Пример #1
0
def makeTTbarModel(workspace,label, model,channel, wtagger, constraint=[],peak="W", spectrum="_mj"):
	 
	 info =""
	 if label.find("_ttbar_data")!=-1 and label.find("fail")==-1:
		 rrv_number_total = RooRealVar("rrv_number_total_ttbar_data"+info+"_"+channel,"rrv_number_total_ttbar_data"+info+"_"+channel,500,0.,1e10)
		 eff_ttbar = RooRealVar("eff_ttbar_data"+info+"_"+channel,"eff_ttbar_data"+info+"_"+channel,0.7,0.2,1.0)
		 if peak == "Wt":eff_ttbar = RooRealVar("eff_ttbar_data"+info+"_"+channel,"eff_ttbar_data"+info+"_"+channel,0.7,0.0,1.0)
		 rrv_number = RooFormulaVar("rrv_number"+label+"_"+channel+spectrum, "@0*@1", RooArgList(eff_ttbar,rrv_number_total))

	 elif label.find("_ttbar_data")!=-1 and label.find("fail")!=-1:
		 rrv_number_total = workspace.var("rrv_number_total_ttbar_data"+info+"_"+channel)
		 eff_ttbar        = workspace.var("eff_ttbar_data"+info+"_"+channel)
		 rrv_number       = RooFormulaVar("rrv_number"+label+"_"+channel+spectrum, "(1-@0)*@1", RooArgList(eff_ttbar,rrv_number_total))
		 
	 elif label.find("_ttbar_TotalMC")!=-1 and label.find("fail")==-1:
		 rrv_number_total = RooRealVar("rrv_number_total_ttbar_TotalMC"+info+"_"+channel,"rrv_number_total_ttbar_TotalMC"+info+"_"+channel,500,0.,1e10)
		 eff_ttbar = RooRealVar("eff_ttbar_TotalMC"+info+"_"+channel,"eff_ttbar_TotalMC"+info+"_"+channel,0.7,0.2,1.0)
		 if peak == "Wt": eff_ttbar = RooRealVar("eff_ttbar_TotalMC"+info+"_"+channel,"eff_ttbar_TotalMC"+info+"_"+channel,0.7,0.0,1.0)
		 rrv_number = RooFormulaVar("rrv_number"+label+"_"+channel+spectrum, "@0*@1", RooArgList(eff_ttbar,rrv_number_total))
		 
	 elif label.find("_ttbar_TotalMC")!=-1 and label.find("fail")!=-1:
		 rrv_number_total = workspace.var("rrv_number_total_ttbar_TotalMC"+info+"_"+channel)
		 eff_ttbar = workspace.var("eff_ttbar_TotalMC"+info+"_"+channel)
		 rrv_number = RooFormulaVar("rrv_number"+label+"_"+channel+spectrum, "(1-@0)*@1", RooArgList(eff_ttbar,rrv_number_total)) 
		 
	 model_pdf = MakeGeneralPdf(workspace,label,model,spectrum,wtagger,channel,constraint,peak)
	 model = RooExtendPdf("model"+label+"_"+channel+spectrum,"model"+label+"_"+channel+spectrum, model_pdf, rrv_number)
	 getattr(workspace,"import")(model)
	 return workspace.pdf("model"+label+"_"+channel+spectrum)
Пример #2
0
 def __init__(self, super=False):
     DoubleGauss.__init__(self, super=super)
     sXY = ('x', 'y')
     s12 = ('1', '2')
     diffW = {name: RooRealVar(name, name, 0.01, 1.7) for name in \
              [c+'WidthW'+i+'Diff' for c in sXY for i in s12]}
     widthW = {c+'WidthW'+i: RooFormulaVar(c+'WidthW'+i, c+'WidthN'+i+'+'+ \
               c+'WidthM'+i+'Diff'+'+'+c+'WidthW'+i+'Diff', \
               RooArgList(diffW[c+'WidthW'+i+'Diff'], \
               self.Parameter[c+'WidthM'+i+'Diff'],
               self.Parameter[c+'WidthN'+i])) for c in sXY for i in s12}
     rhoW = {name: RooRealVar(name, name, -0.48, 0.48) for name in \
             ['rhoW'+i for i in s12]}
     if super:
         self.super = True
         extra = {name: RooRealVar(name, name, 0.0, 1.0) for name in \
                  ['w'+i+'MFraction' for i in s12]}
         nf = [('M', lambda i: 'w'+i+'MFraction*(1.0-w'+i+'N)'), \
               ('W', lambda i: '(1.0-w'+i+'MFraction)*(1.0-w'+i+'N)')]
         w = {'w'+i+n: RooFormulaVar('w'+i+n, f(i), \
              RooArgList(extra['w'+i+'MFraction'], self.Parameter['w'+i+'N'])) \
              for i in s12 for (n, f) in nf}
     else:
         extra = {name: RooRealVar(name, name, 0.0, 0.5*pi) for name in \
                  [a+i for a in ('theta', 'phi') for i in s12]}
         nf = [('N', lambda i: 'sin(theta'+i+')**2*cos(phi'+i+')**2'), \
               ('M', lambda i: 'sin(theta'+i+')**2*sin(phi'+i+')**2'), \
               ('W', lambda i: 'cos(theta'+i+')**2')]
         w = {'w'+i+n: RooFormulaVar('w'+i+n, f(i), \
              RooArgList(extra['theta'+i], extra['phi'+i])) for i in s12 \
              for (n, f) in nf}
     for d in (diffW, widthW, rhoW, extra, w):
         self.Parameter.update(d)
Пример #3
0
    def __init__(self, name, formula, arglist, error=None):
        """Initialize a variable.

        Takes a name, a formula (strings), an list of variables (RooArgList) the
        variable depends on, and (optionally) an error (function).
        """
        RooFormulaVar.__init__(self, name, name, formula, arglist)
        self.set_error(error)
Пример #4
0
    def makeMorphingPdf(self, component, useAlternateModels, convModels):
        if self.ws.pdf(component):
            return self.ws.pdf(component)
        
        filesNom = getattr(self.pars, '%s_NomFiles' % component)
        modelsNom = getattr(self.pars, '%s_NomModels' % component)
        filesMU = getattr(self.pars, '%s_MUFiles' % component)
        modelsMU = getattr(self.pars, '%s_MUModels' % component)
        filesMD = getattr(self.pars, '%s_MDFiles' % component)
        modelsMD = getattr(self.pars, '%s_MDModels' % component)
        filesSU = getattr(self.pars, '%s_SUFiles' % component)
        modelsSU = getattr(self.pars, '%s_SUModels' % component)
        filesSD = getattr(self.pars, '%s_SDFiles' % component)
        modelsSD = getattr(self.pars, '%s_SDModels' % component)
        if useAlternateModels:
            modelsNom = getattr(self.pars, '%s_NomModelsAlt' % component)
            modelsMU = getattr(self.pars, '%s_MUModelsAlt' % component)
            modelsMD = getattr(self.pars, '%s_MDModelsAlt' % component)
            modelsSU = getattr(self.pars, '%s_SUModelsAlt' % component)
            modelsSD = getattr(self.pars, '%s_SDModelsAlt' % component)

        # Adds five (sub)components for the component with suffixes Nom, MU, MD, SU, SD
        NomPdf = self.makeComponentPdf('%s_Nom' % component, filesNom, modelsNom, False, convModels)
        if hasattr(self, '%s_NomExpected' % component):
            setattr(self, '%sExpected' % component,
                    getattr(self, '%s_NomExpected' % component))
        MUPdf = self.makeComponentPdf('%s_MU' % component, filesMU, modelsMU, False, convModels)
        MDPdf = self.makeComponentPdf('%s_MD' % component, filesMD, modelsMD, False, convModels)
        SUPdf = self.makeComponentPdf('%s_SU' % component, filesSU, modelsSU, False, convModels)
        SDPdf = self.makeComponentPdf('%s_SD' % component, filesSD, modelsSD, False, convModels)

        fMU_comp = self.ws.factory("fMU_%s[0., -1., 1.]" % component)
        fSU_comp = self.ws.factory("fSU_%s[0., -1., 1.]" % component)

        fMU = RooFormulaVar("f_fMU_%s" % component, "1.0*@0*(@0 >= 0.)", 
                            RooArgList( fMU_comp ) )
        fMD = RooFormulaVar("f_fMD_%s" % component, "-1.0*@0*(@0 < 0.)", 
                            RooArgList( fMU_comp ) )
        fSU = RooFormulaVar("f_fSU_%s" % component, "@0*(@0 >= 0.)", 
                            RooArgList( fSU_comp ) )
        fSD = RooFormulaVar("f_fSD_%s" % component, "@0*(-1)*(@0 < 0.)", 
                            RooArgList( fSU_comp ) )
        fNom = RooFormulaVar("f_fNom_%s" % component, "(1.-abs(@0)-abs(@1))", 
                             RooArgList(fMU_comp,fSU_comp) )
        morphPdf = RooAddPdf(component,component, 
                             RooArgList(MUPdf,MDPdf,SUPdf,SDPdf,NomPdf),
                             RooArgList(fMU, fMD, fSU, fSD, fNom))
        morphPdf.SetName(component)
        getattr(self.ws, 'import')(morphPdf)
        return self.ws.pdf(component)
Пример #5
0
def get_dataset(varargset, ftree, cut='', wt='', scale=1):
    """Return a dataset.

    Return a dataset from the ntuple `ftree'. Apply a selection cut
    using the `cutVar' variable and the selection `cut'.

    """

    from rplot.fixes import ROOT
    from rplot.tselect import Tsplice
    splice = Tsplice(ftree)
    splice.make_splice('sel', cut)
    from ROOT import RooDataSet, RooFit, RooFormulaVar, RooArgList
    tmpdst = RooDataSet('tmpdataset', '', varargset, RooFit.Import(ftree))
    if wt:
        wtvar = RooFormulaVar('wt', '{}*@0'.format(scale),
                              RooArgList(varargset[wt]))
        wtvar = tmpdst.addColumn(wtvar)
        varargset.remove(varargset[wt])
        varargset.add(wtvar)
        dst = RooDataSet('dataset', 'Dataset', varargset,
                         RooFit.Import(tmpdst), RooFit.WeightVar(wtvar))
        varargset.remove(wtvar)
        dst = dst.reduce(varargset)
    return dst
Пример #6
0
def FinalPlotter(inputDirForLimit):
    frame_nevents , canvas_nevents , YieldsInDataCards = PlotTotalNumberOfEvents(inputDirForLimit)
    YieldsInDataCards_HistFunc = YieldsInDataCards.CtOverCvDataHistFunc
    print frame_nevents
    frame_nevents.Print()
    canvas_limit , retobjects_limits = PlotLimitResults(inputDirForLimit.split("/")[1] , 3)
    Limits_HistFunc = retobjects_limits[0]
    print Limits_HistFunc
    Limits_HistFunc.Print()
    
    rTimes_nEvents = RooFormulaVar("UpperLimitOnNEvents" , "UpperLimitOnNEvents" , "@0*@1" , RooArgList( Limits_HistFunc , YieldsInDataCards_HistFunc ) )
    canvas_nevents.cd()
    rTimes_nEvents.plotOn( frame_nevents , RooFit.LineColor( kGreen ) ).getCurve().SetTitle("Upper limit on #events")
    frame_nevents.Draw()

    return (frame_nevents, canvas_nevents, YieldsInDataCards, canvas_limit, retobjects_limits, Limits_HistFunc, rTimes_nEvents )
Пример #7
0
def make_weighted_dataset(subproc,ws,tree,mc_events):
    data = RooDataSet('%s_shape_data'%subproc,
                      'M_{ll#gamma} Shape Data for %s'%subproc,
                      tree,
                      ws.set('vars_with_weights')                      
                      )

    mc_yield_var = RooConstVar('temp','temp',mc_events)
    weighter = RooFormulaVar('weight','weight','@0*@1/@2',
                             RooArgList( ws.var('procWeight'),
                                         ws.var('puWeight'),
                                         mc_yield_var )
                             )
    data.addColumn(weighter)

    data_total_weight = RooDataSet('%s_shape_data'%subproc,
                                   'M_{ll#gamma} Shape Data for %s'%subproc,
                                   data,
                                   ws.set('vars_with_weights_final'),
                                   '','weight')

    data_pu_weight = RooDataSet('%s_shape_data_puonly'%subproc,
                                'M_{ll#gamma} Shape Data for %s'%subproc,
                                data,
                                ws.set('vars_with_weights_final'),
                                '','puWeight')
    
    return data_total_weight, data_pu_weight
Пример #8
0
def rooFit103():

    print ">>> construct generic pdf from interpreted expression..."
    # To construct a proper p.d.f, the formula expression is explicitly normalized internally
    # by dividing  it by a numeric integral of the expresssion over x in the range [-20,20]
    x = RooRealVar("x", "x", -20, 20)
    alpha = RooRealVar("alpha", "alpha", 5, 0.1, 10)
    genpdf = RooGenericPdf("genpdf", "genpdf",
                           "(1+0.1*abs(x)+sin(sqrt(abs(x*alpha+0.1))))",
                           RooArgList(x, alpha))

    print ">>> generate and fit toy data...\n"
    data = genpdf.generate(RooArgSet(x), 10000)  # RooDataSet
    genpdf.fitTo(data)
    frame1 = x.frame(Title("Interpreted expression pdf"))  # RooPlot
    data.plotOn(frame1, Binning(40))
    genpdf.plotOn(frame1)

    print "\n>>> construct standard pdf with formula replacing parameter..."
    mean2 = RooRealVar("mean2", "mean^2", 10, 0, 200)
    sigma = RooRealVar("sigma", "sigma", 3, 0.1, 10)
    mean = RooFormulaVar("mean", "mean", "sqrt(mean2)", RooArgList(mean2))
    gaus2 = RooGaussian("gaus2", "gaus2", x, mean, sigma)

