Пример #1
0
def applyRecalibrate(ftpdetectinfo_path, config, generate_plot=True):
    """ Recalibrate FF files with detections and apply the recalibrated platepar to those detections.
    Arguments:
        ftpdetectinfo_path: [str] Name of the FTPdetectinfo file.
        config: [Config instance]
    Keyword arguments:
        generate_plot: [bool] Generate the calibration variation plot. True by default.
    Return:
        recalibrated_platepars: [dict] A dictionary where the keys are FF file names and values are
            recalibrated platepar instances for every FF file.
    """

    # Extract parent directory
    dir_path = os.path.dirname(ftpdetectinfo_path)

    # Get a list of files in the night folder
    file_list = sorted(os.listdir(dir_path))

    # Find and load the platepar file
    if config.platepar_name in file_list:

        # Load the platepar
        platepar = Platepar.Platepar()
        platepar.read(os.path.join(dir_path, config.platepar_name),
                      use_flat=config.use_flat)

    else:
        print('Cannot find the platepar file in the night directory: ',
              config.platepar_name)
        sys.exit()

    # Find the CALSTARS file in the given folder
    calstars_file = None
    for calstars_file in file_list:
        if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file):
            break

    if calstars_file is None:
        print('CALSTARS file could not be found in the given directory!')
        sys.exit()

    # Load the calstars file
    calstars_list = CALSTARS.readCALSTARS(dir_path, calstars_file)

    print('CALSTARS file: ' + calstars_file + ' loaded!')

    # Recalibrate and apply astrometry on every FF file with detections individually
    recalibrated_platepars = recalibrateIndividualFFsAndApplyAstrometry(dir_path, ftpdetectinfo_path, \
        calstars_list, config, platepar, generate_plot=generate_plot)

    ### Generate the updated UFOorbit file ###

    Utils.RMS2UFO.FTPdetectinfo2UFOOrbitInput(dir_path, os.path.basename(ftpdetectinfo_path), None, \
        platepar_dict=recalibrated_platepars)

    ### ###

    return recalibrated_platepars
Пример #2
0
def loadRecalibratedPlatepar(dir_path, config, file_list=None, type='meteor'):
    """
    Gets recalibrated platpars. If they were already computed, load them, otherwise compute them and save

    Arguments:
        dir_path: [str] Path to the directory which contains the platepar and recalibrated platepars
            from ftpdetectinfo
        config: [config object]

    Keyword arguments:
        type: [str] 'meteor' or 'flux'

    Return:
        recalibrated_platepars: [dict] If platepar doesn't exist returns None

    """
    if type == 'meteor':
        platepar_file_name = config.platepars_recalibrated_name
    else:
        platepar_file_name = config.platepars_flux_recalibrated_name

    if not file_list:
        file_list = os.listdir(dir_path)

    # Find and load recalibrated platepars
    if platepar_file_name in file_list:
        with open(os.path.join(dir_path, platepar_file_name)) as f:
            recalibrated_platepars_dict = json.load(f)

            print("Recalibrated platepars loaded!")
            # Convert the dictionary of recalibrated platepars to a dictionary of Platepar objects
            recalibrated_platepars = {}
            for ff_name in recalibrated_platepars_dict:
                pp = Platepar.Platepar()
                pp.loadFromDict(recalibrated_platepars_dict[ff_name],
                                use_flat=config.use_flat)

                recalibrated_platepars[ff_name] = pp

        return recalibrated_platepars

    return None
Пример #3
0
def computeFlux(config, dir_path, ftpdetectinfo_path, shower_code, dt_beg, dt_end, timebin, mass_index, \
    timebin_intdt=0.25, ht_std_percent=5.0, mask=None):
    """ Compute flux using measurements in the given FTPdetectinfo file. 
    
    Arguments:
        config: [Config instance]
        dir_path: [str] Path to the working directory.
        ftpdetectinfo_path: [str] Path to a FTPdetectinfo file.
        shower_code: [str] IAU shower code (e.g. ETA, PER, SDA).
        dt_beg: [Datetime] Datetime object of the observation beginning.
        dt_end: [Datetime] Datetime object of the observation end.
        timebin: [float] Time bin in hours.
        mass_index: [float] Cumulative mass index of the shower.

    Keyword arguments:
        timebin_intdt: [float] Time step for computing the integrated collection area in hours. 15 minutes by
            default. If smaller than that, only one collection are will be computed.
        ht_std_percent: [float] Meteor height standard deviation in percent.
        mask: [Mask object] Mask object, None by default.

    """


    # Get a list of files in the night folder
    file_list = sorted(os.listdir(dir_path))



    # Find and load the platepar file
    if config.platepar_name in file_list:

        # Load the platepar
        platepar = Platepar.Platepar()
        platepar.read(os.path.join(dir_path, config.platepar_name), use_flat=config.use_flat)

    else:
        print("Cannot find the platepar file in the night directory: ", config.platepar_name)
        return None




    # # Load FTPdetectinfos
    # meteor_data = []
    # for ftpdetectinfo_path in ftpdetectinfo_list:

    #     if not os.path.isfile(ftpdetectinfo_path):
    #         print('No such file:', ftpdetectinfo_path)
    #         continue

    #     meteor_data += readFTPdetectinfo(*os.path.split(ftpdetectinfo_path))


    # Load meteor data from the FTPdetectinfo file
    meteor_data = readFTPdetectinfo(*os.path.split(ftpdetectinfo_path))

    if not len(meteor_data):
        print("No meteors in the FTPdetectinfo file!")
        return None




    # Find and load recalibrated platepars
    if config.platepars_recalibrated_name in file_list:
        with open(os.path.join(dir_path, config.platepars_recalibrated_name)) as f:
            recalibrated_platepars_dict = json.load(f)

            print("Recalibrated platepars loaded!")

    # If the file is not available, apply the recalibration procedure
    else:

        recalibrated_platepars_dict = applyRecalibrate(ftpdetectinfo_path, config)

        print("Recalibrated platepar file not available!")
        print("Recalibrating...")


