def saveDetections(detection_results, ff_dir, config):
    """ Save detection to CALSTARS and FTPdetectinfo files. 
    
    Arguments:
        detection_results: [list] A list of outputs from detectStarsAndMeteors function.
        ff_dir: [str] Path to the night directory.
        config: [Config obj]

    Return:
        calstars_name: [str] Name of the CALSTARS file.
        ftpdetectinfo_name: [str] Name of the FTPdetectinfo file.
        ff_detected: [list] A list of FF files with detections.
    """


    ### SAVE DETECTIONS TO FILE

    # Init data lists
    star_list = []
    meteor_list = []
    ff_detected = []

    # Remove all 'None' results, which were errors
    detection_results = [res for res in detection_results if res is not None]

    # Sort by FF name
    detection_results = sorted(detection_results, key=lambda x: x[0])


    # Count the number of detected meteors
    meteors_num = 0
    for _, _, meteor_data in detection_results:
        for meteor in meteor_data:
            meteors_num += 1

    log.info('TOTAL: ' + str(meteors_num) + ' detected meteors.')


    # Save the detections to a file
    for ff_name, star_data, meteor_data in detection_results:


        if len(star_data) == 4:
            x2, y2, background, intensity = star_data
        else:
            _, x2, y2, background, intensity, _ = star_data
            

        # Skip if no stars were found
        if not x2:
            continue

        # Construct the table of the star parameters
        star_data = zip(x2, y2, background, intensity)

        # Add star info to the star list
        star_list.append([ff_name, star_data])

        # Handle the detected meteors
        meteor_No = 1
        for meteor in meteor_data:

            rho, theta, centroids = meteor

            # Append to the results list
            meteor_list.append([ff_name, meteor_No, rho, theta, centroids])
            meteor_No += 1


        # Add the FF file to the archive list if a meteor was detected on it
        if meteor_data:
            ff_detected.append(ff_name)


    # Generate the name for the CALSTARS file
    calstars_name = 'CALSTARS_' + "{:s}".format(str(config.stationID)) + '_' + os.path.basename(ff_dir) + '.txt'

    # Write detected stars to the CALSTARS file
    CALSTARS.writeCALSTARS(star_list, ff_dir, calstars_name, config.stationID, config.height, 
        config.width)

    # Generate FTPdetectinfo file name
    ftpdetectinfo_name = 'FTPdetectinfo_' + os.path.basename(ff_dir) + '.txt'

    # Write FTPdetectinfo file
    FTPdetectinfo.writeFTPdetectinfo(meteor_list, ff_dir, ftpdetectinfo_name, ff_dir, 
        config.stationID, config.fps)


    return calstars_name, ftpdetectinfo_name, ff_detected
Пример #2
0
def runCapture(config,
               duration=None,
               video_file=None,
               nodetect=False,
               detect_end=False,
               upload_manager=None):
    """ Run capture and compression for the given time.given

    Arguments:
        config: [config object] Configuration read from the .config file

    Keyword arguments:
        duration: [float] Time in seconds to capture. None by default.
        video_file: [str] Path to the video file, if it was given as the video source. None by default.
        nodetect: [bool] If True, detection will not be performed. False by defualt.
        detect_end: [bool] If True, detection will be performed at the end of the night, when capture 
            finishes. False by default.
        upload_manager: [UploadManager object] A handle to the UploadManager, which handles uploading files to
            the central server. None by default.

    """

    global STOP_CAPTURE

    # Create a directory for captured files
    night_data_dir_name = str(
        config.stationID) + '_' + datetime.datetime.utcnow().strftime(
            '%Y%m%d_%H%M%S_%f')

    # Full path to the data directory
    night_data_dir = os.path.join(os.path.abspath(config.data_dir),
                                  config.captured_dir, night_data_dir_name)

    # Make a directory for the night
    mkdirP(night_data_dir)

    log.info('Data directory: ' + night_data_dir)

    # Load the default flat field image if it is available
    flat_struct = None

    if config.use_flat:

        # Check if the flat exists
        if os.path.exists(os.path.join(os.getcwd(), config.flat_file)):
            flat_struct = Image.loadFlat(os.getcwd(), config.flat_file)

            log.info('Loaded flat field image: ' +
                     os.path.join(os.getcwd(), config.flat_file))