    print ">>> generate and fit toy data...\n"
    gaus1 = RooGaussian("gaus1", "gaus1", x, RooConst(10), RooConst(3))
    data2 = gaus1.generate(RooArgSet(x), 1000)  # RooDataSet
    result = gaus2.fitTo(data2, Save())  # RooFitResult
    result.Print()
    frame2 = x.frame(Title("Tailored Gaussian pdf"))  # RooPlot
    data2.plotOn(frame2, Binning(40))
    gaus2.plotOn(frame2)

    print "\n>>> draw pfds and fits on canvas..."
    canvas = TCanvas("canvas", "canvas", 100, 100, 1400, 600)
    canvas.Divide(2)
    canvas.cd(1)
    gPad.SetLeftMargin(0.15)
    gPad.SetRightMargin(0.02)
    frame1.GetYaxis().SetLabelOffset(0.008)
    frame1.GetYaxis().SetTitleOffset(1.6)
    frame1.GetYaxis().SetTitleSize(0.045)
    frame1.GetXaxis().SetTitleSize(0.045)
    frame1.Draw()
    canvas.cd(2)
    gPad.SetLeftMargin(0.15)
    gPad.SetRightMargin(0.02)
    frame2.GetYaxis().SetLabelOffset(0.008)
    frame2.GetYaxis().SetTitleOffset(1.6)
    frame2.GetYaxis().SetTitleSize(0.045)
    frame2.GetXaxis().SetTitleSize(0.045)
    frame2.Draw()
    canvas.SaveAs("rooFit103.png")
Пример #9
0
 def __init__(self, super=False):
     SingleGauss.__init__(self, uncorrelated=False)
     sXY = ('x', 'y')
     s12 = ('1', '2')
     diffM = {name: RooRealVar(name, name, 0.01, 1.7) for name in \
              [c+'WidthM'+i+'Diff' for c in sXY for i in s12]}
     widthM = {c+'WidthM'+i: RooFormulaVar(c+'WidthM'+i, c+'WidthN'+i+'+'+ \
               c+'WidthM'+i+'Diff', RooArgList(diffM[c+'WidthM'+i+'Diff'], \
               self.Parameter[c+'WidthN'+i])) for c in sXY for i in s12}
     rhoM = {name: RooRealVar(name, name, -0.48, 0.48) for name in \
             ['rhoM'+i for i in s12]}
     for i in s12:
         wN = self.Parameter['w' + i + 'N']
         wN.setConstant(False)
         if super:
             wN.setRange(-1.0, 0.0)
             wN.setVal(-0.5)
         else:
             wN.setVal(0.5)
         self.Parameter['w' + i + 'N'] = wN
     wM = {'w'+i+'M': RooFormulaVar('w'+i+'M', '1.0-w'+i+'N', \
           RooArgList(self.Parameter['w'+i+'N'])) for i in s12}
     for d in (diffM, widthM, rhoM, wM):
         self.Parameter.update(d)
Пример #10
0
    def __init__(self,name,binning,formula,constraints={},forcePositive=True):
        '''Represents parametric functions as a group of RooFormulaVars which
        create a binned distribution and which change
        as the underlying function parameters change. Set parameter specific
        values by specifying the `constraints` argument with a dict formatted as

        \code{.json}
            {0: {
                'constraint': 'flatParam' or 'param <mu> <sigma>',
                'MIN' = -1000,
                'MAX' = 1000,
                'NOM' = 0,
                'ERROR' = 0.1
            } }
        \endcode

        The 'constraint' can only be 'flatParam' or 'param <mu> <sigma>' (options in the Combine card) 
        which represent "no constraint" and "Gaussian constraint centered at <mu> and with width <sigma>", respectively.

        @param name (str): Unique name for the new object.
        @param formula (str): Must reference fit parameters by ordinal with @. Use "x" and "y" to represent
                the "x" and "y" axes of the space. All other terms are indexed starting at 0. Ex. "@0 + x*@1 +y*@2".
        @param constraints (dict, optional): Map of formula parameters to constraint information. Defaults to {} in which
                case the constraint will be flat, the starting value of the parameter will be 0 with a step size of 0.1,
                and the range of the parameter will be [-1000,1000]. 
            
        @param forcePositive (bool, optional). Defaults to True in which case the bin values will be lower bound by 1e-9.
        '''
        super(ParametricFunction,self).__init__(name,binning,forcePositive)
        self.formula = formula
        self.nuisances = self._createFuncVars(constraints)
        self.arglist = RooArgList()
        for n in self.nuisances: self.arglist.add(n['obj'])

        for cat in _subspace:
            cat_name = name+'_'+cat
            for ybin in range(1,len(self.binning.ybinList)):
                for xbin in range(1,len(self.binning.xbinByCat[cat])):
                    bin_name = '%s_bin_%s-%s'%(cat_name,xbin,ybin)
                    xConst,yConst = self.mappedBinCenter(xbin,ybin,cat)
                    if forcePositive: final_formula = "max(1e-9,%s)"%(self._replaceXY(xConst,yConst))
                    else:             final_formula = self._replaceXY(xConst,yConst)

                    self.binVars[bin_name] = RooFormulaVar(
                        bin_name, bin_name,
                        final_formula,
                        self.arglist
                    )
Пример #11
0
def singleBinInterp(name, nuis, binVar, upVal, downVal, forcePositive):
    '''Create a RooFormulaVar containing the nuisance parameter that can
    morph the initial `binVar` value between the values of `upVal` and `downVal`.
    
    To accomodate the potential for multiple shape templates, the new parameter
    will control the relative yield of the bin (ie. as a percentage). 

    This means for a nuisance value of 0, the multiplicative term on the bin yield will
    be 1. For nuisance value +1(-1), the multiplicative term on the bin yield will be
    the ratio of the bin value in `up_shape`(`down_shape`) to the starting nominal value.
    
    If `forcePositive` is True, the parameters will extrapolate bin values above(below)
    nuisance values of +1(-1) using
    exponentials so that the values asymptotically approach 0. When `forcePositive`
    is False, the values are exptrapolated linearly.

    For asymmetric uncertainties in a given nuisance `n`, the region defined by `n > -1` and `n < 1`
    is modeled using sigmoid functions which smoothly turn "on" and "off" the extrapolated pieces.
    This modeling provides a consistent description between -1 and 1, satisifies the boundary conditions
    at `n` of 0, 1, and -1, and is continuous in its first and second derivatives.

    Args:
        name (str): Name for output RooFormulaVar.
        nuis (RooRealVar): Parameter to control yield changes across multiple bins.
        binVar (RooAbsReal): Current bin value represented as RooRealVar or RooFormulaVar (derives from RooAbsReal).
        upVal (float): Absolute "up" variation of the bin value.
        downVal (float): Absolute "down" variation of the bin value.
        forcePositive (bool): If True, shape template mapping will use exponentials so that values asymptotically
                approach zero as the associated nuisance increases/decreases. If False, the mapping will be linear.
    Returns:
        RooFormulaVar: New bin value which includes interpolation term.
    '''
    activate_pos = '(1/(1 + exp(-5x)))' # Use sigmoid for activation
    activate_neg = '(1/(1 + exp(5x)))'
    if forcePositive:
        pos_term = '({u}^@0)'.format(u=upVal)
        neg_term = '({d}^(-1*@0))'.format(d=downVal)
    else:
        pos_term = '(1+({u}-1)*@0)'.format(u=upVal)
        neg_term = '(1+(1-{d})*@0)'.format(d=downVal)
    
    full = '@1*({act_pos}*{pos}+{act_neg}*{neg})/{nom}'.format(act_pos=activate_pos, act_neg=activate_neg, pos=pos_term, neg=neg_term, nom=binVar.getValV())
    return RooFormulaVar(name, name, full, RooArgList(nuis,binVar))
Пример #12
0
    def _manipulate(self,name,other,operator=''):
        '''Base method to create a new Generic2D object. When combining
        `self` and `other`, a new set of RooFormulaVars will be created for
        the new Generic2D object that connect `self` and `other` with the
        `operator` string. The associated nuisances of `self` and `other` will
        also be passed to the new object as one set (with potential duplicates removed).
        
        If attempting to add, subtract, multiply, or divide,
        use the dedicated methods. More complex use cases could be built here.

        Args:
            name (str): Unique name for the new output Generic2D object.
            other (Generic2D): Object to combine with self.
            operator (str, optional): Connecting mathematical operator string for the combination. Defaults to '*'
                which causes the method to return self*other.

        Returns:
            Generic2D: Object containing the combination of `self` and `other`.
        '''
        out = Generic2D(name,self.binning,self.forcePositive)
        for cat in _subspace:
            new_cat_name = name+'_'+cat
            for ybin in range(1,len(self.binning.ybinList)):
                for xbin in range(1,len(self.binning.xbinByCat[cat])):
                    new_bin_name   = '%s_bin_%s-%s'%(new_cat_name,xbin,ybin)
                    self_bin_name  = new_bin_name.replace(new_cat_name, self.name+'_'+cat)
                    other_bin_name = new_bin_name.replace(new_cat_name, other.name+'_'+cat)
                    out.binVars[new_bin_name] = RooFormulaVar(
                                                    new_bin_name, new_bin_name, '@0%s@1'%operator,
                                                    RooArgList(
                                                        self.binVars[self_bin_name],
                                                        other.binVars[other_bin_name]))

        all_nuisances = self.nuisances+other.nuisances
        for nuisance in all_nuisances:
            if nuisance['name'] in [n['name'] for n in out.nuisances]:
                raise RuntimeError('Already tracking nuisance %s. Printing all nuisances...\n\t'%(nuisance['name'],all_nuisances))

            out.nuisances.append(nuisance)

        return out
def signal(category):

    interPar = True
    n = len(genPoints)  
    
    cColor = color[category] if category in color else 4
    nBtag = category.count('b')
    isAH = False #relict from using Alberto's more complex script 
 
    if not os.path.exists(PLOTDIR+"MC_signal_"+YEAR): os.makedirs(PLOTDIR+"MC_signal_"+YEAR)

    #*******************************************************#
    #                                                       #
    #              Variables and selections                 #
    #                                                       #
    #*******************************************************#

    X_mass  = RooRealVar (      "jj_mass_widejet",              "m_{jj}",       X_min,     X_max,  "GeV")
    j1_pt = RooRealVar(         "jpt_1",                "jet1 pt",      0.,     13000.,  "GeV")
    jj_deltaEta = RooRealVar(    "jj_deltaEta_widejet",                "",      0.,     5.)
    jbtag_WP_1 = RooRealVar("jbtag_WP_1",       "",             -1.,   4.        )
    jbtag_WP_2 = RooRealVar("jbtag_WP_2",       "",             -1.,   4.        )
    fatjetmass_1 = RooRealVar("fatjetmass_1",   "",             -1.,   2500.     )
    fatjetmass_2 = RooRealVar("fatjetmass_2",   "",             -1.,   2500.     )
    jid_1 = RooRealVar(   "jid_1",      "j1 ID",    -1.,   8.)
    jid_2 = RooRealVar(   "jid_2",      "j2 ID",    -1.,   8.)
    jnmuons_1 = RooRealVar(   "jnmuons_1",      "j1 n_{#mu}",    -1.,   8.)
    jnmuons_2 = RooRealVar(   "jnmuons_2",      "j2 n_{#mu}",    -1.,   8.)
    jmuonpt_1 = RooRealVar(   "jmuonpt_1",      "j1 muon pt",    0.,   13000.)
    jmuonpt_2 = RooRealVar(   "jmuonpt_2",      "j2 muon pt",    0.,   13000.)
    nmuons = RooRealVar(    "nmuons",       "n_{#mu}",          -1.,   10.     )
    nelectrons = RooRealVar("nelectrons",    "n_{e}",            -1.,   10.     )
    HLT_AK8PFJet500         = RooRealVar("HLT_AK8PFJet500"         , "",  -1., 1.    )
    HLT_PFJet500            = RooRealVar("HLT_PFJet500"            , "" , -1., 1.    ) 
    HLT_CaloJet500_NoJetID  = RooRealVar("HLT_CaloJet500_NoJetID"  , "" , -1., 1.    ) 
    HLT_PFHT900             = RooRealVar("HLT_PFHT900"            , "" , -1., 1.    ) 
    HLT_AK8PFJet550         = RooRealVar("HLT_AK8PFJet550"         , "",  -1., 1.    )
    HLT_PFJet550            = RooRealVar("HLT_PFJet550"            , "" , -1., 1.    ) 
    HLT_CaloJet550_NoJetID  = RooRealVar("HLT_CaloJet550_NoJetID"  , "" , -1., 1.    ) 
    HLT_PFHT1050            = RooRealVar("HLT_PFHT1050"            , "" , -1., 1.    ) 
    HLT_DoublePFJets100_CaloBTagDeepCSV_p71                 =RooRealVar("HLT_DoublePFJets100_CaloBTagDeepCSV_p71"                , "", -1., 1. ) 
    HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71", "", -1., 1. ) 
    HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71", "", -1., 1. ) 
    HLT_DoublePFJets200_CaloBTagDeepCSV_p71                 =RooRealVar("HLT_DoublePFJets200_CaloBTagDeepCSV_p71"                , "", -1., 1. ) 
    HLT_DoublePFJets350_CaloBTagDeepCSV_p71                 =RooRealVar("HLT_DoublePFJets350_CaloBTagDeepCSV_p71"                , "", -1., 1. ) 
    HLT_DoublePFJets40_CaloBTagDeepCSV_p71                  =RooRealVar("HLT_DoublePFJets40_CaloBTagDeepCSV_p71"                 , "", -1., 1. )

    weight = RooRealVar(        "eventWeightLumi",      "",             -1.e9,  1.e9    )