    # Convert the dictionary of recalibrated platepars to a dictionary of Platepar objects
    recalibrated_platepars = {}
    for ff_name in recalibrated_platepars_dict:
        pp = Platepar.Platepar()
        pp.loadFromDict(recalibrated_platepars_dict[ff_name], use_flat=config.use_flat)

        recalibrated_platepars[ff_name] = pp


    # Compute nighly mean of the photometric zero point
    mag_lev_nightly_mean = np.mean([recalibrated_platepars[ff_name].mag_lev \
                                        for ff_name in recalibrated_platepars])




    # Locate and load the mask file
    if config.mask_file in file_list:
        mask_path = os.path.join(dir_path, config.mask_file)
        mask = loadMask(mask_path)
        print("Using mask:", mask_path)

    else:
        print("No mask used!")
        mask = None



    # Compute the population index using the classical equation
    population_index = 10**((mass_index - 1)/2.5)


    ### SENSOR CHARACTERIZATION ###
    # Computes FWHM of stars and noise profile of the sensor
    
    # File which stores the sensor characterization profile
    sensor_characterization_file = "flux_sensor_characterization.json"
    sensor_characterization_path = os.path.join(dir_path, sensor_characterization_file)

    # Load sensor characterization file if present, so the procedure can be skipped
    if os.path.isfile(sensor_characterization_path):

        # Load the JSON file
        with open(sensor_characterization_path) as f:
            
            data = " ".join(f.readlines())
            sensor_data = json.loads(data)

            # Remove the info entry
            if '-1' in sensor_data:
                del sensor_data['-1']

    else:

        # Run sensor characterization
        sensor_data = sensorCharacterization(config, dir_path)

        # Save to file for posterior use
        with open(sensor_characterization_path, 'w') as f:

            # Add an explanation what each entry means
            sensor_data_save = dict(sensor_data)
            sensor_data_save['-1'] = {"FF file name": ['median star FWHM', 'median background noise stddev']}

            # Convert collection areas to JSON
            out_str = json.dumps(sensor_data_save, indent=4, sort_keys=True)

            # Save to disk
            f.write(out_str)



    # Compute the nighly mean FWHM and noise stddev
    fwhm_nightly_mean = np.mean([sensor_data[key][0] for key in sensor_data])
    stddev_nightly_mean = np.mean([sensor_data[key][1] for key in sensor_data])

    ### ###



    # Perform shower association
    associations, shower_counts = showerAssociation(config, [ftpdetectinfo_path], shower_code=shower_code, \
        show_plot=False, save_plot=False, plot_activity=False)

    # If there are no shower association, return nothing
    if not associations:
        print("No meteors associated with the shower!")
        return None


    # Print the list of used meteors
    peak_mags = []
    for key in associations:
        meteor, shower = associations[key]

        if shower is not None:

            # Compute peak magnitude
            peak_mag = np.min(meteor.mag_array)

            peak_mags.append(peak_mag)

            print("{:.6f}, {:3s}, {:+.2f}".format(meteor.jdt_ref, shower.name, peak_mag))

    print()


    # Init the flux configuration
    flux_config = FluxConfig()



    ### COMPUTE COLLECTION AREAS ###

    # Make a file name to save the raw collection areas
    col_areas_file_name = generateColAreaJSONFileName(platepar.station_code, flux_config.side_points, \
        flux_config.ht_min, flux_config.ht_max, flux_config.dht, flux_config.elev_limit)

    # Check if the collection area file exists. If yes, load the data. If not, generate collection areas
    if col_areas_file_name in os.listdir(dir_path):
        col_areas_ht = loadRawCollectionAreas(dir_path, col_areas_file_name)

        print("Loaded collection areas from:", col_areas_file_name)

    else:

        # Compute the collecting areas segments per height
        col_areas_ht = collectingArea(platepar, mask=mask, side_points=flux_config.side_points, \
            ht_min=flux_config.ht_min, ht_max=flux_config.ht_max, dht=flux_config.dht, \
            elev_limit=flux_config.elev_limit)

        # Save the collection areas to file
        saveRawCollectionAreas(dir_path, col_areas_file_name, col_areas_ht)

        print("Saved raw collection areas to:", col_areas_file_name)


    ### ###



    # Compute the pointing of the middle of the FOV
    _, ra_mid, dec_mid, _ = xyToRaDecPP([jd2Date(J2000_JD.days)], [platepar.X_res/2], [platepar.Y_res/2], \
        [1], platepar, extinction_correction=False)
    azim_mid, elev_mid = raDec2AltAz(ra_mid[0], dec_mid[0], J2000_JD.days, platepar.lat, platepar.lon)

    # Compute the range to the middle point
    ref_ht = 100000
    r_mid, _, _, _ = xyHt2Geo(platepar, platepar.X_res/2, platepar.Y_res/2, ref_ht, indicate_limit=True, \
        elev_limit=flux_config.elev_limit)


    ### Compute the average angular velocity to which the flux variation throught the night will be normalized 
    #   The ang vel is of the middle of the FOV in the middle of observations

    # Middle Julian date of the night
    jd_night_mid = (datetime2JD(dt_beg) + datetime2JD(dt_end))/2

    # Compute the apparent radiant
    ra, dec, v_init = shower.computeApparentRadiant(platepar.lat, platepar.lon, jd_night_mid)

    # Compute the radiant elevation
    radiant_azim, radiant_elev = raDec2AltAz(ra, dec, jd_night_mid, platepar.lat, platepar.lon)

    # Compute the angular velocity in the middle of the FOV
    rad_dist_night_mid = angularSeparation(np.radians(radiant_azim), np.radians(radiant_elev), 
                np.radians(azim_mid), np.radians(elev_mid))
    ang_vel_night_mid = v_init*np.sin(rad_dist_night_mid)/r_mid

    ###




    # Compute the average limiting magnitude to which all flux will be normalized

    # Standard deviation of star PSF, nightly mean (px)
    star_stddev = fwhm_nightly_mean/2.355

    # Compute the theoretical stellar limiting magnitude (nightly average)
    star_sum = 2*np.pi*(config.k1_det*stddev_nightly_mean + config.j1_det)*star_stddev**2
    lm_s_nightly_mean = -2.5*np.log10(star_sum) + mag_lev_nightly_mean

    # A meteor needs to be visible on at least 4 frames, thus it needs to have at least 4x the mass to produce
    #   that amount of light. 1 magnitude difference scales as -0.4 of log of mass, thus:
    frame_min_loss = np.log10(config.line_minimum_frame_range_det)/(-0.4)

    lm_s_nightly_mean += frame_min_loss

    # Compute apparent meteor magnitude
    lm_m_nightly_mean = lm_s_nightly_mean - 5*np.log10(r_mid/1e5) - 2.5*np.log10( \
        np.degrees(platepar.F_scale*v_init*np.sin(rad_dist_night_mid)/(config.fps*r_mid*fwhm_nightly_mean)) \
        )

    #
    print("Stellar lim mag using detection thresholds:", lm_s_nightly_mean)
    print("Apparent meteor limiting magnitude:", lm_m_nightly_mean)


    ### Apply time-dependent corrections ###

    sol_data = []
    flux_lm_6_5_data = []

    # Go through all time bins within the observation period
    total_time_hrs = (dt_end - dt_beg).total_seconds()/3600
    nbins = int(np.ceil(total_time_hrs/timebin))
    for t_bin in range(nbins):