    # Get the platepar file
    platepar, platepar_path, platepar_fmt = getPlatepar(config)

    log.info('Initializing frame buffers...')
    ### For some reason, the RPi 3 does not like memory chunks which size is the multipier of its L2
    ### cache size (512 kB). When such a memory chunk is provided, the compression becomes 10x slower
    ### then usual. We are applying a dirty fix here where we just add an extra image row and column
    ### if such a memory chunk will be created. The compression is performed, and the image is cropped
    ### back to its original dimensions.
    array_pad = 0

    # Check if the image dimensions are divisible by RPi3 L2 cache size and add padding
    if (256 * config.width * config.height) % (512 * 1024) == 0:
        array_pad = 1

    # Init arrays for parallel compression on 2 cores
    sharedArrayBase = multiprocessing.Array(
        ctypes.c_uint8,
        256 * (config.width + array_pad) * (config.height + array_pad))
    sharedArray = np.ctypeslib.as_array(sharedArrayBase.get_obj())
    sharedArray = sharedArray.reshape(256, (config.height + array_pad),
                                      (config.width + array_pad))
    startTime = multiprocessing.Value('d', 0.0)

    sharedArrayBase2 = multiprocessing.Array(
        ctypes.c_uint8,
        256 * (config.width + array_pad) * (config.height + array_pad))
    sharedArray2 = np.ctypeslib.as_array(sharedArrayBase2.get_obj())
    sharedArray2 = sharedArray2.reshape(256, (config.height + array_pad),
                                        (config.width + array_pad))
    startTime2 = multiprocessing.Value('d', 0.0)

    log.info('Initializing frame buffers done!')

    # Check if the detection should be performed or not
    if nodetect:
        detector = None

    else:

        if detect_end:

            # Delay detection until the end of the night
            delay_detection = duration

        else:
            # Delay the detection for 2 minutes after capture start
            delay_detection = 120

        # Initialize the detector
        detector = QueuedPool(detectStarsAndMeteors,
                              cores=1,
                              log=log,
                              delay_start=delay_detection)
        detector.startPool()

    # Initialize buffered capture
    bc = BufferedCapture(sharedArray,
                         startTime,
                         sharedArray2,
                         startTime2,
                         config,
                         video_file=video_file)

    # Initialize the live image viewer
    live_view = LiveViewer(window_name='Maxpixel')

    # Initialize compression
    compressor = Compressor(night_data_dir,
                            sharedArray,
                            startTime,
                            sharedArray2,
                            startTime2,
                            config,
                            detector=detector,
                            live_view=live_view,
                            flat_struct=flat_struct)

    # Start buffered capture
    bc.startCapture()

    # Start the compression
    compressor.start()

    # Capture until Ctrl+C is pressed
    wait(duration)

    # If capture was manually stopped, end capture
    if STOP_CAPTURE:
        log.info('Ending capture...')

    # Stop the capture
    log.debug('Stopping capture...')
    bc.stopCapture()
    log.debug('Capture stopped')

    dropped_frames = bc.dropped_frames
    log.info('Total number of dropped frames: ' + str(dropped_frames))

    # Stop the compressor
    log.debug('Stopping compression...')
    detector, live_view = compressor.stop()
    log.debug('Compression stopped')

    # Stop the live viewer
    log.debug('Stopping live viewer...')
    live_view.stop()
    del live_view
    log.debug('Live view stopped')

    # Init data lists
    star_list = []
    meteor_list = []
    ff_detected = []

    # If detection should be performed
    if not nodetect:

        log.info('Finishing up the detection, ' +
                 str(detector.input_queue.qsize()) + ' files to process...')

        # Reset the Ctrl+C to KeyboardInterrupt
        resetSIGINT()

        try:

            # If there are some more files to process, process them on more cores
            if detector.input_queue.qsize() > 0:

                # Let the detector use all cores, but leave 1 free
                available_cores = multiprocessing.cpu_count() - 1

                if available_cores > 1:

                    log.info('Running the detection on {:d} cores...'.format(
                        available_cores))

                    # Start the detector
                    detector.updateCoreNumber(cores=available_cores)

            log.info('Waiting for the detection to finish...')

            # Wait for the detector to finish and close it
            detector.closePool()

            log.info('Detection finished!')

        except KeyboardInterrupt:

            log.info('Ctrl + C pressed, exiting...')

            if upload_manager is not None:

                # Stop the upload manager
                if upload_manager.is_alive():
                    log.debug('Closing upload manager...')
                    upload_manager.stop()
                    del upload_manager

            # Terminate the detector
            if detector is not None:
                del detector

            sys.exit()

        # Set the Ctrl+C back to 'soft' program kill
        setSIGINT()

        ### SAVE DETECTIONS TO FILE

        log.info('Collecting results...')