    # Define the RooArgSet which will include all the variables defined before
    # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add'
    variables = RooArgSet(X_mass)
    variables.add(RooArgSet(j1_pt, jj_deltaEta, jbtag_WP_1, jbtag_WP_2, fatjetmass_1, fatjetmass_2, jnmuons_1, jnmuons_2, weight))
    variables.add(RooArgSet(nmuons, nelectrons, jid_1, jid_2, jmuonpt_1, jmuonpt_2))
    variables.add(RooArgSet(HLT_AK8PFJet500, HLT_PFJet500, HLT_CaloJet500_NoJetID, HLT_PFHT900, HLT_AK8PFJet550, HLT_PFJet550, HLT_CaloJet550_NoJetID, HLT_PFHT1050))
    variables.add(RooArgSet(HLT_DoublePFJets100_CaloBTagDeepCSV_p71, HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71, HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71, HLT_DoublePFJets200_CaloBTagDeepCSV_p71, HLT_DoublePFJets350_CaloBTagDeepCSV_p71, HLT_DoublePFJets40_CaloBTagDeepCSV_p71))
    X_mass.setRange("X_reasonable_range", X_mass.getMin(), X_mass.getMax())
    X_mass.setRange("X_integration_range", X_mass.getMin(), X_mass.getMax())

    if VARBINS:        
        binsXmass = RooBinning(len(abins)-1, abins)
        X_mass.setBinning(binsXmass)
        plot_binning = RooBinning(int((X_mass.getMax()-X_mass.getMin())/100), X_mass.getMin(), X_mass.getMax())
    else:
        X_mass.setBins(int((X_mass.getMax()-X_mass.getMin())/10))
        binsXmass = RooBinning(int((X_mass.getMax()-X_mass.getMin())/100), X_mass.getMin(), X_mass.getMax())
        plot_binning = binsXmass

    X_mass.setBinning(plot_binning, "PLOT")

    #X_mass.setBins(int((X_mass.getMax() - X_mass.getMin())/10))
    #binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin())/100), X_mass.getMin(), X_mass.getMax())
    #X_mass.setBinning(binsXmass, "PLOT")
    massArg = RooArgSet(X_mass)

    # Cuts
    if BTAGGING=='semimedium':
        SRcut = aliasSM[category]
        #SRcut = aliasSM[category+"_vetoAK8"]
    else:
        SRcut = alias[category].format(WP=working_points[BTAGGING])
        #SRcut = alias[category+"_vetoAK8"].format(WP=working_points[BTAGGING])

    if ADDSELECTION: SRcut += SELECTIONS[options.selection]

    print "  Cut:\t", SRcut

    #*******************************************************#
    #                                                       #
    #                    Signal fits                        #
    #                                                       #
    #*******************************************************#

    treeSign = {}
    setSignal = {}

    vmean  = {}
    vsigma = {}
    valpha1 = {}
    vslope1 = {}
    valpha2 = {}
    vslope2 = {}
    smean  = {}
    ssigma = {}
    salpha1 = {}
    sslope1 = {}
    salpha2 = {}
    sslope2 = {}
    sbrwig = {}
    signal = {}
    signalExt = {}
    signalYield = {}
    signalIntegral = {}
    signalNorm = {}
    signalXS = {}
    frSignal = {}
    frSignal1 = {}
    frSignal2 = {}
    frSignal3 = {}

    # Signal shape uncertainties (common amongst all mass points) 
    xmean_jes = RooRealVar("CMS"+YEAR+"_sig_"+category+"_p1_scale_jes", "Variation of the resonance position with the jet energy scale", 0.02, -1., 1.) #0.001
    smean_jes = RooRealVar("CMS"+YEAR+"_sig_"+category+"_p1_jes", "Change of the resonance position with the jet energy scale", 0., -10, 10)

    xsigma_jer = RooRealVar("CMS"+YEAR+"_sig_"+category+"_p2_scale_jer", "Variation of the resonance width with the jet energy resolution", 0.10, -1., 1.)
    ssigma_jer = RooRealVar("CMS"+YEAR+"_sig_"+category+"_p2_jer", "Change of the resonance width with the jet energy resolution", 0., -10, 10)
    
    xmean_jes.setConstant(True)
    smean_jes.setConstant(True)
    
    xsigma_jer.setConstant(True)
    ssigma_jer.setConstant(True)
    
    for m in massPoints:

        signalMass = "%s_M%d" % (stype, m)
        signalName = "ZpBB_{}_{}_M{}".format(YEAR, category, m)
        sampleName = "bstar_M{}".format(m)
 
        signalColor = sample[sampleName]['linecolor'] if signalName in sample else 1

        # define the signal PDF
        vmean[m] = RooRealVar(signalName + "_vmean", "Crystal Ball mean", m, m*0.96, m*1.05)
        smean[m] = RooFormulaVar(signalName + "_mean", "@0*(1+@1*@2)", RooArgList(vmean[m], xmean_jes, smean_jes))

        vsigma[m] = RooRealVar(signalName + "_vsigma", "Crystal Ball sigma", m*0.0233, m*0.019, m*0.025)
        ssigma[m] = RooFormulaVar(signalName + "_sigma", "@0*(1+@1*@2)", RooArgList(vsigma[m], xsigma_jer, ssigma_jer))
 
        valpha1[m] = RooRealVar(signalName + "_valpha1", "Crystal Ball alpha 1", 0.2,  0.05, 0.28) # number of sigmas where the exp is attached to the gaussian core. >0 left, <0 right
        salpha1[m] = RooFormulaVar(signalName + "_alpha1", "@0", RooArgList(valpha1[m]))

        #vslope1[m] = RooRealVar(signalName + "_vslope1", "Crystal Ball slope 1", 10., 0.1, 20.) # slope of the power tail
        vslope1[m] = RooRealVar(signalName + "_vslope1", "Crystal Ball slope 1", 13., 10., 20.) # slope of the power tail
        sslope1[m] = RooFormulaVar(signalName + "_slope1", "@0", RooArgList(vslope1[m]))
        

        valpha2[m] = RooRealVar(signalName + "_valpha2", "Crystal Ball alpha 2", 1.)
        valpha2[m].setConstant(True)
        salpha2[m] = RooFormulaVar(signalName + "_alpha2", "@0", RooArgList(valpha2[m]))

        #vslope2[m] = RooRealVar(signalName + "_vslope2", "Crystal Ball slope 2", 6., 2.5, 15.) # slope of the higher power tail
        ## FIXME test FIXME
        vslope2_estimation = -5.88111436852 + m*0.00728809389442 + m*m*(-1.65059568762e-06) + m*m*m*(1.25128996309e-10)
        vslope2[m] = RooRealVar(signalName + "_vslope2", "Crystal Ball slope 2", vslope2_estimation, vslope2_estimation*0.9, vslope2_estimation*1.1) # slope of the higher power tail
        ## FIXME end FIXME
        sslope2[m] = RooFormulaVar(signalName + "_slope2", "@0", RooArgList(vslope2[m])) # slope of the higher power tail

        signal[m] = RooDoubleCrystalBall(signalName, "m_{%s'} = %d GeV" % ('X', m), X_mass, smean[m], ssigma[m], salpha1[m], sslope1[m], salpha2[m], sslope2[m])

        # extend the PDF with the yield to perform an extended likelihood fit
        signalYield[m] = RooRealVar(signalName+"_yield", "signalYield", 50, 0., 1.e15)
        signalNorm[m] = RooRealVar(signalName+"_norm", "signalNorm", 1., 0., 1.e15)
        signalXS[m] = RooRealVar(signalName+"_xs", "signalXS", 1., 0., 1.e15)
        signalExt[m] = RooExtendPdf(signalName+"_ext", "extended p.d.f", signal[m], signalYield[m])

        # ---------- if there is no simulated signal, skip this mass point ----------
        if m in genPoints:
            if VERBOSE: print " - Mass point", m

            # define the dataset for the signal applying the SR cuts
            treeSign[m] = TChain("tree")

            if YEAR=='run2':
                pd = sample[sampleName]['files']
                if len(pd)>3:
                    print "multiple files given than years for a single masspoint:",pd
                    sys.exit()
                for ss in pd:
                    if not '2016' in ss and not '2017' in ss and not '2018' in ss:
                        print "unknown year given in:", ss
                        sys.exit()
            else:
                pd = [x for x in sample[sampleName]['files'] if YEAR in x]
                if len(pd)>1:
                    print "multiple files given for a single masspoint/year:",pd
                    sys.exit()
            
            for ss in pd:

                if options.unskimmed:
                    j=0
                    while True:
                        if os.path.exists(NTUPLEDIR + ss + "/" + ss + "_flatTuple_{}.root".format(j)):
                            treeSign[m].Add(NTUPLEDIR + ss + "/" + ss + "_flatTuple_{}.root".format(j))
                            j += 1
                        else:
                            print "found {} files for sample:".format(j), ss
                            break
                else:
                    if os.path.exists(NTUPLEDIR + ss + ".root"):
                        treeSign[m].Add(NTUPLEDIR + ss + ".root")
                    else:
                        print "found no file for sample:", ss
            
            if treeSign[m].GetEntries() <= 0.:
                if VERBOSE: print " - 0 events available for mass", m, "skipping mass point..."
                signalNorm[m].setVal(-1)
                vmean[m].setConstant(True)
                vsigma[m].setConstant(True)
                salpha1[m].setConstant(True)
                sslope1[m].setConstant(True)
                salpha2[m].setConstant(True)
                sslope2[m].setConstant(True)
                signalNorm[m].setConstant(True)
                signalXS[m].setConstant(True)
                continue
            
            #setSignal[m] = RooDataSet("setSignal_"+signalName, "setSignal", variables, RooFit.Cut(SRcut), RooFit.WeightVar("eventWeightLumi*BTagAK4Weight_deepJet"), RooFit.Import(treeSign[m]))
            setSignal[m] = RooDataSet("setSignal_"+signalName, "setSignal", variables, RooFit.Cut(SRcut), RooFit.WeightVar(weight), RooFit.Import(treeSign[m]))
            if VERBOSE: print " - Dataset with", setSignal[m].sumEntries(), "events loaded"
           
            # FIT
            entries = setSignal[m].sumEntries()
            if entries < 0. or entries != entries: entries = 0
            signalYield[m].setVal(entries)
            # Instead of eventWeightLumi
            #signalYield[m].setVal(entries * LUMI / (300000 if YEAR=='run2' else 100000) )

            if treeSign[m].GetEntries(SRcut) > 5:
                if VERBOSE: print " - Running fit"
                frSignal[m] = signalExt[m].fitTo(setSignal[m], RooFit.Save(1), RooFit.Extended(True), RooFit.SumW2Error(True), RooFit.PrintLevel(-1))
                if VERBOSE: print "********** Fit result [", m, "] **", category, "*"*40, "\n", frSignal[m].Print(), "\n", "*"*80
                if VERBOSE: frSignal[m].correlationMatrix().Print()
                drawPlot(signalMass+"_"+category, stype+category, X_mass, signal[m], setSignal[m], frSignal[m])
 
            else:
                print "  WARNING: signal", stype, "and mass point", m, "in category", category, "has 0 entries or does not exist"
                        
            # Remove HVT cross sections
            #xs = getCrossSection(stype, channel, m)
            xs = 1.    
            signalXS[m].setVal(xs * 1000.)
            
            signalIntegral[m] = signalExt[m].createIntegral(massArg, RooFit.NormSet(massArg), RooFit.Range("X_integration_range"))
            boundaryFactor = signalIntegral[m].getVal()
            if boundaryFactor < 0. or boundaryFactor != boundaryFactor: boundaryFactor = 0
            if VERBOSE: print " - Fit normalization vs integral:", signalYield[m].getVal(), "/", boundaryFactor, "events"
            signalNorm[m].setVal( boundaryFactor * signalYield[m].getVal() / signalXS[m].getVal()) # here normalize to sigma(X) x Br = 1 [fb]
Пример #14
0
def buildDataAndCategories(ws, options, args):
    #Get the input data
    inputData = TChain(options.treeName, 'The input data')
    for arg in args:
        print 'Adding data from: ', arg
        inputData.Add(arg)

    foldname = ''
    phirange = [0, 90]

    if not options.folded:
        foldname = ''
        phirange = [-180, 180]

    #variables necessary for j/psi mass,lifetime,polarization fit
    jPsiMass = RooRealVar('JpsiMass', 'M [GeV]', 2.7, 3.5)
    jPsiRap = RooRealVar('JpsiRap', '#nu', -2.3, 2.3)
    jPsiPt = RooRealVar("JpsiPt", "pT [GeV]", 0, 40)
    jPsicTau = RooRealVar('Jpsict', 'l_{J/#psi} [mm]', -1, 2.5)
    jPsicTauError = RooRealVar('JpsictErr', 'Error on l_{J/#psi} [mm]', 0, 2)
    jPsiVprob = RooRealVar('JpsiVprob', '', .01, 1)
    jPsiHXcosth = None
    jPsiHXphi = None

    jPsicTau.setBins(10000, "cache")

    if options.fitFrame is not None:
        jPsiHXcosth = RooRealVar('costh_' + options.fitFrame + foldname,
                                 'cos(#theta)_{' + options.fitFrame + '}', -1,
                                 1)
        jPsiHXphi = RooRealVar('phi_' + options.fitFrame + foldname,
                               '#phi_{' + options.fitFrame + '}', phirange[0],
                               phirange[1])
    else:
        jPsiHXcosth = RooRealVar('costh_CS' + foldname, 'cos(#theta)_{CS}', -1,
                                 1)
        jPsiHXphi = RooRealVar('phi_CS' + foldname, '#phi_{CS}', phirange[0],
                               phirange[1])

    #vars needed for on the fly calc of polarization variables
    jPsimuPosPx = RooRealVar('muPosPx', '+ Muon P_{x} [GeV]', 0)
    jPsimuPosPy = RooRealVar('muPosPy', '+ Muon P_{y} [GeV]', 0)
    jPsimuPosPz = RooRealVar('muPosPz', '+ Muon P_{z} [GeV]', 0)
    jPsimuNegPx = RooRealVar('muNegPx', '- Muon P_{x} [GeV]', 0)
    jPsimuNegPy = RooRealVar('muNegPy', '- Muon P_{y} [GeV]', 0)
    jPsimuNegPz = RooRealVar('muNegPz', '- Muon P_{z} [GeV]', 0)

    #create RooArgSet for eventual dataset creation
    dataVars = RooArgSet(jPsiMass, jPsiRap, jPsiPt, jPsicTau, jPsicTauError,
                         jPsimuPosPx, jPsimuPosPy, jPsimuPosPz)