        # Compute bin start and end time
        bin_dt_beg = dt_beg + datetime.timedelta(hours=timebin*t_bin)
        bin_dt_end = bin_dt_beg + datetime.timedelta(hours=timebin)

        if bin_dt_end > dt_end:
            bin_dt_end = dt_end


        # Compute bin duration in hours
        bin_hours = (bin_dt_end - bin_dt_beg).total_seconds()/3600

        # Convert to Julian date
        bin_jd_beg = datetime2JD(bin_dt_beg)
        bin_jd_end = datetime2JD(bin_dt_end)

        # Only select meteors in this bin
        bin_meteors = []
        bin_ffs = []
        for key in associations:
            meteor, shower = associations[key]

            if shower is not None:
                if (shower.name == shower_code) and (meteor.jdt_ref > bin_jd_beg) \
                    and (meteor.jdt_ref <= bin_jd_end):
                    
                    bin_meteors.append([meteor, shower])
                    bin_ffs.append(meteor.ff_name)



        if len(bin_meteors) > 0:


            ### Compute the radiant elevation at the middle of the time bin ###

            jd_mean = (bin_jd_beg + bin_jd_end)/2

            # Compute the mean solar longitude
            sol_mean = np.degrees(jd2SolLonSteyaert(jd_mean))

            print()
            print()
            print("-- Bin information ---")
            print("Bin beg:", bin_dt_beg)
            print("Bin end:", bin_dt_end)
            print("Sol mid: {:.5f}".format(sol_mean))
            print("Meteors:", len(bin_meteors))

            # Compute the apparent radiant
            ra, dec, v_init = shower.computeApparentRadiant(platepar.lat, platepar.lon, jd_mean)

            # Compute the mean meteor height
            meteor_ht_beg = heightModel(v_init, ht_type='beg')
            meteor_ht_end = heightModel(v_init, ht_type='end')
            meteor_ht = (meteor_ht_beg + meteor_ht_end)/2

            # Compute the standard deviation of the height
            meteor_ht_std = meteor_ht*ht_std_percent/100.0

            # Init the Gaussian height distribution
            meteor_ht_gauss = scipy.stats.norm(meteor_ht, meteor_ht_std)


            # Compute the radiant elevation
            radiant_azim, radiant_elev = raDec2AltAz(ra, dec, jd_mean, platepar.lat, platepar.lon)

            ### ###


            ### Weight collection area by meteor height distribution ###

            # Determine weights for each height
            weight_sum = 0
            weights = {}
            for ht in col_areas_ht:
                wt = meteor_ht_gauss.pdf(float(ht))
                weight_sum += wt
                weights[ht] = wt

            # Normalize the weights so that the sum is 1
            for ht in weights:
                weights[ht] /= weight_sum

            ### ###


            # Compute the angular velocity in the middle of the FOV
            rad_dist_mid = angularSeparation(np.radians(radiant_azim), np.radians(radiant_elev), 
                        np.radians(azim_mid), np.radians(elev_mid))
            ang_vel_mid = v_init*np.sin(rad_dist_mid)/r_mid



            ### Compute the limiting magnitude ###

            # Compute the mean star FWHM in the given bin
            fwhm_bin_mean = np.mean([sensor_data[ff_name][0] for ff_name in bin_ffs])

            # Compute the mean background stddev in the given bin
            stddev_bin_mean = np.mean([sensor_data[ff_name][1] for ff_name in bin_ffs])

            # Compute the mean photometric zero point in the given bin
            mag_lev_bin_mean = np.mean([recalibrated_platepars[ff_name].mag_lev for ff_name in bin_ffs if ff_name in recalibrated_platepars])



            # Standard deviation of star PSF, nightly mean (px)
            star_stddev = fwhm_bin_mean/2.355

            # Compute the theoretical stellar limiting magnitude (nightly average)
            star_sum = 2*np.pi*(config.k1_det*stddev_bin_mean + config.j1_det)*star_stddev**2
            lm_s = -2.5*np.log10(star_sum) + mag_lev_bin_mean
            lm_s += frame_min_loss

            # Compute apparent meteor magnitude
            lm_m = lm_s - 5*np.log10(r_mid/1e5) - 2.5*np.log10( \
                    np.degrees(platepar.F_scale*v_init*np.sin(rad_dist_mid)/(config.fps*r_mid*fwhm_bin_mean))\
                    )

            ### ###


            # Final correction area value (height-weightned)
            collection_area = 0

            # Go through all heights and segment blocks
            for ht in col_areas_ht:
                for img_coords in col_areas_ht[ht]:

                    x_mean, y_mean = img_coords

                    # Unpack precomputed values
                    area, azim, elev, sensitivity_ratio, r = col_areas_ht[ht][img_coords]


                    # Compute the angular velocity (rad/s) in the middle of this block
                    rad_dist = angularSeparation(np.radians(radiant_azim), np.radians(radiant_elev), 
                        np.radians(azim), np.radians(elev))
                    ang_vel = v_init*np.sin(rad_dist)/r


                    # Compute the range correction
                    range_correction = (1e5/r)**2

                    #ang_vel_correction = ang_vel/ang_vel_mid
                    # Compute angular velocity correction relative to the nightly mean
                    ang_vel_correction = ang_vel/ang_vel_night_mid


                    ### Apply corrections

                    correction_ratio = 1.0
                    
                    # Correct the area for vignetting and extinction
                    correction_ratio *= sensitivity_ratio

                    # Correct for the range
                    correction_ratio *= range_correction

                    # Correct for the radiant elevation
                    correction_ratio *= np.sin(np.radians(radiant_elev))

                    # Correct for angular velocity
                    correction_ratio *= ang_vel_correction


                    # Add the collection area to the final estimate with the height weight
                    #   Raise the correction to the mass index power
                    collection_area += weights[ht]*area*correction_ratio**(mass_index - 1)



            # Compute the flux at the bin LM (meteors/1000km^2/h)
            flux = 1e9*len(bin_meteors)/collection_area/bin_hours

            # Compute the flux scaled to the nightly mean LM
            flux_lm_nightly_mean = flux*population_index**(lm_m_nightly_mean - lm_m)