        # Get the detection results from the queue
        detection_results = detector.getResults()

        # Remove all 'None' results, which were errors
        detection_results = [
            res for res in detection_results if res is not None
        ]

        # Count the number of detected meteors
        meteors_num = 0
        for _, _, meteor_data in detection_results:
            for meteor in meteor_data:
                meteors_num += 1

        log.info('TOTAL: ' + str(meteors_num) + ' detected meteors.')

        # Save the detections to a file
        for ff_name, star_data, meteor_data in detection_results:

            x2, y2, background, intensity = star_data

            # Skip if no stars were found
            if not x2:
                continue

            # Construct the table of the star parameters
            star_data = zip(x2, y2, background, intensity)

            # Add star info to the star list
            star_list.append([ff_name, star_data])

            # Handle the detected meteors
            meteor_No = 1
            for meteor in meteor_data:

                rho, theta, centroids = meteor

                # Append to the results list
                meteor_list.append([ff_name, meteor_No, rho, theta, centroids])
                meteor_No += 1

            # Add the FF file to the archive list if a meteor was detected on it
            if meteor_data:
                ff_detected.append(ff_name)

        # Generate the name for the CALSTARS file
        calstars_name = 'CALSTARS_' + "{:s}".format(str(config.stationID)) + '_' \
            + os.path.basename(night_data_dir) + '.txt'

        # Write detected stars to the CALSTARS file
        CALSTARS.writeCALSTARS(star_list, night_data_dir, calstars_name, config.stationID, config.height, \
            config.width)

        # Generate FTPdetectinfo file name
        ftpdetectinfo_name = 'FTPdetectinfo_' + os.path.basename(
            night_data_dir) + '.txt'

        # Write FTPdetectinfo file
        FTPdetectinfo.writeFTPdetectinfo(meteor_list, night_data_dir, ftpdetectinfo_name, night_data_dir, \
            config.stationID, config.fps)

        # Get the platepar file
        platepar, platepar_path, platepar_fmt = getPlatepar(config)

        # Run calibration check and auto astrometry refinement
        if platepar is not None:

            # Read in the CALSTARS file
            calstars_list = CALSTARS.readCALSTARS(night_data_dir,
                                                  calstars_name)

            # Run astrometry check and refinement
            platepar, fit_status = autoCheckFit(config, platepar,
                                                calstars_list)

            # If the fit was sucessful, apply the astrometry to detected meteors
            if fit_status:

                log.info('Astrometric calibration SUCCESSFUL!')

                # Save the refined platepar to the night directory and as default
                platepar.write(os.path.join(night_data_dir,
                                            config.platepar_name),
                               fmt=platepar_fmt)
                platepar.write(platepar_path, fmt=platepar_fmt)

            else:
                log.info(
                    'Astrometric calibration FAILED!, Using old platepar for calibration...'
                )

            # Calculate astrometry for meteor detections
            applyAstrometryFTPdetectinfo(night_data_dir, ftpdetectinfo_name,
                                         platepar_path)

    log.info('Plotting field sums...')

    # Plot field sums to a graph
    plotFieldsums(night_data_dir, config)

    # Archive all fieldsums to one archive
    archiveFieldsums(night_data_dir)

    # List for any extra files which will be copied to the night archive directory. Full paths have to be
    #   given
    extra_files = []

    log.info('Making a flat...')

    # Make a new flat field
    flat_img = makeFlat(night_data_dir, config)

    # If making flat was sucessfull, save it
    if flat_img is not None:

        # Save the flat in the root directory, to keep the operational flat updated
        scipy.misc.imsave(config.flat_file, flat_img)
        flat_path = os.path.join(os.getcwd(), config.flat_file)
        log.info('Flat saved to: ' + flat_path)

        # Copy the flat to the night's directory as well
        extra_files.append(flat_path)

    else:
        log.info('Making flat image FAILED!')