    #add trigger requirement if specified
    if options.triggerName:
        trigger = RooRealVar(options.triggerName, 'Passes Trigger', 0.5, 1.5)
        dataVars.add(trigger)

    dataVars.add(jPsiVprob)
    dataVars.add(jPsimuNegPx)
    dataVars.add(jPsimuNegPy)
    dataVars.add(jPsimuNegPz)
    dataVars.add(jPsiHXcosth)
    dataVars.add(jPsiHXphi)

    redVars = RooArgSet(jPsiMass, jPsiRap, jPsiPt, jPsicTau, jPsicTauError)
    redVars.add(jPsiHXcosth)
    redVars.add(jPsiHXphi)
    fitVars = redVars.Clone()

    ### HERE IS WHERE THE BIT FOR CALCULATING POLARIZATION VARS GOES

    ctauStates = RooCategory('ctauRegion', 'Cut Region in lifetime')
    ctauStates.defineType('prompt', 0)
    ctauStates.defineType('nonPrompt', 1)

    massStates = RooCategory('massRegion', 'Cut Region in mass')
    massStates.defineType('signal', 1)
    massStates.defineType('separation', 0)
    massStates.defineType('leftMassSideBand', -2)
    massStates.defineType('rightMassSideBand', -1)

    states = RooCategory('mlRegion', 'Cut Region in mass')
    states.defineType('nonPromptSignal', 2)
    states.defineType('promptSignal', 1)
    states.defineType('separation', 0)
    states.defineType('leftMassSideBand', -2)
    states.defineType('rightMassSideBand', -1)

    #define corresponding ranges in roorealvars
    #mass is a little tricky since the sidebands change definitions in each rap bin
    #define the names here and change as we do the fits
    #jPsiMass.setRange('NormalizationRangeFormlfit_promptSignal',2.7,3.5)
    #jPsiMass.setRange('NormalizationRangeFormlfit_nonPromptSignal',2.7,3.5)
    #jPsiMass.setRange('NormalizationRangeFormlfit_leftMassSideBand',2.7,3.1)
    #jPsiMass.setRange('NormalizationRangeFormlfit_rightMassSideBand',3.1,3.5)

    #want the prompt fit only done in prompt region
    #non-prompt only in non-prompt region
    #background over entire cTau range
    #jPsicTau.setRange('NormalizationRangeFormlfit_promptSignal',-1,.1)
    #jPsicTau.setRange('NormalizationRangeFormlfit_nonPromptSignal',.1,2.5)
    #jPsicTau.setRange('NormalizationRangeFormlfit_leftMassSideBand',-1,2.5)
    #jPsicTau.setRange('NormalizationRangeFormlfit_rightMassSideBand',-1,2.5)

    #redVars.add(ctauStates)
    #redVars.add(massStates)
    #redVars.add(states)
    fitVars.add(ctauStates)
    fitVars.add(massStates)
    fitVars.add(states)

    fullData = RooDataSet('fullData',
                          'The Full Data From the Input ROOT Trees', dataVars,
                          ROOT.RooFit.Import(inputData))

    for rap_bin in range(1, len(jpsi.pTRange)):
        yMin = jpsi.rapForPTRange[rap_bin - 1][0]
        yMax = jpsi.rapForPTRange[rap_bin - 1][-1]
        for pt_bin in range(len(jpsi.pTRange[rap_bin])):

            ptMin = jpsi.pTRange[rap_bin][pt_bin][0]
            ptMax = jpsi.pTRange[rap_bin][pt_bin][-1]

            sigMaxMass = jpsi.polMassJpsi[
                rap_bin] + jpsi.nSigMass * jpsi.sigmaMassJpsi[rap_bin]
            sigMinMass = jpsi.polMassJpsi[
                rap_bin] - jpsi.nSigMass * jpsi.sigmaMassJpsi[rap_bin]

            sbHighMass = jpsi.polMassJpsi[
                rap_bin] + jpsi.nSigBkgHigh * jpsi.sigmaMassJpsi[rap_bin]
            sbLowMass = jpsi.polMassJpsi[
                rap_bin] - jpsi.nSigBkgLow * jpsi.sigmaMassJpsi[rap_bin]

            ctauNonPrompt = .1

            massFun = RooFormulaVar(
                'massRegion', 'Function that returns the mass state.',
                '(' + jPsiMass.GetName() + ' < ' + str(sigMaxMass) + ' && ' +
                jPsiMass.GetName() + ' > ' + str(sigMinMass) + ') - (' +
                jPsiMass.GetName() + ' > ' + str(sbHighMass) + ')' + '-2*(' +
                jPsiMass.GetName() + ' < ' + str(sbLowMass) + ')',
                RooArgList(jPsiMass, jPsicTau))

            ctauFun = RooFormulaVar(
                'ctauRegion', 'Function that returns the ctau state.',
                '(' + jPsicTau.GetName() + ' > ' + str(ctauNonPrompt) + ')',
                RooArgList(jPsiMass, jPsicTau))

            mlFun = RooFormulaVar(
                'mlRegion',
                'Function that returns the mass and lifetime state.',
                '(' + jPsiMass.GetName() + ' < ' + str(sigMaxMass) + ' && ' +
                jPsiMass.GetName() + ' > ' + str(sigMinMass) + ') + (' +
                jPsiMass.GetName() + ' < ' + str(sigMaxMass) + ' && ' +
                jPsiMass.GetName() + ' > ' + str(sigMinMass) + ' && ' +
                jPsicTau.GetName() + ' > ' + str(ctauNonPrompt) + ') - (' +
                jPsiMass.GetName() + ' > ' + str(sbHighMass) + ')' + '-2*(' +
                jPsiMass.GetName() + ' < ' + str(sbLowMass) + ')',
                RooArgList(jPsiMass, jPsicTau))

            cutStringPt = '(' + jPsiPt.GetName() + ' > ' + str(
                ptMin) + ' && ' + jPsiPt.GetName() + ' < ' + str(ptMax) + ')'
            cutStringY = '( abs(' + jPsiRap.GetName() + ') > ' + str(
                yMin) + ' && abs(' + jPsiRap.GetName() + ') < ' + str(
                    yMax) + ')'
            #cutStringM1 = '('+jPsiMass.GetName()+' < '+str(sigMinMass)+' && '+jPsiMass.GetName()+' > '+str(sbLowMass)+')'
            #cutStringM2 = '('+jPsiMass.GetName()+' < '+str(sbHighMass)+' && '+jPsiMass.GetName()+' > '+str(sigMaxMass)+')'
            #cutStringMT = '!('+cutStringM1+' || '+cutStringM2+')'
            cutString = cutStringPt + ' && ' + cutStringY  #+' && '+cutStringMT

            print cutString

            #get the reduced dataset we'll do the fit on
            binData = fullData.reduce(
                ROOT.RooFit.SelectVars(redVars), ROOT.RooFit.Cut(cutString),
                ROOT.RooFit.Name('data_rap' + str(rap_bin) + '_pt' +
                                 str(pt_bin + 1)),
                ROOT.RooFit.Title('Data For Fitting'))

            binDataWithCategory = RooDataSet(
                'data_rap' + str(rap_bin) + '_pt' + str(pt_bin + 1),
                'Data For Fitting', fitVars)
            #categorize
            binData.addColumn(ctauStates)
            binData.addColumn(massStates)
            binData.addColumn(states)
            for ev in range(binData.numEntries()):
                args = binData.get(ev)

                jPsiMass.setVal(args.find(jPsiMass.GetName()).getVal())
                jPsiRap.setVal(args.find(jPsiRap.GetName()).getVal())
                jPsiPt.setVal(args.find(jPsiPt.GetName()).getVal())
                jPsicTau.setVal(args.find(jPsicTau.GetName()).getVal())
                jPsicTauError.setVal(
                    args.find(jPsicTauError.GetName()).getVal())

                jPsiHXcosth.setVal(args.find(jPsiHXcosth.GetName()).getVal())
                jPsiHXphi.setVal(args.find(jPsiHXphi.GetName()).getVal())

                massStates.setIndex(int(massFun.getVal()))
                ctauStates.setIndex(int(ctauFun.getVal()))
                states.setIndex(int(mlFun.getVal()))

                binDataWithCategory.add(fitVars)

            getattr(ws, 'import')(binDataWithCategory)
x = RooRealVar("Qvalue","Qvalue",10.35,10.8)
x.setBins(90)

sigma_1S = RooRealVar("sigma_1S","#sigma(3P1)1S", 0.014)
sigma_2S = RooRealVar("sigma_2S","#sigma(3P1)2S", 0.010)


alpha_1S  = RooRealVar("alpha_1S","#alpha(3P)1S", 0.6)
alpha_2S  = RooRealVar("alpha_2S","#alpha(3P)2S", 0.6)

n_1S    = RooRealVar("n_1S","n(3P1)1S", 2.5)
n_2S    = RooRealVar("n_2S","n(3P1)2S", 2.5)


rawmass = RooRealVar('rm','rm',10.5,10.4,10.6)
mass3P_1S2 =RooFormulaVar("m1","(@0+@1)",RooArgList(rawmass,deltaM_v3s)) 
mass3P_2S2 =RooFormulaVar("m2","(@0+@1)",RooArgList(rawmass,deltaM_v3s))

mass3P_3S2 =RooFormulaVar("m3","(@0+@1)",RooArgList(rawmass,deltaM_v3s)) 

signal1S_1 = RooCBShape('signal1S1','s1S1',x,rawmass,sigma_1S,alpha_1S,n_1S)
signal1S_2 = RooCBShape('signal1S2','s1S2',x,mass3P_1S2,sigma_1S,alpha_1S,n_1S)



signal2S_1 = RooCBShape('signal2S1','s2S1',x,rawmass,sigma_2S,alpha_2S,n_2S)
signal2S_2 = RooCBShape('signal2S2','s2S1',x,mass3P_2S2,sigma_2S,alpha_2S,n_2S)


#3S parameters
 
Пример #16
0
def fitChicSpectrum(dataset, binname):
    """ Fit chic spectrum"""

    x = RooRealVar('s', 's', -2, 2)

    x.setBins(200)

    #signal model

    q_chi1 = RooRealVar('qchi1', 'q_{#chi 1}', 0.414, 0.2, 0.6)
    q_chi2 = RooRealVar('qchi2', 'q_{#chi 2}', 0.430, 0.2, 0.6)

    delta_chi10 = RooRealVar('delta_chi10', 'delta_chi10', 0.09591)
    q_chi0 = RooFormulaVar('q_chi0', '@0 - @1',
                           RooArgList(q_chi1, delta_chi10))

    alphacb_chi1 = RooRealVar('alphacb_chi1', '#alpha^{CB}_{#chi 1}', 0.6, 0,
                              2)
    alphacb_chi2 = RooRealVar('alphacb_chi2', '#alpha^{CB}_{#chi 2}', 0.4, 0,
                              2)
    sigmacb_chi1 = RooRealVar('sigmacb_chi1', '#sigma^{CB}_{#chi 1}', 0.005, 0,
                              1)
    sigmacb_chi2 = RooRealVar('sigmacb_chi2', '#sigma^{CB}_{#chi 2}', 0.005, 0,
                              1)
    n_cb = RooRealVar('ncb', 'n^{CB}', 3.0, 0., 5.)

    gamma_chi0 = RooRealVar('gamma_chi0', 'gamma_chi0', 0.0104)
    sigmacb_chi0 = RooRealVar('sigmacb_chi0', '#sigma^{CB}_{#chi 0}', 0.005)

    chi0_sig = RooVoigtian('chi0sig', 'chi0sig,', x, q_chi0, sigmacb_chi0,
                           gamma_chi0)
    chi1_sig = RooCBShape('chi1sig', 'chi1sig', x, q_chi1, sigmacb_chi1,
                          alphacb_chi1, n_cb)
    chi2_sig = RooCBShape('chi2sig', 'chi2sig', x, q_chi2, sigmacb_chi2,
                          alphacb_chi2, n_cb)

    fchi0 = RooRealVar('fchi0', 'f_{#chi 0}', 0.01, 0, 1)
    fchi1 = RooRealVar('fchi1', 'f_{#chi 1}', 0.5, 0, 1)
    fchi2 = RooFormulaVar('fchi2', '1-@0-@1', RooArgList(fchi0, fchi1))
    fbck = RooRealVar('fbck', 'f_{bck}', 0.2, 0, 1)

    sigmodel = RooAddPdf('sigm', 'sigm',
                         RooArgList(chi0_sig, chi1_sig, chi2_sig),
                         RooArgList(fchi0, fchi1, fchi2))

    #background model

    q0Start = 0.0
    a_bck = RooRealVar('a_bck', 'a_{bck}', 0.5, -5, 5)
    b_bck = RooRealVar('b_bck', 'b_{bck}', -2.5, -7., 0.)
    q0 = RooRealVar('q0', 'q0', q0Start)
    delta = RooFormulaVar('delta', 'TMath::Abs(@0-@1)', RooArgList(x, q0))
    bfun = RooFormulaVar('bfun', '@0*(@1-@2)', RooArgList(b_bck, x, q0))
    signum = RooFormulaVar('signum', '( TMath::Sign( -1.,@0-@1 )+1 )/2.',
                           RooArgList(x, q0))

    background = RooGenericPdf('background', 'Background',
                               'signum*pow(delta,a_bck)*exp(bfun)',
                               RooArgList(signum, delta, a_bck, bfun))

    modelPdf = RooAddPdf('chicmodel', 'chicmodel',
                         RooArgList(sigmodel, background), RooArgList(fbck))

    frame = x.frame(RooFit.Title('Q'))
    range = x.setRange('range', 0, 2)
    #    result = modelPdf.fitTo(dataset,RooFit.Save(),RooFit.Range('range'))
    dataset.plotOn(frame, RooFit.MarkerSize(0.7))

    modelPdf.plotOn(frame, RooFit.LineWidth(2))