            # Compute the flux scaled to +6.5M
            flux_lm_6_5 = flux*population_index**(6.5 - lm_m)



            print("-- Sensor information ---")
            print("Star FWHM:  {:5.2f} px".format(fwhm_bin_mean))
            print("Bkg stddev: {:4.1f} ADU".format(stddev_bin_mean))
            print("Photom ZP:  {:+6.2f} mag".format(mag_lev_bin_mean))
            print("Stellar LM: {:+.2f} mag".format(lm_s))
            print("-- Flux ---")
            print("Col area: {:d} km^2".format(int(collection_area/1e6)))
            print("Ang vel:  {:.2f} deg/s".format(np.degrees(ang_vel_mid)))
            print("LM app:   {:+.2f} mag".format(lm_m))
            print("Flux:     {:.2f} meteors/1000km^2/h".format(flux))
            print("to {:+.2f}: {:.2f} meteors/1000km^2/h".format(lm_m_nightly_mean, flux_lm_nightly_mean))
            print("to +6.50: {:.2f} meteors/1000km^2/h".format(flux_lm_6_5))


            sol_data.append(sol_mean)
            flux_lm_6_5_data.append(flux_lm_6_5)


    # Print the results
    print("Solar longitude, Flux at LM +6.5:")
    for sol, flux_lm_6_5 in zip(sol_data, flux_lm_6_5_data):
        print("{:9.5f}, {:8.4f}".format(sol, flux_lm_6_5))

    # Plot a histogram of peak magnitudes
    plt.hist(peak_mags, cumulative=True)
    plt.show()
Пример #4
0
def computeFlux(config, dir_path, ftpdetectinfo_path, shower_code, dt_beg, dt_end, timebin, mass_index, \
    timebin_intdt=0.25, ht_std_percent=5.0, mask=None, show_plots=True):
    """ Compute flux using measurements in the given FTPdetectinfo file. 
    
    Arguments:
        config: [Config instance]
        dir_path: [str] Path to the working directory.
        ftpdetectinfo_path: [str] Path to a FTPdetectinfo file.
        shower_code: [str] IAU shower code (e.g. ETA, PER, SDA).
        dt_beg: [Datetime] Datetime object of the observation beginning.
        dt_end: [Datetime] Datetime object of the observation end.
        timebin: [float] Time bin in hours.
        mass_index: [float] Cumulative mass index of the shower.

    Keyword arguments:
        timebin_intdt: [float] Time step for computing the integrated collection area in hours. 15 minutes by
            default. If smaller than that, only one collection are will be computed.
        ht_std_percent: [float] Meteor height standard deviation in percent.
        mask: [Mask object] Mask object, None by default.
        show_plots: [bool] Show flux plots. True by default.

    Return:
        [tuple] sol_data, flux_lm_6_5_data
            - sol_data: [list] Array of solar longitudes (in degrees) of time bins.
            - flux_lm6_5_data: [list] Array of meteoroid flux at the limiting magnitude of +6.5 in 
                meteors/1000km^2/h.
    """


    # Get a list of files in the night folder
    file_list = sorted(os.listdir(dir_path))



    # Find and load the platepar file
    if config.platepar_name in file_list:

        # Load the platepar
        platepar = Platepar.Platepar()
        platepar.read(os.path.join(dir_path, config.platepar_name), use_flat=config.use_flat)

    else:
        print("Cannot find the platepar file in the night directory: ", config.platepar_name)
        return None




    # # Load FTPdetectinfos
    # meteor_data = []
    # for ftpdetectinfo_path in ftpdetectinfo_list:

    #     if not os.path.isfile(ftpdetectinfo_path):
    #         print('No such file:', ftpdetectinfo_path)
    #         continue

    #     meteor_data += readFTPdetectinfo(*os.path.split(ftpdetectinfo_path))


    # Load meteor data from the FTPdetectinfo file
    meteor_data = readFTPdetectinfo(*os.path.split(ftpdetectinfo_path))

    if not len(meteor_data):
        print("No meteors in the FTPdetectinfo file!")
        return None




    # Find and load recalibrated platepars
    if config.platepars_recalibrated_name in file_list:
        with open(os.path.join(dir_path, config.platepars_recalibrated_name)) as f:
            recalibrated_platepars_dict = json.load(f)

            print("Recalibrated platepars loaded!")

    # If the file is not available, apply the recalibration procedure
    else:

        recalibrated_platepars_dict = applyRecalibrate(ftpdetectinfo_path, config)

        print("Recalibrated platepar file not available!")
        print("Recalibrating...")


    # Convert the dictionary of recalibrated platepars to a dictionary of Platepar objects
    recalibrated_platepars = {}
    for ff_name in recalibrated_platepars_dict:
        pp = Platepar.Platepar()
        pp.loadFromDict(recalibrated_platepars_dict[ff_name], use_flat=config.use_flat)

        recalibrated_platepars[ff_name] = pp


    # Compute nighly mean of the photometric zero point
    mag_lev_nightly_mean = np.mean([recalibrated_platepars[ff_name].mag_lev \
                                        for ff_name in recalibrated_platepars])




    # Locate and load the mask file
    if config.mask_file in file_list:
        mask_path = os.path.join(dir_path, config.mask_file)
        mask = loadMask(mask_path)
        print("Using mask:", mask_path)

    else:
        print("No mask used!")
        mask = None



    # Compute the population index using the classical equation
    population_index = 10**((mass_index - 1)/2.5) # Found to be more consistent when comparing fluxes
    #population_index = 10**((mass_index - 1)/2.3) # TEST !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1


    ### SENSOR CHARACTERIZATION ###
    # Computes FWHM of stars and noise profile of the sensor
    
    # File which stores the sensor characterization profile
    sensor_characterization_file = "flux_sensor_characterization.json"
    sensor_characterization_path = os.path.join(dir_path, sensor_characterization_file)

    # Load sensor characterization file if present, so the procedure can be skipped
    if os.path.isfile(sensor_characterization_path):

        # Load the JSON file
        with open(sensor_characterization_path) as f:
            
            data = " ".join(f.readlines())
            sensor_data = json.loads(data)

            # Remove the info entry
            if '-1' in sensor_data:
                del sensor_data['-1']

    else:

        # Run sensor characterization
        sensor_data = sensorCharacterization(config, dir_path)

        # Save to file for posterior use
        with open(sensor_characterization_path, 'w') as f:

            # Add an explanation what each entry means
            sensor_data_save = dict(sensor_data)
            sensor_data_save['-1'] = {"FF file name": ['median star FWHM', 'median background noise stddev']}

            # Convert collection areas to JSON
            out_str = json.dumps(sensor_data_save, indent=4, sort_keys=True)

            # Save to disk
            f.write(out_str)



    # Compute the nighly mean FWHM and noise stddev
    fwhm_nightly_mean = np.mean([sensor_data[key][0] for key in sensor_data])
    stddev_nightly_mean = np.mean([sensor_data[key][1] for key in sensor_data])

    ### ###



    # Perform shower association
    associations, _ = showerAssociation(config, [ftpdetectinfo_path], shower_code=shower_code, \
        show_plot=False, save_plot=False, plot_activity=False)

    # Init the flux configuration
    flux_config = FluxConfig()


    # Remove all meteors which begin below the limit height
    filtered_associations = {}
    for key in associations:
        meteor, shower = associations[key]

        if meteor.beg_alt > flux_config.elev_limit:
            print("Rejecting:", meteor.jdt_ref)
            filtered_associations[key] = [meteor, shower]

    associations = filtered_associations



    # If there are no shower association, return nothing
    if not associations:
        print("No meteors associated with the shower!")
        return None


    # Print the list of used meteors
    peak_mags = []
    for key in associations:
        meteor, shower = associations[key]

        if shower is not None:

            # Compute peak magnitude
            peak_mag = np.min(meteor.mag_array)

            peak_mags.append(peak_mag)

            print("{:.6f}, {:3s}, {:+.2f}".format(meteor.jdt_ref, shower.name, peak_mag))

    print()



    ### COMPUTE COLLECTION AREAS ###

    # Make a file name to save the raw collection areas
    col_areas_file_name = generateColAreaJSONFileName(platepar.station_code, flux_config.side_points, \
        flux_config.ht_min, flux_config.ht_max, flux_config.dht, flux_config.elev_limit)

    # Check if the collection area file exists. If yes, load the data. If not, generate collection areas
    if col_areas_file_name in os.listdir(dir_path):
        col_areas_ht = loadRawCollectionAreas(dir_path, col_areas_file_name)

        print("Loaded collection areas from:", col_areas_file_name)

    else:

        # Compute the collecting areas segments per height
        col_areas_ht = collectingArea(platepar, mask=mask, side_points=flux_config.side_points, \
            ht_min=flux_config.ht_min, ht_max=flux_config.ht_max, dht=flux_config.dht, \
            elev_limit=flux_config.elev_limit)

        # Save the collection areas to file
        saveRawCollectionAreas(dir_path, col_areas_file_name, col_areas_ht)

        print("Saved raw collection areas to:", col_areas_file_name)


    ### ###


    # Compute the raw collection area at the height of 100 km
    col_area_100km_raw = 0
    col_areas_100km_blocks = col_areas_ht[100000.0]
    for block in col_areas_100km_blocks:
        col_area_100km_raw += col_areas_100km_blocks[block][0]

    print("Raw collection area at height of 100 km: {:.2f} km^2".format(col_area_100km_raw/1e6))


    # Compute the pointing of the middle of the FOV
    _, ra_mid, dec_mid, _ = xyToRaDecPP([jd2Date(J2000_JD.days)], [platepar.X_res/2], [platepar.Y_res/2], \
        [1], platepar, extinction_correction=False)
    azim_mid, elev_mid = raDec2AltAz(ra_mid[0], dec_mid[0], J2000_JD.days, platepar.lat, platepar.lon)

    # Compute the range to the middle point
    ref_ht = 100000
    r_mid, _, _, _ = xyHt2Geo(platepar, platepar.X_res/2, platepar.Y_res/2, ref_ht, indicate_limit=True, \
        elev_limit=flux_config.elev_limit)

    print("Range at 100 km in the middle of the image: {:.2f} km".format(r_mid/1000))


    ### Compute the average angular velocity to which the flux variation throught the night will be normalized 
    #   The ang vel is of the middle of the FOV in the middle of observations

    # Middle Julian date of the night
    jd_night_mid = (datetime2JD(dt_beg) + datetime2JD(dt_end))/2

    # Compute the apparent radiant
    ra, dec, v_init = shower.computeApparentRadiant(platepar.lat, platepar.lon, jd_night_mid)

    # Compute the radiant elevation
    radiant_azim, radiant_elev = raDec2AltAz(ra, dec, jd_night_mid, platepar.lat, platepar.lon)

    # Compute the angular velocity in the middle of the FOV
    rad_dist_night_mid = angularSeparation(np.radians(radiant_azim), np.radians(radiant_elev), 
                np.radians(azim_mid), np.radians(elev_mid))
    ang_vel_night_mid = v_init*np.sin(rad_dist_night_mid)/r_mid

    ###




    # Compute the average limiting magnitude to which all flux will be normalized

    # Standard deviation of star PSF, nightly mean (px)
    star_stddev = fwhm_nightly_mean/2.355

    # # Compute the theoretical stellar limiting magnitude (nightly average)
    # star_sum = 2*np.pi*(config.k1_det*stddev_nightly_mean + config.j1_det)*star_stddev**2
    # lm_s_nightly_mean = -2.5*np.log10(star_sum) + mag_lev_nightly_mean

    # Compute the theoretical stellar limiting magnitude using an empirical model (nightly average)
    lm_s_nightly_mean = stellarLMModel(mag_lev_nightly_mean)


    # A meteor needs to be visible on at least 4 frames, thus it needs to have at least 4x the mass to produce
    #   that amount of light. 1 magnitude difference scales as -0.4 of log of mass, thus:
    # frame_min_loss = np.log10(config.line_minimum_frame_range_det)/(-0.4)
    frame_min_loss = 0.0 # TEST !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11

    print("Frame min loss: {:.2} mag".format(frame_min_loss))

    lm_s_nightly_mean += frame_min_loss

    # Compute apparent meteor magnitude
    lm_m_nightly_mean = lm_s_nightly_mean - 5*np.log10(r_mid/1e5) - 2.5*np.log10( \
        np.degrees(platepar.F_scale*v_init*np.sin(rad_dist_night_mid)/(config.fps*r_mid*fwhm_nightly_mean)) \
        )

    #
    print("Stellar lim mag using detection thresholds:", lm_s_nightly_mean)
    print("Apparent meteor limiting magnitude:", lm_m_nightly_mean)


    ### Apply time-dependent corrections ###

    # Track values used for flux
    sol_data = []
    flux_lm_6_5_data = []
    meteor_num_data = []
    effective_collection_area_data = []
    radiant_elev_data = []
    radiant_dist_mid_data = []
    ang_vel_mid_data = []
    lm_s_data = []
    lm_m_data = []
    sensitivity_corr_data = []
    range_corr_data = []
    radiant_elev_corr_data = []
    ang_vel_corr_data = []
    total_corr_data = []


    # Go through all time bins within the observation period
    total_time_hrs = (dt_end - dt_beg).total_seconds()/3600
    nbins = int(np.ceil(total_time_hrs/timebin))
    for t_bin in range(nbins):
        for subbin in range(flux_config.sub_time_bins):

            # Compute bin start and end time
            bin_dt_beg = dt_beg + datetime.timedelta(hours=(timebin*t_bin + timebin*subbin/flux_config.sub_time_bins))
            bin_dt_end = bin_dt_beg + datetime.timedelta(hours=timebin)

            if bin_dt_end > dt_end:
                bin_dt_end = dt_end


            # Compute bin duration in hours
            bin_hours = (bin_dt_end - bin_dt_beg).total_seconds()/3600

            # Convert to Julian date
            bin_jd_beg = datetime2JD(bin_dt_beg)
            bin_jd_end = datetime2JD(bin_dt_end)

                

            jd_mean = (bin_jd_beg + bin_jd_end)/2

            # Compute the mean solar longitude
            sol_mean = np.degrees(jd2SolLonSteyaert(jd_mean))

            ### Compute the radiant elevation at the middle of the time bin ###

            # Compute the apparent radiant
            ra, dec, v_init = shower.computeApparentRadiant(platepar.lat, platepar.lon, jd_mean)

            # Compute the mean meteor height
            meteor_ht_beg = heightModel(v_init, ht_type='beg')
            meteor_ht_end = heightModel(v_init, ht_type='end')
            meteor_ht = (meteor_ht_beg + meteor_ht_end)/2

            # Compute the standard deviation of the height
            meteor_ht_std = meteor_ht*ht_std_percent/100.0

            # Init the Gaussian height distribution
            meteor_ht_gauss = scipy.stats.norm(meteor_ht, meteor_ht_std)


            # Compute the radiant elevation
            radiant_azim, radiant_elev = raDec2AltAz(ra, dec, jd_mean, platepar.lat, platepar.lon)




            # Only select meteors in this bin and not too close to the radiant
            bin_meteors = []
            bin_ffs = []
            for key in associations:
                meteor, shower = associations[key]

                if shower is not None:
                    if (shower.name == shower_code) and (meteor.jdt_ref > bin_jd_beg) \
                        and (meteor.jdt_ref <= bin_jd_end):

                        # Filter out meteors ending too close to the radiant
                        if np.degrees(angularSeparation(np.radians(radiant_azim), np.radians(radiant_elev), \
                            np.radians(meteor.end_azim), np.radians(meteor.end_alt))) >= flux_config.rad_dist_min:
                        
                            bin_meteors.append([meteor, shower])
                            bin_ffs.append(meteor.ff_name)

            ### ###

            print()
            print()
            print("-- Bin information ---")
            print("Bin beg:", bin_dt_beg)
            print("Bin end:", bin_dt_end)
            print("Sol mid: {:.5f}".format(sol_mean))
            print("Radiant elevation: {:.2f} deg".format(radiant_elev))
            print("Apparent speed: {:.2f} km/s".format(v_init/1000))

            # If the elevation of the radiant is below the limit, skip this bin
            if radiant_elev < flux_config.rad_elev_limit:
                print("!!! Mean radiant elevation below {:.2f} deg threshold, skipping time bin!".format(flux_config.rad_elev_limit))
                continue

            # The minimum duration of the time bin should be larger than 50% of the given dt
            if bin_hours < 0.5*timebin:
                print("!!! Time bin duration of {:.2f} h is shorter than 0.5x of the time bin!".format(bin_hours))
                continue


            if len(bin_meteors) >= flux_config.meteros_min:
                print("Meteors:", len(bin_meteors))


                ### Weight collection area by meteor height distribution ###

                # Determine weights for each height
                weight_sum = 0
                weights = {}
                for ht in col_areas_ht:
                    wt = meteor_ht_gauss.pdf(float(ht))
                    weight_sum += wt
                    weights[ht] = wt

                # Normalize the weights so that the sum is 1
                for ht in weights:
                    weights[ht] /= weight_sum

                ### ###


                col_area_meteor_ht_raw = 0
                for ht in col_areas_ht:
                    for block in col_areas_ht[ht]:
                        col_area_meteor_ht_raw += weights[ht]*col_areas_ht[ht][block][0]

                print("Raw collection area at meteor heights: {:.2f} km^2".format(col_area_meteor_ht_raw/1e6))

                # Compute the angular velocity in the middle of the FOV
                rad_dist_mid = angularSeparation(np.radians(radiant_azim), np.radians(radiant_elev), 
                            np.radians(azim_mid), np.radians(elev_mid))
                ang_vel_mid = v_init*np.sin(rad_dist_mid)/r_mid



                ### Compute the limiting magnitude ###

                # Compute the mean star FWHM in the given bin
                fwhm_bin_mean = np.mean([sensor_data[ff_name][0] for ff_name in bin_ffs])

                # Compute the mean background stddev in the given bin
                stddev_bin_mean = np.mean([sensor_data[ff_name][1] for ff_name in bin_ffs])

                # Compute the mean photometric zero point in the given bin
                mag_lev_bin_mean = np.mean([recalibrated_platepars[ff_name].mag_lev for ff_name in bin_ffs if ff_name in recalibrated_platepars])



                # # Standard deviation of star PSF, nightly mean (px)
                # star_stddev = fwhm_bin_mean/2.355

                # Compute the theoretical stellar limiting magnitude (bin average)
                # star_sum = 2*np.pi*(config.k1_det*stddev_bin_mean + config.j1_det)*star_stddev**2
                # lm_s = -2.5*np.log10(star_sum) + mag_lev_bin_mean
                
                # Use empirical LM calculation
                lm_s = stellarLMModel(mag_lev_bin_mean)

                lm_s += frame_min_loss


                # ### TEST !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11

                # # Artificialy increase limiting magnitude
                # lm_s += 1.2

                # #####

                # Compute apparent meteor magnitude
                lm_m = lm_s - 5*np.log10(r_mid/1e5) - 2.5*np.log10( \
                    np.degrees(platepar.F_scale*v_init*np.sin(rad_dist_mid)/(config.fps*r_mid*fwhm_bin_mean)))

                ### ###


                # Final correction area value (height-weightned)
                collection_area = 0

                # Keep track of the corrections
                sensitivity_corr_arr = []
                range_corr_arr = []
                radiant_elev_corr_arr = []
                ang_vel_corr_arr = []
                total_corr_arr = []
                col_area_raw_arr = []
                col_area_eff_arr = []
                col_area_eff_block_dict = {}

                # Go through all heights and segment blocks
                for ht in col_areas_ht:
                    for img_coords in col_areas_ht[ht]:

                        x_mean, y_mean = img_coords

                        # Unpack precomputed values
                        area, azim, elev, sensitivity_ratio, r = col_areas_ht[ht][img_coords]


                        # Compute the angular velocity (rad/s) in the middle of this block
                        rad_dist = angularSeparation(np.radians(radiant_azim), np.radians(radiant_elev), 
                            np.radians(azim), np.radians(elev))
                        ang_vel = v_init*np.sin(rad_dist)/r