    ### Add extra files to archive

    # Add the platepar to the archive if it exists
    if os.path.exists(platepar_path):
        extra_files.append(platepar_path)

    # Add the config file to the archive too
    extra_files.append(os.path.join(os.getcwd(), '.config'))

    ### ###

    night_archive_dir = os.path.join(os.path.abspath(config.data_dir),
                                     config.archived_dir, night_data_dir_name)

    log.info('Archiving detections to ' + night_archive_dir)

    # Archive the detections
    archive_name = archiveDetections(night_data_dir, night_archive_dir, ff_detected, config, \
        extra_files=extra_files)

    # Put the archive up for upload
    if upload_manager is not None:
        log.info('Adding file on upload list: ' + archive_name)
        upload_manager.addFiles([archive_name])

    # If capture was manually stopped, end program
    if STOP_CAPTURE:

        log.info('Ending program')

        # Stop the upload manager
        if upload_manager is not None:
            if upload_manager.is_alive():
                upload_manager.stop()
                log.info('Closing upload manager...')

        sys.exit()
Пример #3
0
        for meteor in meteor_data:

            rho, theta, centroids = meteor

            # Append to the results list
            meteor_list.append([ff_name, meteor_No, rho, theta, centroids])
            meteor_No += 1


        # Add the FF file to the archive list if a meteor was detected on it
        if meteor_data:
            ff_detected.append(ff_name)


    # Generate the name for the CALSTARS file
    calstars_name = 'CALSTARS_' + "{:s}".format(str(config.stationID)) + '_' + os.path.basename(ff_dir) + '.txt'

    # Write detected stars to the CALSTARS file
    CALSTARS.writeCALSTARS(star_list, ff_dir, calstars_name, config.stationID, config.height, 
        config.width)

    # Generate FTPdetectinfo file name
    ftpdetectinfo_name = 'FTPdetectinfo_' + os.path.basename(ff_dir) + '.txt'

    # Write FTPdetectinfo file
    FTPdetectinfo.writeFTPdetectinfo(meteor_list, ff_dir, ftpdetectinfo_name, ff_dir, 
        config.stationID, config.fps)


    print('Total time taken: ', datetime.datetime.utcnow() - time_start)
Пример #4
0
def saveDetections(detection_results, ff_dir, config):
    """ Save detection to CALSTARS and FTPdetectinfo files. 
    
    Arguments:
        detection_results: [list] A list of outputs from detectStarsAndMeteors function.
        ff_dir: [str] Path to the night directory.
        config: [Config obj]

    Return:
        calstars_name: [str] Name of the CALSTARS file.
        ftpdetectinfo_name: [str] Name of the FTPdetectinfo file.
        ff_detected: [list] A list of FF files with detections.
    """


    ### SAVE DETECTIONS TO FILE

    # Init data lists
    star_list = []
    meteor_list = []
    ff_detected = []

    # Remove all 'None' results, which were errors
    detection_results = [res for res in detection_results if res is not None]

    # Sort by FF name
    detection_results = sorted(detection_results, key=lambda x: x[0])


    # Count the number of detected meteors
    meteors_num = 0
    for _, _, meteor_data in detection_results:
        for meteor in meteor_data:
            meteors_num += 1

    log.info('TOTAL: ' + str(meteors_num) + ' detected meteors.')


    # Save the detections to a file
    for ff_name, star_data, meteor_data in detection_results:


        if len(star_data) == 4:
            x2, y2, background, intensity = star_data
            fwhm = (np.zeros_like(x2) - 1).tolist()
        else:
            _, x2, y2, background, intensity, fwhm = star_data
            

        # Skip if no stars were found
        if not x2:
            continue

        # Construct the table of the star parameters
        star_data = zip(x2, y2, background, intensity, fwhm)

        # Add star info to the star list
        star_list.append([ff_name, star_data])

        # Handle the detected meteors
        meteor_No = 1
        for meteor in meteor_data:

            rho, theta, centroids = meteor

            # Append to the results list
            meteor_list.append([ff_name, meteor_No, rho, theta, centroids])
            meteor_No += 1


        # Add the FF file to the archive list if a meteor was detected on it
        if meteor_data:
            ff_detected.append(ff_name)



    dir_name = os.path.basename(os.path.abspath(ff_dir))
    if dir_name.startswith(config.stationID):
        prefix = dir_name
    else:
        prefix = "{:s}_{:s}".format(config.stationID, dir_name)

    # Generate the name for the CALSTARS file
    calstars_name = 'CALSTARS_' + prefix + '.txt'

    # Write detected stars to the CALSTARS file
    CALSTARS.writeCALSTARS(star_list, ff_dir, calstars_name, config.stationID, config.height, 
        config.width)

    # Generate FTPdetectinfo file name
    ftpdetectinfo_name = 'FTPdetectinfo_' + os.path.basename(ff_dir) + '.txt'

    # Write FTPdetectinfo file
    FTPdetectinfo.writeFTPdetectinfo(meteor_list, ff_dir, ftpdetectinfo_name, ff_dir, 
        config.stationID, config.fps)


    return calstars_name, ftpdetectinfo_name, ff_detected
Пример #5
0
        # Add star info to the star list
        star_list.append([ff_name, star_data])