    #plotting
    canvas = TCanvas('fit', "", 1400, 700)
    canvas.Divide(1)
    canvas.cd(1)
    gPad.SetRightMargin(0.3)
    gPad.SetFillColor(10)
    modelPdf.paramOn(frame, RooFit.Layout(0.725, 0.9875, 0.9))
    frame.Draw()
    canvas.SaveAs('out-' + binname + '.png')
    canvas.SaveAs('out-' + binname + '.root')
Пример #17
0
def mbc_dline_che(evtfile,
                  mc,
                  setMres,
                  setGamma,
                  setR,
                  sp1,
                  sp2,
                  sp3,
                  fa,
                  fb,
                  setmd,
                  setp,
                  setxi,
                  setN1,
                  setN2,
                  setNbkgd1,
                  setNbkgd2,
                  title1,
                  title2,
                  epsfile,
                  txtfile,
                  ymin=0.5,
                  cuts=None,
                  err_type='SYMM',
                  test=False):

    from ROOT import (gROOT, RooRealVar, RooCategory, RooArgSet, RooDataSet,
                      RooFit, RooGaussian, RooArgList, RooAddPdf,
                      RooSimultaneous, RooArgusBG, RooFormulaVar, RooChebychev,
                      RooAbsData, RooDataHist, TCanvas, kRed, kBlue, kGreen,
                      kMagenta, TPaveText, RooDLineShape)
    set_root_style(stat=1, grid=0)

    mbc = RooRealVar('mbc', 'Beam constrained mass', 1.83, 1.89, 'GeV')
    ebeam = RooRealVar('ebeam', 'Ebeam', 1.8815, 1.892, 'GeV')

    dflav = RooCategory('dflav', 'D0 flavor')
    dflav.defineType('dflav', 1)
    dflav.defineType('dbarflav', -1)

    if cuts != None:
        if 'kkmass' in cuts:
            kkmass = RooRealVar('kkmass', 'KK invariant mass', 0.97, 1.90,
                                'GeV')
            ras = RooArgSet(mbc, ebeam, kkmass, dflav)
            dataset = RooDataSet.read(evtfile, ras)
        else:
            raise NameError(cuts)

        sys.stdout.write('Using cuts: %s...' % cuts)
        dataset = dataset.reduce(cuts)
        sys.stdout.write(' selected %s events.\n' % dataset.numEntries())
    else:
        ras = RooArgSet(mbc, ebeam, dflav)
        dataset = RooDataSet.read(evtfile, ras)

    res = RooRealVar("datares", "datares", mc)
    mres = RooRealVar("mres", "mres", setMres)
    gamma = RooRealVar('gamma', 'gamma', setGamma)

    r = RooRealVar('r', 'r', setR)
    sigmaE = RooRealVar("sigmaE", "sigmaE", 0.0021)

    sigmap1 = RooRealVar("sigmap1", "sigmap1", sp1, 0.002, 0.040)

    scalep2 = RooRealVar("scalep2", "scalep2", 2.00, 1.500, 5.500)
    scalep3 = RooRealVar("scalep3", "scalep3", 5.00, 3.00, 10.000)

    scalep2.setVal(sp2)
    scalep2.setConstant(1)
    scalep3.setVal(sp3)
    scalep3.setConstant(1)

    as12 = RooArgList(sigmap1, scalep2)
    sigmap2 = RooFormulaVar("sigmap2", "sigma2", "sigmap1*scalep2", as12)

    as123 = RooArgList(sigmap1, scalep2, scalep3)
    sigmap3 = RooFormulaVar("sigmap3", "sigma3", "sigmap1*scalep2*scalep3",
                            as123)

    md = RooRealVar("md", "md", setmd, 1.863, 1.875)

    f2 = RooRealVar("f2", "f2", fa)
    f3 = RooRealVar("f3", "f3", fb)
    al23 = RooArgList(f2, f3)
    f1 = RooFormulaVar("f1", "f1", "1.0-f2-f3", al23)

    # Construct signal shape

    fcn1_1 = RooDLineShape("DLineshape1_1", "DLineShape1_1", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap1, md, res)
    fcn1_2 = RooDLineShape("DLineshape1_2", "DLineShape1_2", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap2, md, res)
    fcn1_3 = RooDLineShape("DLineshape1_3", "DLineShape1_3", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap3, md, res)

    fcn2_1 = RooDLineShape("DLineshape2_1", "DLineShape2_1", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap1, md, res)
    fcn2_2 = RooDLineShape("DLineshape2_2", "DLineShape2_2", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap2, md, res)
    fcn2_3 = RooDLineShape("DLineshape2_3", "DLineShape2_3", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap3, md, res)

    alf1_123 = RooArgList(fcn1_1, fcn1_2, fcn1_3)
    af12 = RooArgList(f1, f2)
    sigpdf = RooAddPdf("signal1_3", "signal1_3", alf1_123, af12)

    alf2_123 = RooArgList(fcn2_1, fcn2_2, fcn2_3)

    sigbarpdf = RooAddPdf("signal2_3", "signal2_3", alf2_123, af12)

    con0 = RooRealVar('c0', 'constant', -1, 1)
    con1 = RooRealVar('c1', 'linear', -10, 10)
    con2 = RooRealVar('c2', 'quadratic', 1)

    bkgpdf = RooChebychev('bkgpdf', 'Background', mbc, RooArgList(con1, con2))

    bkgbarpdf = RooChebychev('bkgbarpdf', 'Background', mbc,
                             RooArgList(con1, con2))

    yld = RooRealVar('yld', 'D yield', 100, 0, 2000)
    bkg = RooRealVar('bkg', 'Background', 100, 0, 1000)

    sumpdf = RooAddPdf('sumpdf', 'Sum pdf', RooArgList(sigpdf, bkgpdf),
                       RooArgList(yld, bkg))
    yldbar = RooRealVar('yldbar', 'Dbar yield', 100, 0, 2000)
    bkgbar = RooRealVar('bkgbar', 'Background', 100, 0, 1000)

    sumpdfbar = RooAddPdf('sumpdfbar', 'Sum pdf',
                          RooArgList(sigbarpdf, bkgbarpdf),
                          RooArgList(yldbar, bkgbar))

    totalpdf = RooSimultaneous('rs', 'Simultaneous PDF', dflav)
    totalpdf.addPdf(sumpdf, 'dflav')
    totalpdf.addPdf(sumpdfbar, 'dbarflav')

    MINUIT = 'ermh4'

    if err_type == 'ASYM':
        MINUIT = 'erh4'

    if test:
        sys.stdout.write('Will save epsfile as: %s \n' % epsfile)
        sys.stdout.write('Will save txtfile as: %s \n' % txtfile)
        return

    if dataset.numEntries() == 0:
        yld.setVal(0)
        yldbar.setVal(0)
    else:
        # Start Fitting
        fitres = totalpdf.fitTo(dataset, MINUIT)
        fitres.Print('v')

    # Save plots
    canvas = TCanvas('canvas', 'mbc', 400, 400)
    xframe = mbc.frame(50)
    ProjWData = RooFit.ProjWData(dataset)
    RooAbsData.plotOn(dataset, xframe)
    totalpdf.plotOn(xframe, ProjWData)
    totalpdf.paramOn(xframe)
    xframe.Draw()
    canvas.Print(epsfile)

    # Save fitting parameters
    pars = [bkg, bkgbar, con1, md, sigmap1, yld, yldbar]
    save_fit_result(pars, txtfile, err_type=err_type, verbose=1)
Пример #18
0
def mbc_single_3s(evtfile,
                  mc,
                  setMres,
                  setGamma,
                  setR,
                  sp1,
                  sp2,
                  sp3,
                  fa,
                  fb,
                  setmd,
                  setp,
                  setxi,
                  setN1,
                  setN2,
                  setNbkgd1,
                  setNbkgd2,
                  title1,
                  title2,
                  epsfile,
                  txtfile,
                  ymin=0.5,
                  cuts=None,
                  err_type='SYMM',
                  test=False):

    from ROOT import (gROOT, RooRealVar, RooCategory, RooArgSet, RooDataSet,
                      RooFit, RooGaussian, RooArgList, RooAddPdf,
                      RooSimultaneous, RooArgusBG, RooFormulaVar,
                      RooDLineShape, RooAbsData, RooDataHist, TCanvas, kRed,
                      kBlue, kGreen, kMagenta, TPaveText)
    set_root_style(stat=1, grid=0)

    # // sp1 = sigma of signal
    # // sp2 = ratio of sigmas betwwen sigma2 sigma 1
    # // sp3 = ratio of sigmas betwwen sigma3 sigma 2
    # // fa, fb, - fractions
    # // xi_side - slope of argus
    # // p_side - power of argus

    # mc = 1  Monte Carlo Model: EvtGenModels/Class/EvtVPHOtoVISR.cc
    # mc = 3  Data Model: with BES 2007 paper (BES2006 lineshape hepex/0612056)

    mbc = RooRealVar('mbc', 'Beam constrained mass', 1.83, 1.89, 'GeV')
    ebeam = RooRealVar('ebeam', 'Ebeam', 1.8815, 1.892, 'GeV')

    dflav = RooCategory('dflav', 'D flavor')
    dflav.defineType('dflav', 1)
    dflav.defineType('dbarflav', -1)

    if cuts != None:
        if 'kkmass' in cuts:
            kkmass = RooRealVar('kkmass', 'KK invariant mass', 0.97, 1.90,
                                'GeV')
            ras = RooArgSet(mbc, ebeam, kkmass, dflav)
            dataset = RooDataSet.read(evtfile, ras)
        elif 'kpimass' in cuts:
            kpimass = RooRealVar('kpimass', 'Kpi invariant mass', 0.6, 1.4,
                                 'GeV')
            ras = RooArgSet(mbc, ebeam, kpimass, dflav)
            dataset = RooDataSet.read(evtfile, ras)
        else:
            raise NameError(cuts)

        sys.stdout.write('Using cuts: %s...' % cuts)
        dataset = dataset.reduce(cuts)
        sys.stdout.write(' selected %s events.\n' % dataset.numEntries())
    else:
        ras = RooArgSet(mbc, ebeam, dflav)
        dataset = RooDataSet.read(evtfile, ras)

    res = RooRealVar("datares", "datares", mc)
    mres = RooRealVar("mres", "mres", setMres)
    gamma = RooRealVar('gamma', 'gamma', setGamma)

    r = RooRealVar('r', 'r', setR)
    sigmaE = RooRealVar("sigmaE", "sigmaE", 0.0021)

    sigmap1 = RooRealVar("sigmap1", "sigmap1", sp1, 0.002, 0.040)

    scalep2 = RooRealVar("scalep2", "scalep2", 2.00, 1.500, 5.500)
    scalep3 = RooRealVar("scalep3", "scalep3", 5.00, 3.00, 10.000)

    scalep2.setVal(sp2)
    scalep2.setConstant(1)
    scalep3.setVal(sp3)
    scalep3.setConstant(1)

    as12 = RooArgList(sigmap1, scalep2)
    sigmap2 = RooFormulaVar("sigmap2", "sigma2", "sigmap1*scalep2", as12)

    as123 = RooArgList(sigmap1, scalep2, scalep3)
    sigmap3 = RooFormulaVar("sigmap3", "sigma3", "sigmap1*scalep2*scalep3",
                            as123)

    md = RooRealVar("md", "md", setmd, 1.863, 1.875)

    f2 = RooRealVar("f2", "f2", fa)
    f3 = RooRealVar("f3", "f3", fb)
    al23 = RooArgList(f2, f3)
    f1 = RooFormulaVar("f1", "f1", "1.0-f2-f3", al23)

    # Construct signal shape

    fcn1_1 = RooDLineShape("DLineshape1_1", "DLineShape1_1", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap1, md, res)
    fcn1_2 = RooDLineShape("DLineshape1_2", "DLineShape1_2", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap2, md, res)
    fcn1_3 = RooDLineShape("DLineshape1_3", "DLineShape1_3", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap3, md, res)

    fcn2_1 = RooDLineShape("DLineshape2_1", "DLineShape2_1", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap1, md, res)
    fcn2_2 = RooDLineShape("DLineshape2_2", "DLineShape2_2", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap2, md, res)
    fcn2_3 = RooDLineShape("DLineshape2_3", "DLineShape2_3", 4, mbc, ebeam,
                           mres, gamma, r, sigmaE, sigmap3, md, res)

    alf1_123 = RooArgList(fcn1_1, fcn1_2, fcn1_3)
    af12 = RooArgList(f1, f2)
    signal1_3 = RooAddPdf("signal1_3", "signal1_3", alf1_123, af12)

    alf2_123 = RooArgList(fcn2_1, fcn2_2, fcn2_3)

    signal2_3 = RooAddPdf("signal2_3", "signal2_3", alf2_123, af12)

    p = RooRealVar("p", "p", setp, 0.1, 1.5)
    xi = RooRealVar("xi", "xi", setxi, -100.0, -0.1)

    Bkgd1 = RooArgusBG("argus1", "argus1", mbc, ebeam, xi, p)
    Bkgd2 = RooArgusBG("argus2", "argus2", mbc, ebeam, xi, p)

    shapes1 = RooArgList(signal1_3)
    shapes1.add(signal1_3)
    shapes1.add(Bkgd1)

    shapes2 = RooArgList(signal2_3)
    shapes2.add(signal2_3)
    shapes2.add(Bkgd2)

    N1 = RooRealVar("N1", "N1", setN1, 0.0, 200000000.0)
    N2 = RooRealVar("N2", "N2", setN2, 0.0, 200000000.0)

    Nbkgd1 = RooRealVar("Nbkgd1", "Nbkgd1", setNbkgd1, 0.0, 200000000.0)
    Nbkgd2 = RooRealVar("Nbkgd2", "Nbkgd2", setNbkgd2, 0.0, 200000000.0)

    yields1 = RooArgList(N1)
    yields1.add(N1)
    yields1.add(Nbkgd1)

    yields2 = RooArgList(N2)
    yields2.add(N2)
    yields2.add(Nbkgd2)

    totalPdf1 = RooAddPdf("totalPdf1", "totalPdf1", shapes1, yields1)
    totalPdf2 = RooAddPdf("totalPdf2", "totalPdf2", shapes2, yields2)

    totalPdf = RooSimultaneous("totalPdf", "totalPdf", dflav)
    totalPdf.addPdf(totalPdf1, "dflav")
    totalPdf.addPdf(totalPdf2, "dbarflav")

    # Check fitTo options at:
    # http://root.cern.ch/root/html512/RooAbsPdf.html#RooAbsPdf:fitTo
    #
    # Available fit options:
    #  "m" = MIGRAD only, i.e. no MINOS
    #  "s" = estimate step size with HESSE before starting MIGRAD
    #  "h" = run HESSE after MIGRAD
    #  "e" = Perform extended MLL fit
    #  "0" = Run MIGRAD with strategy MINUIT 0
    #  (no correlation matrix calculation at end)
    #   Does not apply to HESSE or MINOS, if run afterwards.