                        # If the angular distance from the radiant is less than 15 deg, don't use the block
                        #   in the effective collection area
                        if np.degrees(rad_dist) < flux_config.rad_dist_min:
                            area = 0.0


                        # Compute the range correction
                        range_correction = (1e5/r)**2

                        #ang_vel_correction = ang_vel/ang_vel_mid
                        # Compute angular velocity correction relative to the nightly mean
                        ang_vel_correction = ang_vel/ang_vel_night_mid



                        ### Apply corrections

                        correction_ratio = 1.0
                        
                        # Correct the area for vignetting and extinction
                        sensitivity_corr_arr.append(sensitivity_ratio)
                        correction_ratio *= sensitivity_ratio


                        # Correct for the range (cap to an order of magnitude correction)
                        range_correction = max(range_correction, 0.1)
                        range_corr_arr.append(range_correction)
                        correction_ratio *= range_correction

                        # Correct for the radiant elevation (cap to an order of magnitude correction)
                        radiant_elev_correction = np.sin(np.radians(radiant_elev))
                        radiant_elev_correction = max(radiant_elev_correction, 0.1)
                        radiant_elev_corr_arr.append(radiant_elev_correction)
                        correction_ratio *= radiant_elev_correction


                        # Correct for angular velocity (cap to an order of magnitude correction)
                        ang_vel_correction = min(max(ang_vel_correction, 0.1), 10)
                        correction_ratio *= ang_vel_correction
                        ang_vel_corr_arr.append(ang_vel_correction)


                        # Add the collection area to the final estimate with the height weight
                        #   Raise the correction to the mass index power
                        total_correction = correction_ratio**(mass_index - 1)
                        total_correction = min(max(total_correction, 0.1), 10)
                        collection_area += weights[ht]*area*total_correction
                        total_corr_arr.append(total_correction)

                        col_area_raw_arr.append(weights[ht]*area)
                        col_area_eff_arr.append(weights[ht]*area*total_correction)

                        if img_coords not in col_area_eff_block_dict:
                            col_area_eff_block_dict[img_coords] = []

                        col_area_eff_block_dict[img_coords].append(weights[ht]*area*total_correction)




                # Compute mean corrections
                sensitivity_corr_avg = np.mean(sensitivity_corr_arr)
                range_corr_avg = np.mean(range_corr_arr)
                radiant_elev_corr_avg = np.mean(radiant_elev_corr_arr)
                ang_vel_corr_avg = np.mean(ang_vel_corr_arr)
                total_corr_avg = np.median(total_corr_arr)
                col_area_raw_sum = np.sum(col_area_raw_arr)
                col_area_eff_sum = np.sum(col_area_eff_arr)

                print("Raw collection area at meteor heights (CHECK): {:.2f} km^2".format(col_area_raw_sum/1e6))
                print("Eff collection area at meteor heights (CHECK): {:.2f} km^2".format(col_area_eff_sum/1e6))



                # ### PLOT HOW THE CORRECTION VARIES ACROSS THE FOV
                # x_arr = []
                # y_arr = []
                # col_area_eff_block_arr = []

                # for img_coords in col_area_eff_block_dict:
                    
                #     x_mean, y_mean = img_coords

                #     #if x_mean not in x_arr:
                #     x_arr.append(x_mean)
                #     #if y_mean not in y_arr:
                #     y_arr.append(y_mean)

                #     col_area_eff_block_arr.append(np.sum(col_area_eff_block_dict[img_coords]))

                # x_unique = np.unique(x_arr)
                # y_unique = np.unique(y_arr)
                # # plt.pcolormesh(x_arr, y_arr, np.array(col_area_eff_block_arr).reshape(len(x_unique), len(y_unique)).T, shading='auto')
                # plt.title("TOTAL = " + str(np.sum(col_area_eff_block_arr)/1e6))
                # plt.scatter(x_arr, y_arr, c=np.array(col_area_eff_block_arr)/1e6)
                # #plt.pcolor(np.array(x_arr).reshape(len(x_unique), len(y_unique)), np.array(y_arr).reshape(len(x_unique), len(y_unique)), np.array(col_area_eff_block_arr).reshape(len(x_unique), len(y_unique))/1e6)
                # plt.colorbar(label="km^2")
                # plt.gca().invert_yaxis()
                # plt.show()

                # ###


                # Compute the flux at the bin LM (meteors/1000km^2/h)
                flux = 1e9*len(bin_meteors)/collection_area/bin_hours

                # Compute the flux scaled to the nightly mean LM
                flux_lm_nightly_mean = flux*population_index**(lm_m_nightly_mean - lm_m)

                # Compute the flux scaled to +6.5M
                flux_lm_6_5 = flux*population_index**(6.5 - lm_m)



                print("-- Sensor information ---")
                print("Star FWHM:  {:5.2f} px".format(fwhm_bin_mean))
                print("Bkg stddev: {:4.1f} ADU".format(stddev_bin_mean))
                print("Photom ZP:  {:+6.2f} mag".format(mag_lev_bin_mean))
                print("Stellar LM: {:+.2f} mag".format(lm_s))
                print("-- Flux ---")
                print("Meteors:  {:d}".format(len(bin_meteors)))
                print("Col area: {:d} km^2".format(int(collection_area/1e6)))
                print("Ang vel:  {:.2f} deg/s".format(np.degrees(ang_vel_mid)))
                print("LM app:   {:+.2f} mag".format(lm_m))
                print("Flux:     {:.2f} meteors/1000km^2/h".format(flux))
                print("to {:+.2f}: {:.2f} meteors/1000km^2/h".format(lm_m_nightly_mean, flux_lm_nightly_mean))
                print("to +6.50: {:.2f} meteors/1000km^2/h".format(flux_lm_6_5))


                sol_data.append(sol_mean)
                flux_lm_6_5_data.append(flux_lm_6_5)
                meteor_num_data.append(len(bin_meteors))
                effective_collection_area_data.append(collection_area)
                radiant_elev_data.append(radiant_elev)
                radiant_dist_mid_data.append(np.degrees(rad_dist_mid))
                ang_vel_mid_data.append(np.degrees(ang_vel_mid))
                lm_s_data.append(lm_s)
                lm_m_data.append(lm_m)

                sensitivity_corr_data.append(sensitivity_corr_avg)
                range_corr_data.append(range_corr_avg)
                radiant_elev_corr_data.append(radiant_elev_corr_avg)
                ang_vel_corr_data.append(ang_vel_corr_avg)
                total_corr_data.append(total_corr_avg)


    # Print the results
    print("Solar longitude, Flux at LM +6.5:")
    for sol, flux_lm_6_5 in zip(sol_data, flux_lm_6_5_data):
        print("{:9.5f}, {:8.4f}".format(sol, flux_lm_6_5))


    if show_plots and len(sol_data):