        # Print found stars
        print('   ROW    COL   amplitude  intensity')
        for x, y, max_ampl, level in star_data:
            print(' {:06.2f} {:06.2f} {:6d} {:6d}'.format(
                round(y, 2), round(x, 2), int(max_ampl), int(level)))

        # # Show stars if there are only more then 10 of them
        # if len(x2) < 20:
        #     continue

        # # Load the FF bin file
        # ff = FFfile.read(ff_dir, ff_name)

        # plotStars(ff, x2, y2)

    # Load data about the image
    ff = FFfile.read(ff_dir, ff_name)

    # Generate the name for the CALSTARS file
    calstars_name = 'CALSTARS_' + "{:s}".format(str(config.stationID)) + '_' \
        + os.path.basename(ff_dir) + '.txt'

    # Write detected stars to the CALSTARS file
    CALSTARS.writeCALSTARS(star_list, ff_dir, calstars_name, ff.camno,
                           ff.nrows, ff.ncols)

    print('Total time taken: ', time.clock() - time_start)
Пример #6
0
def extractStarsAndSave(config, ff_dir):
    """ Extract stars in the given folder and save the CALSTARS file. 
    
    Arguments:
        config: [config object] configuration object (loaded from the .config file)
        ff_dir: [str] Path to directory where FF files are.

    Return:
        star_list: [list] A list of [ff_name, star_data] entries, where star_data contains a list of 
            (column, row, amplitude, intensity, fwhm) values for every star.

    """

    time_start = time.time()

    # Load mask, dark, flat
    mask, dark, flat_struct = loadImageCalibration(ff_dir, config)

    extraction_list = []

    # Go through all files in the directory and add them to the detection list
    for ff_name in sorted(os.listdir(ff_dir)):

        # Check if the given file is a valid FF file
        if not FFfile.validFFName(ff_name):
            continue

        extraction_list.append(ff_name)

    # Run the QueuedPool for detection
    workpool = QueuedPool(extractStars, cores=-1, backup_dir=ff_dir)

    # Add jobs for the pool
    for ff_name in extraction_list:
        print('Adding for extraction:', ff_name)
        workpool.addJob([
            ff_dir, ff_name, config, None, None, None, None, flat_struct, dark,
            mask
        ])

    print('Starting pool...')

    # Start the detection
    workpool.startPool()

    print('Waiting for the detection to finish...')

    # Wait for the detector to finish and close it
    workpool.closePool()

    # Get extraction results
    star_list = []
    for result in workpool.getResults():

        ff_name, x2, y2, amplitude, intensity, fwhm_data = result

        # Skip if no stars were found
        if not x2:
            continue

        # Construct the table of the star parameters
        star_data = list(zip(x2, y2, amplitude, intensity, fwhm_data))

        # Add star info to the star list
        star_list.append([ff_name, star_data])

    dir_name = os.path.basename(os.path.abspath(ff_dir))
    if dir_name.startswith(config.stationID):
        prefix = dir_name
    else:
        prefix = "{:s}_{:s}".format(config.stationID, dir_name)

    # Generate the name for the CALSTARS file
    calstars_name = 'CALSTARS_' + prefix + '.txt'

    # Write detected stars to the CALSTARS file
    CALSTARS.writeCALSTARS(star_list, ff_dir, calstars_name, config.stationID,
                           config.height, config.width)

    # Delete QueudPool backed up files
    workpool.deleteBackupFiles()

    print('Total time taken: {:.2f} s'.format(time.time() - time_start))

    return star_list
Пример #7
0
        
        # Load data about the image
        ff = FFfile.read(ff_dir, ff_name)

        # Break when an FF file was successfully loaded
        if ff is not None:
            break


    # Generate the name for the CALSTARS file
    calstars_name = 'CALSTARS_' + "{:s}".format(str(config.stationID)) + '_' \
        + os.path.basename(ff_dir) + '.txt'


    # Write detected stars to the CALSTARS file
    CALSTARS.writeCALSTARS(star_list, ff_dir, calstars_name, ff.camno, ff.nrows, ff.ncols)

    # Delete QueudPool backed up files
    workpool.deleteBackupFiles()

    print('Total time taken: ', time.clock() - time_start)


    # Show the histogram of PSF stddevs
    if cml_args.showstd:

        print('Median:', np.median(sigma_list))

        # Compute the bin number
        nbins = int(np.ceil(np.sqrt(len(sigma_list))))
        if nbins < 10: