2(right_target, forward_target)

            forward_goal    = dot(self.info.their_goal.center - self.info.my_car.pos, self.info.my_car.theta)[0]
            right_goal      = dot(self.info.their_goal.center - self.info.my_car.pos, self.info.my_car.theta)[1]
            angle_to_goal   = math.atan2(right_goal, forward_goal)

            #select maneuver
            if not isinstance(self.action, AirDodge):
                #shooting
                if norm(self.info.ball.pos - self.info.my_car.pos) < self.dodge_dist and (angle_to_target - (math.pi/10.0) <= angle_to_goal <= angle_to_target + (math.pi/10.0)): 
                    self.action = AirDodge(self.info.my_car,0.2,self.info.their_goal.center)
                    self.timer  = 0.0
                #dodging
                elif (-math.pi/24.0) <= angle_to_target <= (math.pi/24.0) and norm(self.info.my_car.vel) > 700 and norm(self.info.ball.pos - self.info.my_car.pos) > 1000 and not self.state == "defence":
                    self.action = AirDodge(self.info.my_car,0.2,self.target)
                    self.timer  = 0.0
                #Drive
                else:
                    self.action = Drive(self.info.my_car,self.target,self.target_speed)
                
            #exit AirDodge
            else:
                self.timer += self.dt
                if self.timer >= 0.5:
                    self.action = None
 
            #Drive
            if isinstance(self.action, Drive):
                speed = norm(self.info.my_car.vel)
                r = -6.901E-11 * speed**4 + 2.1815E-07 * speed**3 - 5.4437E-06 * speed**2 + 0.12496671 * speed + 157

                #handbrake
                self.drift = False
                if (math.pi/2.0) <= angle_to_target or angle_to_target <= (-math.pi/2.0):
                    self.drift = True

                #target speed 
                elif (norm(self.target - (self.info.my_car.pos + dot(self.info.my_car.theta,vec3(0,r,0)))) < r or norm(self.target - (self.info.my_car.pos + dot(self.info.my_car.theta,vec3(0,-r,0)))) < r) and not self.target_speed < self.min_target_s:
                    self.target_speed += -50
                    self.action = Drive(self.info.my_car,self.target,self.target_speed)
                elif self.target_speed < 1800:
                    self.target_speed += 50
                    self.action = Drive(self.info.my_car,self.target,self.target_speed)

            #maneuver tick
            if self.action != None:
                self.action.step(self.dt)
                self.controls   = self.action.controls
                self.controls.handbrake = self.drift

            #exit either state
            if (self.state == "defence" and norm(self.info.my_goal.center - self.info.my_car.pos) < norm(self.info.my_goal.center - self.info.ball.pos)) or (norm(self.target - self.info.my_car.pos) < self.target_range):
                self.state = None


        #goal escape state
        if self.state == "goal escape":
            self.action.step(self.dt)
            self.controls   = self.action.controls

            #exit goal escape state
            if not (self.info.my_car.pos[1] > 5120 or self.info.my_car.pos[1] < -5120):
                self.state  = None
                self.action = None

        if 'win32gui' in sys.modules:
            #finding the size of the Rocket League window
            def callback(hwnd, win_rect):
                if "Rocket League" in win32gui.GetWindowText(hwnd):
                    rect = win32gui.GetWindowRect(hwnd)
                    win_rect[0] = rect[0]
                    win_rect[1] = rect[1]
                    win_rect[2] = rect[2] - rect[0]
                    win_rect[3] = rect[3] - rect[1]

            self.RLwindow = [0] * 4
            win32gui.EnumWindows(callback, self.RLwindow)

        #Rendering
        Render.debug(self)
        Render.turn_circles(self)
        if not self.target == None:
            Render.target(self)
        

        return self.controls
Пример #13
0
 def turn_radius(self):
     # https://docs.google.com/spreadsheets/d/1Hhg1TJqVUCcKIRmwvO2KHnRZG1z8K4Qn-UnAf5-Pt64/edit?usp=sharing
     car_speed = norm(self.info.my_car.vel)
     return (+156 + 0.1 * car_speed + 0.000069 * car_speed**2 +
             0.000000164 * car_speed**3 - 5.62 * 10**(-11) * car_speed**4)
Пример #14
0
    def solid_angle(self, p):

        Omega = 0.0

        a = self.corners[0] - p
        b = self.corners[1] - p
        c = self.corners[2] - p

        numerator = abs(dot(a, cross(b, c)))
        denominator = norm(a) * norm(b) * norm(c) + \
                      dot(a, b) * norm(c) + \
                      dot(b, c) * norm(a) + \
                      dot(c, a) * norm(b)

        angle = 2 * math.atan(numerator / denominator)

        if angle < 0:
            angle += 2 * math.pi

        Omega += angle

        a = self.corners[2] - p
        b = self.corners[3] - p
        c = self.corners[0] - p

        numerator = abs(dot(a, cross(b, c)))
        denominator = norm(a) * norm(b) * norm(c) + \
                      dot(a, b) * norm(c) + \
                      dot(b, c) * norm(a) + \
                      dot(c, a) * norm(b)

        angle = 2 * math.atan(numerator / denominator)

        if angle < 0:
            angle += 2 * math.pi

        Omega += angle

        return Omega
Пример #15
0
def distance_2d(a, b):
    return norm(vec2(a - b))
Пример #16
0
def velocity_2d(vel):
    return norm(vec2(vel))
Пример #17
0
def spherical(vec: vec3) -> vec3:
    """Converts from cartesian to spherical coordinates."""
    radius = norm(vec) + 1e-9
    inclination = math.acos(vec[2] / radius)
    azimuth = math.atan2(vec[1], vec[0])
    return vec3(radius, Range180(PI / 2 - inclination), azimuth)
Пример #18
0
def estimate_max_car_speed(car: Car):
    return clamp(max(norm(car.vel), 1300) + car.boost * 30, 1400, 2300)