    #  "q" = Switch off verbose mode
    #  "l" = Save log file with parameter values at each MINUIT step
    #  "v" = Show changed parameters at each MINUIT step
    #  "t" = Time fit
    #  "r" = Save fit output in RooFitResult object
    # Available optimizer options
    #  "c" = Cache and precalculate components of PDF that exclusively
    #  depend on constant parameters
    #  "2" = Do NLL calculation in multi-processor mode on 2 processors
    #  "3" = Do NLL calculation in multi-processor mode on 3 processors
    #  "4" = Do NLL calculation in multi-processor mode on 4 processors

    MINUIT = 'ermh4'

    if err_type == 'ASYM':
        MINUIT = 'erh4'

    if test:
        sys.stdout.write('Will save epsfile as: %s \n' % epsfile)
        sys.stdout.write('Will save txtfile as: %s \n' % txtfile)
        return

    if dataset.numEntries() == 0:
        N1.setVal(0)
        N2.setVal(0)
    else:
        # Start Fitting
        fitres = totalPdf.fitTo(dataset, MINUIT)
        fitres.Print('v')

    # Save plots
    canvas = TCanvas('canvas', 'mbc', 1200, 400)
    canvas.Divide(3, 1)

    canvas_1 = canvas.GetListOfPrimitives().FindObject('canvas_1')
    canvas_2 = canvas.GetListOfPrimitives().FindObject('canvas_2')
    canvas_1.SetLogy(1)
    canvas_2.SetLogy(1)

    LineColorRed = RooFit.LineColor(kRed)
    LineColorBlue = RooFit.LineColor(kBlue)
    LineWidth = RooFit.LineWidth(1)  #0.6)

    # Plot the D
    canvas.cd(1)
    mbcFrame = mbc.frame()
    mbcFrame = mbc.frame(60)

    dflav.setLabel('dflav')
    ebas = RooArgSet(ebeam, dflav)
    ebeamdata = RooDataHist("ebeamdata", "ebeamdata", ebas, dataset)

    dataset.plotOn(mbcFrame, RooFit.Cut("dflav==dflav::dflav"))
    mbcFrame.getAttMarker().SetMarkerSize(0.6)
    mbcFrame.Draw()

    Slice = RooFit.Slice(dflav)
    ProjWData = RooFit.ProjWData(ebas, ebeamdata)

    totalPdf.plotOn(mbcFrame, LineColorRed, LineWidth, Slice, ProjWData)
    chisq1 = mbcFrame.chiSquare() * mbcFrame.GetNbinsX()
    mbcFrame.Draw()

    as_bkg1 = RooArgSet(Bkgd1)
    cp_bkg1 = RooFit.Components(as_bkg1)

    totalPdf.plotOn(mbcFrame, cp_bkg1, Slice, LineColorBlue, LineWidth,
                    ProjWData)

    mbcFrame.SetTitle(title1)
    mbcFrame.SetMinimum(ymin)

    mbcFrame.Draw()

    # Plot the D bar
    canvas.cd(2)
    mbcFrame = mbc.frame()
    mbcFrame = mbc.frame(60)

    dflav.setLabel('dbarflav')
    ebas = RooArgSet(ebeam, dflav)
    ebeamdata = RooDataHist("ebeamdata", "ebeamdata", ebas, dataset)

    dataset.plotOn(mbcFrame, RooFit.Cut("dflav==dflav::dbarflav"))
    mbcFrame.getAttMarker().SetMarkerSize(0.6)
    mbcFrame.Draw()

    Slice = RooFit.Slice(dflav)
    ProjWData = RooFit.ProjWData(ebas, ebeamdata)

    totalPdf.plotOn(mbcFrame, LineColorRed, LineWidth, Slice, ProjWData)
    chisq2 = mbcFrame.chiSquare() * mbcFrame.GetNbinsX()
    mbcFrame.Draw()

    as_bkg2 = RooArgSet(Bkgd2)
    cp_bkg2 = RooFit.Components(as_bkg2)

    totalPdf.plotOn(mbcFrame, cp_bkg2, Slice, LineColorBlue, LineWidth,
                    ProjWData)

    mbcFrame.SetTitle(title2)
    mbcFrame.SetMinimum(ymin)

    mbcFrame.Draw()

    # Plot Statistics Box
    canvas.cd(3)
    mbcFrame = mbc.frame()

    paramWin1 = totalPdf.paramOn(mbcFrame, dataset, "", 2, "NELU", 0.1, 0.9,
                                 0.9)

    mbcFrame.GetXaxis().SetLabelSize(0)
    mbcFrame.GetXaxis().SetTickLength(0)
    mbcFrame.GetXaxis().SetLabelSize(0)
    mbcFrame.GetXaxis().SetTitle("")
    mbcFrame.GetXaxis().CenterTitle()

    mbcFrame.GetYaxis().SetLabelSize(0)
    mbcFrame.GetYaxis().SetTitleSize(0.03)
    mbcFrame.GetYaxis().SetTickLength(0)

    paramWin1.getAttText().SetTextSize(0.06)

    mbcFrame.Draw()
    mbcFrame.SetTitle("Fit Parameters")
    ATextBox = TPaveText(.1, .1, .8, .2, "BRNDC")

    tempString = "#chi^{2}_{1} = %.1f, #chi^{2}_{2} = %.1f" % (chisq1, chisq2)
    ATextBox.AddText(tempString)
    ATextBox.SetFillColor(0)
    ATextBox.SetBorderSize(1)

    mbcFrame.addObject(ATextBox)
    mbcFrame.Draw()
    canvas.Print(epsfile)
    rootfile = epsfile.replace('.eps', '.root')
    canvas.Print(rootfile)

    # Save fitting parameters
    pars = [N1, N2, Nbkgd1, Nbkgd2, md, p, sigmap1, xi]
    save_fit_result(pars, txtfile, err_type=err_type, verbose=1)
Пример #19
0
def PlotTotalNumberOfEvents( inputDirForLimit  , signalDir = "./signals/14August1percentSystLimit/"):
    thqEff_File = TFile.Open( signalDir + "/out_ctcv_thq_syst.root" )
    thqEff_Canvas = thqEff_File.Get("thq/Canvas_Efficiency_thq").GetListOfPrimitives().At(0)
    thqEff_Canvas.Print()
    thqEff_H2 = thqEff_Canvas.GetListOfPrimitives().At(1)
    #thqEff_H2.Print("ALL")
    thqEff = CtCvCpInfo("thqEff")
    thqEff.FillFrom2DHisto( thqEff_H2 )
    thqEff_File.Close()
    thqEff.GetCtOverCv()
    thqEff_Func = thqEff.CtOverCvDataHistFunc
    thqFinalYield_List = RooArgList( thqEff_Func , kappa.tHqXSecValue , kappa.BRGammaGammaValue , kappa.LUMI  )
    thqFinalYield = RooFormulaVar(  "thq_norm" , "thq Norm formula" ,  "1000.*@0*@1*@2*@3/100." , thqFinalYield_List )
    
    thwEff_File = TFile.Open( signalDir + "/out_ctcv_thw_syst.root" )
    thwEff_Canvas = thwEff_File.Get("thw/Canvas_Efficiency_thw").GetListOfPrimitives().At(0)
    thwEff_Canvas.Print()
    thwEff_H2 = thwEff_Canvas.GetListOfPrimitives().At(1)
    #thwEff_H2.Print("ALL")
    thwEff = CtCvCpInfo("thwEff")
    thwEff.FillFrom2DHisto( thwEff_H2 )
    thwEff_File.Close()
    thwEff.GetCtOverCv()
    thwEff_Func = thwEff.CtOverCvDataHistFunc
    thwFinalYield_List = RooArgList( thwEff_Func , kappa.tHWXSecValue , kappa.BRGammaGammaValue , kappa.LUMI  )
    thwFinalYield = RooFormulaVar(  "thw_norm" , "thw Norm formula" ,  "1000.*@0*@1*@2*@3/100." , thwFinalYield_List )

    tthAT_SM = 1.69902
    vhAT_SM = 0.0640522
    gghOverTTH = 0.0127844
    tthAT_SM *= (1+gghOverTTH)

    otherHiggsYields = RooFormulaVar("otherHiggsYields" , "otherHiggsYields" , "@0*(%.5f*@1*@1 + %.5f*@2*@2)" % (tthAT_SM , vhAT_SM) , RooArgList( kappa.BRGammaGamma , kappa.CT, kappa.CV) )

    totalYield = RooFormulaVar("TotalYield" , "Total Yield" , "@0+@1+@2" , RooArgList( otherHiggsYields , thwFinalYield , thqFinalYield ) )

    INPUT_FILE = inputDirForLimit+"/ctcv%g/input.root"
    YieldsInDataCards = CtCvCpInfo("YieldsInDataCards")

    for ctcv in sorted(YieldsInDataCards.AllCtOverCVs):
        ct = ctcv
        input_file = TFile.Open( INPUT_FILE%( ctcv) )
        nevents = 0
        if input_file :
            wsPreselection = input_file.Get("WSTHQLeptonicTag")

            factor = (1+gghOverTTH)
            additive = vhAT_SM
            additive *= kappa.GetXSecBR( "vh" , ct , 1. )

            factor = 1.0
            additive = 0.0
            
            nevents = ( wsPreselection.var("RVthq_mh125_norm").getVal() + factor*wsPreselection.var("RVtth_mh125_norm").getVal() + wsPreselection.var("RVthw_mh125_norm").getVal() + additive )
            input_file.Close()
        YieldsInDataCards.SetValueByCtOverCv( ctcv , nevents )
    YieldsInDataCards.GetCtOverCv()
    YieldsInDataCards_HistFunc = YieldsInDataCards.CtOverCvDataHistFunc
    
    frame = kappa.CtOverCv.frame()
    frame.SetAxisRange( -6 , 6 , "X" )
    kappa.CV.setVal( 1. )
    totalYield.plotOn( frame , RooFit.LineColor(kRed) ).getCurve().SetTitle("CV=1")
    #kappa.CV.setVal( 2. )
    #totalYield.plotOn( frame , RooFit.LineColor(kAzure) ).getCurve().SetTitle("CV=2")
    #kappa.CV.setVal( 0.5 )
    #totalYield.plotOn( frame , RooFit.LineColor(kOrange) ).getCurve().SetTitle("CV=0.5")
    YieldsInDataCards_HistFunc.plotOn( frame , RooFit.LineColor(kBlue) ).getCurve().SetTitle("Input of datacards")
    #kappa.SumXSectionsTimesLumi.plotOn (frame, RooFit.LineColor(kOrange) )
    TotalEff = RooFormulaVar("TotalEff" , "TotalEff" , "100*@0/@1" , RooArgList( totalYield , kappa.SumXSectionsTimesLumi ) ) #YieldsInDataCards_HistFunc
    TotalEff.plotOn( frame , RooFit.LineColor( kBlack ))
    frame.SetAxisRange( 0.01 , 800 , "Y" )

    c = TCanvas("Yields" , "Yields")
    #c.SetLogy()
    #frame.Draw()
    
    return (frame,c, YieldsInDataCards)
Пример #20
0
def signal(channel, stype):
    if 'VBF' in channel:
        stype = 'XZHVBF'
    else:
        stype = 'XZH'
    # HVT model
    if stype.startswith('X'):
        signalType = 'HVT'
        genPoints = [800, 1000, 1200, 1400, 1600, 1800, 2000, 2500, 3000, 3500, 4000, 4500, 5000]
        massPoints = [x for x in range(800, 5000+1, 100)]
        interPar = True
    else:
        print "Signal type", stype, "not recognized"
        return
    
    n = len(genPoints)  
    
    category = channel
    cColor = color[category] if category in color else 1

    nElec = channel.count('e')
    nMuon = channel.count('m')
    nLept = nElec + nMuon
    nBtag = channel.count('b')
    if '0b' in channel:
        nBtag = 0

    X_name = "VH_mass"

    if not os.path.exists(PLOTDIR+stype+category): os.makedirs(PLOTDIR+stype+category)