        # Plot a histogram of peak magnitudes
        plt.hist(peak_mags, cumulative=True, log=True, bins=len(peak_mags), density=True)

        # Plot population index
        r_intercept = -0.7
        x_arr = np.linspace(np.min(peak_mags), np.percentile(peak_mags, 60))
        plt.plot(x_arr, 10**(np.log10(population_index)*x_arr + r_intercept))

        plt.title("r = {:.2f}".format(population_index))

        plt.show()


        # Plot how the derived values change throughout the night
        fig, axes \
            = plt.subplots(nrows=4, ncols=2, sharex=True, figsize=(10, 8))

        ((ax_met,      ax_lm),
         (ax_rad_elev, ax_corrs),
         (ax_rad_dist, ax_col_area),
         (ax_ang_vel,  ax_flux)) = axes


        fig.suptitle("{:s}, s = {:.2f}, r = {:.2f}".format(shower_code, mass_index, population_index))


        ax_met.scatter(sol_data, meteor_num_data)
        ax_met.set_ylabel("Meteors")

        ax_rad_elev.plot(sol_data, radiant_elev_data)
        ax_rad_elev.set_ylabel("Radiant elev (deg)")

        ax_rad_dist.plot(sol_data, radiant_dist_mid_data)
        ax_rad_dist.set_ylabel("Radiant dist (deg)")

        ax_ang_vel.plot(sol_data, ang_vel_mid_data)
        ax_ang_vel.set_ylabel("Ang vel (deg/s)")
        ax_ang_vel.set_xlabel("La Sun (deg)")


        ax_lm.plot(sol_data, lm_s_data, label="Stellar")
        ax_lm.plot(sol_data, lm_m_data, label="Meteor")
        ax_lm.set_ylabel("LM")
        ax_lm.legend()

        ax_corrs.plot(sol_data, sensitivity_corr_data, label="Sensitivity")
        ax_corrs.plot(sol_data, range_corr_data, label="Range")
        ax_corrs.plot(sol_data, radiant_elev_corr_data, label="Rad elev")
        ax_corrs.plot(sol_data, ang_vel_corr_data, label="Ang vel")
        ax_corrs.plot(sol_data, total_corr_data, label="Total (median)")
        ax_corrs.set_ylabel("Corrections")
        ax_corrs.legend()

        

        ax_col_area.plot(sol_data, np.array(effective_collection_area_data)/1e6)
        ax_col_area.plot(sol_data, len(sol_data)*[col_area_100km_raw/1e6], color='k', \
            label="Raw col area at 100 km")
        ax_col_area.plot(sol_data, len(sol_data)*[col_area_meteor_ht_raw/1e6], color='k', linestyle='dashed', \
            label="Raw col area at met ht")
        ax_col_area.set_ylabel("Eff. col. area (km^2)")
        ax_col_area.legend()

        ax_flux.scatter(sol_data, flux_lm_6_5_data)
        ax_flux.set_ylabel("Flux@+6.5M (met/1000km^2/h)")
        ax_flux.set_xlabel("La Sun (deg)")

        plt.tight_layout()

        plt.show()


    return sol_data, flux_lm_6_5_data
Пример #5
0
    #########################

    dir_path = cml_args.dir_path[0]

    # Load the config file
    config = cr.loadConfigFromDirectory(cml_args.config, dir_path)

    # Get a list of files in the night folder
    file_list = os.listdir(dir_path)

    # Find and load the platepar file
    if config.platepar_name in file_list:

        # Load the platepar
        platepar = Platepar.Platepar()
        platepar_path = os.path.join(dir_path, config.platepar_name)
        platepar.read(platepar_path, use_flat=config.use_flat)

    else:
        print('Cannot find the platepar file in the night directory: ',
              config.platepar_name)
        sys.exit()

    # Find the CALSTARS file in the given folder
    calstars_file = None
    for calstars_file in file_list:
        if ('CALSTARS' in calstars_file) and ('.txt' in calstars_file):
            break

    if calstars_file is None:
Пример #6
0
def recalibrateSelectedFF(dir_path, ff_file_names, calstars_list, config, lim_mag, \
    pp_recalib_name, ignore_distance_threshold=False):
    """Recalibrate FF files, ignoring whether there are detections.

    Arguments:
        dir_path: [str] Path where the FF files are.
        ff_file_names: [str] List of ff files to recalibrate platepars to
        calstars_list: [list] A list of entries [[ff_name, star_coordinates], ...].
        config: [Config instance]
        lim_mag: [float] Limiting magnitude for the catalog.
        pp_recalib_name: [str] Name for the file where the recalibrated platepars will be stored as JSON.

    Keyword arguments:
        ignore_distance_threshold: [bool] Don't consider the recalib as failed if the median distance
            is larger than the threshold.

    Return:
        recalibrated_platepars: [dict] A dictionary where the keys are FF file names and values are
            recalibrated platepar instances for every FF file.
    """
    config = copy.deepcopy(config)
    calstars = {ff_file: star_data for ff_file, star_data in calstars_list}

    # load star catalog with increased catalog limiting magnitude
    star_catalog_status = StarCatalog.readStarCatalog(
        config.star_catalog_path,
        config.star_catalog_file,
        lim_mag=lim_mag,
        mag_band_ratios=config.star_catalog_band_ratios,
    )

    if not star_catalog_status:
        print("Could not load the star catalog!")
        print(os.path.join(config.star_catalog_path, config.star_catalog_file))
        return {}

    catalog_stars, _, config.star_catalog_band_ratios = star_catalog_status
    # print(catalog_stars)
    prev_platepar = Platepar.Platepar()
    prev_platepar.read(os.path.join(dir_path, config.platepar_name),
                       use_flat=config.use_flat)

    # Update the platepar coordinates from the config file
    prev_platepar.lat = config.latitude
    prev_platepar.lon = config.longitude
    prev_platepar.elev = config.elevation

    recalibrated_platepars = recalibratePlateparsForFF(
        prev_platepar,
        ff_file_names,
        calstars,
        catalog_stars,
        config,
        lim_mag=lim_mag,
        ignore_distance_threshold=ignore_distance_threshold,
    )

    # Store recalibrated platepars in json
    all_pps = {}
    for ff_name in recalibrated_platepars:
        json_str = recalibrated_platepars[ff_name].jsonStr()
        all_pps[ff_name] = json.loads(json_str)

    with open(os.path.join(dir_path, pp_recalib_name), 'w') as f:

        # Convert all platepars to a JSON file
        out_str = json.dumps(all_pps,
                             default=lambda o: o.__dict__,
                             indent=4,
                             sort_keys=True)
        f.write(out_str)

    return recalibrated_platepars