    #*******************************************************#
    #                                                       #
    #              Variables and selections                 #
    #                                                       #
    #*******************************************************#
    X_mass = RooRealVar(  "X_mass",    "m_{ZH}",       XBINMIN, XBINMAX, "GeV")
    J_mass = RooRealVar(  "H_mass",   "jet mass",        LOWMIN, HIGMAX, "GeV")
    V_mass = RooRealVar(  "V_mass", "V jet mass",           -9.,  1.e6, "GeV")
    CSV1    = RooRealVar( "H_csv1",           "",         -999.,     2.     )
    CSV2    = RooRealVar( "H_csv2",           "",         -999.,     2.     )
    DeepCSV1= RooRealVar( "H_deepcsv1",       "",         -999.,     2.     )
    DeepCSV2= RooRealVar( "H_deepcsv2",       "",         -999.,     2.     )
    H_ntag  = RooRealVar( "H_ntag",           "",           -9.,     9.     )
    H_dbt   = RooRealVar( "H_dbt",            "",           -2.,     2.     )
    H_tau21 = RooRealVar( "H_tau21",          "",           -9.,     2.     )
    H_eta = RooRealVar( "H_eta",              "",           -9.,     9.     )
    H_tau21_ddt = RooRealVar( "H_ddt",  "",           -9.,     2.     )
    MaxBTag = RooRealVar( "MaxBTag",          "",          -10.,     2.     )
    H_chf   = RooRealVar( "H_chf",            "",           -1.,     2.     )
    MinDPhi = RooRealVar( "MinDPhi",          "",           -1.,    99.     )
    DPhi    = RooRealVar( "DPhi",             "",           -1.,    99.     )
    DEta    = RooRealVar( "DEta",             "",           -1.,    99.     )
    Mu1_relIso = RooRealVar( "Mu1_relIso",    "",           -1.,    99.     )
    Mu2_relIso = RooRealVar( "Mu2_relIso",    "",           -1.,    99.     )
    nTaus   = RooRealVar( "nTaus",            "",           -1.,    99.     )
    Vpt     = RooRealVar( "V.Pt()",           "",           -1.,   1.e6     )
    V_pt     = RooRealVar( "V_pt",            "",           -1.,   1.e6     )
    H_pt     = RooRealVar( "H_pt",            "",           -1.,   1.e6     )
    VH_deltaR=RooRealVar( "VH_deltaR",        "",           -1.,    99.     )
    isZtoNN = RooRealVar( "isZtoNN",          "",            0.,     2.     )
    isZtoEE = RooRealVar( "isZtoEE",          "",            0.,     2.     )
    isZtoMM = RooRealVar( "isZtoMM",          "",            0.,     2.     )
    isHtobb = RooRealVar( "isHtobb",          "",            0.,     2.     )
    isVBF   = RooRealVar( "isVBF",            "",            0.,     2.     )
    isMaxBTag_loose = RooRealVar( "isMaxBTag_loose", "",     0.,     2.     )
    weight  = RooRealVar( "eventWeightLumi",  "",         -1.e9,   1.e9     )

    Xmin = XBINMIN
    Xmax = XBINMAX

    # Define the RooArgSet which will include all the variables defined before
    # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add'
    variables = RooArgSet(X_mass, J_mass, V_mass, CSV1, CSV2, H_ntag, H_dbt, H_tau21)
    variables.add(RooArgSet(DEta, DPhi, MaxBTag, MinDPhi, nTaus, Vpt))
    variables.add(RooArgSet(DeepCSV1, DeepCSV2,VH_deltaR, H_tau21_ddt))
    variables.add(RooArgSet(isZtoNN, isZtoEE, isZtoMM, isHtobb, isMaxBTag_loose, weight))
    variables.add(RooArgSet(isVBF, Mu1_relIso, Mu2_relIso, H_chf, H_pt, V_pt,H_eta))
    #X_mass.setRange("X_extended_range", X_mass.getMin(), X_mass.getMax())
    X_mass.setRange("X_reasonable_range", X_mass.getMin(), X_mass.getMax())
    X_mass.setRange("X_integration_range", Xmin, Xmax)
    X_mass.setBins(int((X_mass.getMax() - X_mass.getMin())/100))
    binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin())/100), X_mass.getMin(), X_mass.getMax())
    X_mass.setBinning(binsXmass, "PLOT")
    massArg = RooArgSet(X_mass)

    # Cuts
    SRcut = selection[category]+selection['SR']
    print "  Cut:\t", SRcut
    #*******************************************************#
    #                                                       #
    #                    Signal fits                        #
    #                                                       #
    #*******************************************************#

    treeSign = {}
    setSignal = {}

    vmean  = {}
    vsigma = {}
    valpha1 = {}
    vslope1 = {}
    smean  = {}
    ssigma = {}
    salpha1 = {}
    sslope1 = {}
    salpha2 = {}
    sslope2 = {}
    a1 = {}
    a2 = {}
    sbrwig = {}
    signal = {}
    signalExt = {}
    signalYield = {}
    signalIntegral = {}
    signalNorm = {}
    signalXS = {}
    frSignal = {}
    frSignal1 = {}
    frSignal2 = {}
    frSignal3 = {}

    # Signal shape uncertainties (common amongst all mass points)
    xmean_fit = RooRealVar("sig_p1_fit", "Variation of the resonance position with the fit uncertainty", 0.005, -1., 1.)
    smean_fit = RooRealVar("CMSRunII_sig_p1_fit", "Change of the resonance position with the fit uncertainty", 0., -10, 10)
    xmean_jes = RooRealVar("sig_p1_scale_jes", "Variation of the resonance position with the jet energy scale", 0.010, -1., 1.) #0.001
    smean_jes = RooRealVar("CMSRunII_sig_p1_jes", "Change of the resonance position with the jet energy scale", 0., -10, 10)
    xmean_e = RooRealVar("sig_p1_scale_e", "Variation of the resonance position with the electron energy scale", 0.001, -1., 1.)
    smean_e = RooRealVar("CMSRunII_sig_p1_scale_e", "Change of the resonance position with the electron energy scale", 0., -10, 10)
    xmean_m = RooRealVar("sig_p1_scale_m", "Variation of the resonance position with the muon energy scale", 0.001, -1., 1.)
    smean_m = RooRealVar("CMSRunII_sig_p1_scale_m", "Change of the resonance position with the muon energy scale", 0., -10, 10)

    xsigma_fit = RooRealVar("sig_p2_fit", "Variation of the resonance width with the fit uncertainty", 0.02, -1., 1.)
    ssigma_fit = RooRealVar("CMSRunII_sig_p2_fit", "Change of the resonance width with the fit uncertainty", 0., -10, 10)
    xsigma_jes = RooRealVar("sig_p2_scale_jes", "Variation of the resonance width with the jet energy scale", 0.010, -1., 1.) #0.001
    ssigma_jes = RooRealVar("CMSRunII_sig_p2_jes", "Change of the resonance width with the jet energy scale", 0., -10, 10)
    xsigma_jer = RooRealVar("sig_p2_scale_jer", "Variation of the resonance width with the jet energy resolution", 0.020, -1., 1.)
    ssigma_jer = RooRealVar("CMSRunII_sig_p2_jer", "Change of the resonance width with the jet energy resolution", 0., -10, 10)
    xsigma_e = RooRealVar("sig_p2_scale_e", "Variation of the resonance width with the electron energy scale", 0.001, -1., 1.)
    ssigma_e = RooRealVar("CMSRunII_sig_p2_scale_e", "Change of the resonance width with the electron energy scale", 0., -10, 10)
    xsigma_m = RooRealVar("sig_p2_scale_m", "Variation of the resonance width with the muon energy scale", 0.040, -1., 1.)
    ssigma_m = RooRealVar("CMSRunII_sig_p2_scale_m", "Change of the resonance width with the muon energy scale", 0., -10, 10)
    
    xalpha1_fit = RooRealVar("sig_p3_fit", "Variation of the resonance alpha with the fit uncertainty", 0.03, -1., 1.)
    salpha1_fit = RooRealVar("CMSRunII_sig_p3_fit", "Change of the resonance alpha with the fit uncertainty", 0., -10, 10)
    
    xslope1_fit = RooRealVar("sig_p4_fit", "Variation of the resonance slope with the fit uncertainty", 0.10, -1., 1.)
    sslope1_fit = RooRealVar("CMSRunII_sig_p4_fit", "Change of the resonance slope with the fit uncertainty", 0., -10, 10)

    xmean_fit.setConstant(True)
    smean_fit.setConstant(True)
    xmean_jes.setConstant(True)
    smean_jes.setConstant(True)
    xmean_e.setConstant(True)
    smean_e.setConstant(True)
    xmean_m.setConstant(True)
    smean_m.setConstant(True)
    
    xsigma_fit.setConstant(True)
    ssigma_fit.setConstant(True)
    xsigma_jes.setConstant(True)
    ssigma_jes.setConstant(True)
    xsigma_jer.setConstant(True)
    ssigma_jer.setConstant(True)
    xsigma_e.setConstant(True)
    ssigma_e.setConstant(True)
    xsigma_m.setConstant(True)
    ssigma_m.setConstant(True)
    
    xalpha1_fit.setConstant(True)
    salpha1_fit.setConstant(True)
    xslope1_fit.setConstant(True)
    sslope1_fit.setConstant(True)

    # the alpha method is now done.
    for m in massPoints:
        signalString = "M%d" % m
        signalMass = "%s_M%d" % (stype, m)
        signalName = "%s%s_M%d" % (stype, category, m)
        signalColor = sample[signalMass]['linecolor'] if signalName in sample else 1

        # define the signal PDF
        vmean[m] = RooRealVar(signalName + "_vmean", "Crystal Ball mean", m, m*0.5, m*1.25)
        smean[m] = RooFormulaVar(signalName + "_mean", "@0*(1+@1*@2)*(1+@3*@4)*(1+@5*@6)*(1+@7*@8)", RooArgList(vmean[m], xmean_e, smean_e, xmean_m, smean_m, xmean_jes, smean_jes, xmean_fit, smean_fit))

        vsigma[m] = RooRealVar(signalName + "_vsigma", "Crystal Ball sigma", m*0.035, m*0.01, m*0.4)
        sigmaList = RooArgList(vsigma[m], xsigma_e, ssigma_e, xsigma_m, ssigma_m, xsigma_jes, ssigma_jes, xsigma_jer, ssigma_jer)
        sigmaList.add(RooArgList(xsigma_fit, ssigma_fit))
        ssigma[m] = RooFormulaVar(signalName + "_sigma", "@0*(1+@1*@2)*(1+@3*@4)*(1+@5*@6)*(1+@7*@8)*(1+@9*@10)", sigmaList)
        
        valpha1[m] = RooRealVar(signalName + "_valpha1", "Crystal Ball alpha", 1.,  0., 5.) # number of sigmas where the exp is attached to the gaussian core. >0 left, <0 right
        salpha1[m] = RooFormulaVar(signalName + "_alpha1", "@0*(1+@1*@2)", RooArgList(valpha1[m], xalpha1_fit, salpha1_fit))

        vslope1[m] = RooRealVar(signalName + "_vslope1", "Crystal Ball slope", 10., 1., 60.) # slope of the power tail   #10 1 60
        sslope1[m] = RooFormulaVar(signalName + "_slope1", "@0*(1+@1*@2)", RooArgList(vslope1[m], xslope1_fit, sslope1_fit))

        salpha2[m] = RooRealVar(signalName + "_alpha2", "Crystal Ball alpha", 2,  1., 5.) # number of sigmas where the exp is attached to the gaussian core. >0 left, <0 right
        sslope2[m] = RooRealVar(signalName + "_slope2", "Crystal Ball slope", 10, 1.e-1, 115.) # slope of the power tail
        #define polynomial
        #a1[m] = RooRealVar(signalName + "_a1", "par 1 for polynomial", m, 0.5*m, 2*m)
        a1[m] = RooRealVar(signalName + "_a1", "par 1 for polynomial", 0.001*m, 0.0005*m, 0.01*m)
        a2[m] = RooRealVar(signalName + "_a2", "par 2 for polynomial", 0.05, -1.,1.)
        #if channel=='nnbbVBF' or channel=='nn0bVBF':
        #    signal[m] = RooPolynomial(signalName,"m_{%s'} = %d GeV" % (stype[1], m) , X_mass, RooArgList(a1[m],a2[m]))
        #else:
        #    signal[m] = RooCBShape(signalName, "m_{%s'} = %d GeV" % (stype[1], m), X_mass, smean[m], ssigma[m], salpha1[m], sslope1[m]) # Signal name does not have the channel
        signal[m] = RooCBShape(signalName, "m_{%s'} = %d GeV" % (stype[1], m), X_mass, smean[m], ssigma[m], salpha1[m], sslope1[m]) # Signal name does not have the channel
        # extend the PDF with the yield to perform an extended likelihood fit
        signalYield[m] = RooRealVar(signalName+"_yield", "signalYield", 100, 0., 1.e6)
        signalNorm[m] = RooRealVar(signalName+"_norm", "signalNorm", 1., 0., 1.e6)
        signalXS[m] = RooRealVar(signalName+"_xs", "signalXS", 1., 0., 1.e6)
        signalExt[m] = RooExtendPdf(signalName+"_ext", "extended p.d.f", signal[m], signalYield[m])
        
        vslope1[m].setMax(50.)
        vslope1[m].setVal(20.)
        #valpha1[m].setVal(1.0)
        #valpha1[m].setConstant(True)
        
        if 'bb' in channel and 'VBF' not in channel:
            if 'nn' in channel:
                valpha1[m].setVal(0.5)
        elif '0b' in channel and 'VBF' not in channel:
            if 'nn' in channel:
                if m==800:
                    valpha1[m].setVal(2.)
                    vsigma[m].setVal(m*0.04)
            elif 'ee' in channel:
                valpha1[m].setVal(0.8)
                if m==800:
                    #valpha1[m].setVal(1.2)
                    valpha1[m].setVal(2.5)
                    vslope1[m].setVal(50.)
            elif 'mm' in channel:
                if m==800:
                    valpha1[m].setVal(2.)
                    vsigma[m].setVal(m*0.03)
                else:
                    vmean[m].setVal(m*0.9)
                    vsigma[m].setVal(m*0.08)
        elif 'bb' in channel and 'VBF' in channel:
            if 'nn' in channel:
                if m!=1800:
                    vmean[m].setVal(m*0.8)
                vsigma[m].setVal(m*0.08)
                valpha1[m].setMin(1.)
            elif 'ee' in channel:
                valpha1[m].setVal(0.7)
            elif 'mm' in channel:
                if m==800:
                    vslope1[m].setVal(50.)
                valpha1[m].setVal(0.7)
        elif '0b' in channel and 'VBF' in channel:
            if 'nn' in channel:
                valpha1[m].setVal(3.) 
                vmean[m].setVal(m*0.8)
                vsigma[m].setVal(m*0.08)
                valpha1[m].setMin(1.)
            elif 'ee' in channel:
                if m<2500:
                    valpha1[m].setVal(2.)
                if m==800:
                    vsigma[m].setVal(m*0.05)
                elif m==1000:
                    vsigma[m].setVal(m*0.03)
                elif m>1000 and m<1800:
                    vsigma[m].setVal(m*0.04)
            elif 'mm' in channel:
                if m<2000:
                    valpha1[m].setVal(2.)
                if m==1000 or m==1800:
                    vsigma[m].setVal(m*0.03)
                elif m==1200 or m==1600:
                    vsigma[m].setVal(m*0.04)

            
        #if m < 1000: vsigma[m].setVal(m*0.06)

        # If it's not the proper channel, make it a gaussian
        #if nLept==0 and 'VBF' in channel:
        #    valpha1[m].setVal(5)
        #    valpha1[m].setConstant(True)
        #    vslope1[m].setConstant(True)
        #    salpha2[m].setConstant(True)
        #    sslope2[m].setConstant(True)

        
        # ---------- if there is no simulated signal, skip this mass point ----------
        if m in genPoints:
            if VERBOSE: print " - Mass point", m

            # define the dataset for the signal applying the SR cuts
            treeSign[m] = TChain("tree")
            for j, ss in enumerate(sample[signalMass]['files']):
                treeSign[m].Add(NTUPLEDIR + ss + ".root")
            
            if treeSign[m].GetEntries() <= 0.:
                if VERBOSE: print " - 0 events available for mass", m, "skipping mass point..."
                signalNorm[m].setVal(-1)
                vmean[m].setConstant(True)
                vsigma[m].setConstant(True)
                salpha1[m].setConstant(True)
                sslope1[m].setConstant(True)
                salpha2[m].setConstant(True)
                sslope2[m].setConstant(True)
                signalNorm[m].setConstant(True)
                signalXS[m].setConstant(True)
                continue
            
            setSignal[m] = RooDataSet("setSignal_"+signalName, "setSignal", variables, RooFit.Cut(SRcut), RooFit.WeightVar(weight), RooFit.Import(treeSign[m]))
            if VERBOSE: print " - Dataset with", setSignal[m].sumEntries(), "events loaded"
            
            # FIT
            signalYield[m].setVal(setSignal[m].sumEntries())
            
            if treeSign[m].GetEntries(SRcut) > 5:
                if VERBOSE: print " - Running fit"
 
                frSignal[m] = signalExt[m].fitTo(setSignal[m], RooFit.Save(1), RooFit.Extended(True), RooFit.SumW2Error(True), RooFit.PrintLevel(-1))
                if VERBOSE: print "********** Fit result [", m, "] **", category, "*"*40, "\n", frSignal[m].Print(), "\n", "*"*80
                if VERBOSE: frSignal[m].correlationMatrix().Print()
                drawPlot(signalMass, stype+channel, X_mass, signal[m], setSignal[m], frSignal[m])
            
            else:
                print "  WARNING: signal", stype, "and mass point", m, "in channel", channel, "has 0 entries or does not exist"          
            # Remove HVT cross section (which is the same for Zlep and Zinv)
            if stype == "XZHVBF":
                sample_name = 'Zprime_VBF_Zh_Zlephinc_narrow_M-%d' % m
            else:
                sample_name = 'ZprimeToZHToZlepHinc_narrow_M%d' % m

            xs = xsection[sample_name]['xsec']
            
            signalXS[m].setVal(xs * 1000.)
            
            signalIntegral[m] = signalExt[m].createIntegral(massArg, RooFit.NormSet(massArg), RooFit.Range("X_integration_range"))
            boundaryFactor = signalIntegral[m].getVal()
            if VERBOSE: 
                print " - Fit normalization vs integral:", signalYield[m].getVal(), "/", boundaryFactor, "events"
            if channel=='nnbb' and m==5000:
                signalNorm[m].setVal(2.5)
            elif channel=='nn0b' and m==5000:
                signalNorm[m].setVal(6.7)
            else:
                signalNorm[m].setVal( boundaryFactor * signalYield[m].getVal() / signalXS[m].getVal()) # here normalize to sigma(X) x Br(X->VH) = 1 [fb]
            
            
        a1[m].setConstant(True)
        a2[m].setConstant(True)
        vmean[m].setConstant(True)
        vsigma[m].setConstant(True)
        valpha1[m].setConstant(True)
        vslope1[m].setConstant(True)
        salpha2[m].setConstant(True)
        sslope2[m].setConstant(True)
        signalNorm[m].setConstant(True)
        signalXS[m].setConstant(True)

    #*******************************************************#
    #                                                       #
    #                 Signal interpolation                  #
    #                                                       #
    #*******************************************************#


    # ====== CONTROL PLOT ======
    c_signal = TCanvas("c_signal", "c_signal", 800, 600)
    c_signal.cd()
    frame_signal = X_mass.frame()
    for m in genPoints[:-2]:
        if m in signalExt.keys():
            signal[m].plotOn(frame_signal, RooFit.LineColor(sample["%s_M%d" % (stype, m)]['linecolor']), RooFit.Normalization(signalNorm[m].getVal(), RooAbsReal.NumEvent), RooFit.Range("X_reasonable_range"))
    frame_signal.GetXaxis().SetRangeUser(0, 6500)
    frame_signal.Draw()
    drawCMS(-1, YEAR, "Simulation")
    drawAnalysis(channel)
    drawRegion(channel)
    c_signal.SaveAs(PLOTDIR+"/"+stype+category+"/"+stype+"_Signal.pdf")
    c_signal.SaveAs(PLOTDIR+"/"+stype+category+"/"+stype+"_Signal.png")
    #if VERBOSE: raw_input("Press Enter to continue...")
    # ====== CONTROL PLOT ======

    # Normalization
    gnorm = TGraphErrors()
    gnorm.SetTitle(";m_{X} (GeV);integral (GeV)")
    gnorm.SetMarkerStyle(20)
    gnorm.SetMarkerColor(1)
    gnorm.SetMaximum(0)
    inorm = TGraphErrors()
    inorm.SetMarkerStyle(24)
    fnorm = TF1("fnorm", "pol9", 800, 5000) #"pol5" if not channel=="XZHnnbb" else "pol6" #pol5*TMath::Floor(x-1800) + ([5]*x + [6]*x*x)*(1-TMath::Floor(x-1800))
    fnorm.SetLineColor(920)
    fnorm.SetLineStyle(7)
    fnorm.SetFillColor(2)
    fnorm.SetLineColor(cColor)

    # Mean
    gmean = TGraphErrors()
    gmean.SetTitle(";m_{X} (GeV);gaussian mean (GeV)")
    gmean.SetMarkerStyle(20)
    gmean.SetMarkerColor(cColor)
    gmean.SetLineColor(cColor)
    imean = TGraphErrors()
    imean.SetMarkerStyle(24)
    fmean = TF1("fmean", "pol1", 0, 5000)
    fmean.SetLineColor(2)
    fmean.SetFillColor(2)

    # Width
    gsigma = TGraphErrors()
    gsigma.SetTitle(";m_{X} (GeV);gaussian width (GeV)")
    gsigma.SetMarkerStyle(20)
    gsigma.SetMarkerColor(cColor)
    gsigma.SetLineColor(cColor)
    isigma = TGraphErrors()
    isigma.SetMarkerStyle(24)
    fsigma = TF1("fsigma", "pol1", 0, 5000)
    fsigma.SetLineColor(2)
    fsigma.SetFillColor(2)

    # Alpha1
    galpha1 = TGraphErrors()
    galpha1.SetTitle(";m_{X} (GeV);crystal ball lower alpha")
    galpha1.SetMarkerStyle(20)
    galpha1.SetMarkerColor(cColor)
    galpha1.SetLineColor(cColor)
    ialpha1 = TGraphErrors()
    ialpha1.SetMarkerStyle(24)
    falpha1 = TF1("falpha", "pol0", 0, 5000)
    falpha1.SetLineColor(2)
    falpha1.SetFillColor(2)

    # Slope1
    gslope1 = TGraphErrors()
    gslope1.SetTitle(";m_{X} (GeV);exponential lower slope (1/Gev)")
    gslope1.SetMarkerStyle(20)
    gslope1.SetMarkerColor(cColor)
    gslope1.SetLineColor(cColor)
    islope1 = TGraphErrors()
    islope1.SetMarkerStyle(24)
    fslope1 = TF1("fslope", "pol0", 0, 5000)
    fslope1.SetLineColor(2)
    fslope1.SetFillColor(2)

    # Alpha2
    galpha2 = TGraphErrors()
    galpha2.SetTitle(";m_{X} (GeV);crystal ball upper alpha")
    galpha2.SetMarkerStyle(20)
    galpha2.SetMarkerColor(cColor)
    galpha2.SetLineColor(cColor)
    ialpha2 = TGraphErrors()
    ialpha2.SetMarkerStyle(24)
    falpha2 = TF1("falpha", "pol0", 0, 5000)
    falpha2.SetLineColor(2)
    falpha2.SetFillColor(2)

    # Slope2
    gslope2 = TGraphErrors()
    gslope2.SetTitle(";m_{X} (GeV);exponential upper slope (1/Gev)")
    gslope2.SetMarkerStyle(20)
    gslope2.SetMarkerColor(cColor)
    gslope2.SetLineColor(cColor)
    islope2 = TGraphErrors()
    islope2.SetMarkerStyle(24)
    fslope2 = TF1("fslope", "pol0", 0, 5000)
    fslope2.SetLineColor(2)
    fslope2.SetFillColor(2)



    n = 0
    for i, m in enumerate(genPoints):
        if not m in signalNorm.keys(): continue
        if signalNorm[m].getVal() < 1.e-6: continue
        signalString = "M%d" % m
        signalName = "%s_M%d" % (stype, m)

        if gnorm.GetMaximum() < signalNorm[m].getVal(): gnorm.SetMaximum(signalNorm[m].getVal())
        gnorm.SetPoint(n, m, signalNorm[m].getVal())
        gmean.SetPoint(n, m, vmean[m].getVal())
        gmean.SetPointError(n, 0, min(vmean[m].getError(), vmean[m].getVal()*0.02))
        gsigma.SetPoint(n, m, vsigma[m].getVal())
        gsigma.SetPointError(n, 0, min(vsigma[m].getError(), vsigma[m].getVal()*0.05))
        galpha1.SetPoint(n, m, valpha1[m].getVal())
        galpha1.SetPointError(n, 0, min(valpha1[m].getError(), valpha1[m].getVal()*0.10))
        gslope1.SetPoint(n, m, vslope1[m].getVal())
        gslope1.SetPointError(n, 0, min(vslope1[m].getError(), vslope1[m].getVal()*0.10))
        galpha2.SetPoint(n, m, salpha2[m].getVal())
        galpha2.SetPointError(n, 0, min(salpha2[m].getError(), salpha2[m].getVal()*0.10))
        gslope2.SetPoint(n, m, sslope2[m].getVal())
        gslope2.SetPointError(n, 0, min(sslope2[m].getError(), sslope2[m].getVal()*0.10))
        n = n + 1
    print "fit on gmean:"
    gmean.Fit(fmean, "Q0", "SAME")
    print "fit on gsigma:"
    gsigma.Fit(fsigma, "Q0", "SAME")
    print "fit on galpha:"
    galpha1.Fit(falpha1, "Q0", "SAME")
    print "fit on gslope:"
    gslope1.Fit(fslope1, "Q0", "SAME")
    galpha2.Fit(falpha2, "Q0", "SAME")
    gslope2.Fit(fslope2, "Q0", "SAME")
    #for m in [5000, 5500]: gnorm.SetPoint(gnorm.GetN(), m, gnorm.Eval(m, 0, "S"))
    gnorm.Fit(fnorm, "Q", "SAME", 700, 5000)

    for m in massPoints:
        signalName = "%s_M%d" % (stype, m)
        
        if vsigma[m].getVal() < 10.: vsigma[m].setVal(10.)

        # Interpolation method
        syield = gnorm.Eval(m)
        spline = gnorm.Eval(m, 0, "S")
        sfunct = fnorm.Eval(m)
        
        #delta = min(abs(1.-spline/sfunct), abs(1.-spline/syield))
        delta = abs(1.-spline/sfunct) if sfunct > 0 else 0
        syield = spline
               
        if interPar:
            jmean = gmean.Eval(m)
            jsigma = gsigma.Eval(m)
            jalpha1 = galpha1.Eval(m)
            jslope1 = gslope1.Eval(m)
        else:
            jmean = fmean.GetParameter(0) + fmean.GetParameter(1)*m + fmean.GetParameter(2)*m*m
            jsigma = fsigma.GetParameter(0) + fsigma.GetParameter(1)*m + fsigma.GetParameter(2)*m*m
            jalpha1 = falpha1.GetParameter(0) + falpha1.GetParameter(1)*m + falpha1.GetParameter(2)*m*m
            jslope1 = fslope1.GetParameter(0) + fslope1.GetParameter(1)*m + fslope1.GetParameter(2)*m*m

        inorm.SetPoint(inorm.GetN(), m, syield)
        signalNorm[m].setVal(syield)

        imean.SetPoint(imean.GetN(), m, jmean)
        if jmean > 0: vmean[m].setVal(jmean)

        isigma.SetPoint(isigma.GetN(), m, jsigma)
        if jsigma > 0: vsigma[m].setVal(jsigma)

        ialpha1.SetPoint(ialpha1.GetN(), m, jalpha1)
        if not jalpha1==0: valpha1[m].setVal(jalpha1)

        islope1.SetPoint(islope1.GetN(), m, jslope1)
        if jslope1 > 0: vslope1[m].setVal(jslope1)
    

    c1 = TCanvas("c1", "Crystal Ball", 1200, 800)
    c1.Divide(2, 2)
    c1.cd(1)
    gmean.SetMinimum(0.)
    gmean.Draw("APL")
    imean.Draw("P, SAME")
    drawRegion(channel)
    c1.cd(2)
    gsigma.SetMinimum(0.)
    gsigma.Draw("APL")
    isigma.Draw("P, SAME")
    drawRegion(channel)
    c1.cd(3)
    galpha1.Draw("APL")
    ialpha1.Draw("P, SAME")
    drawRegion(channel)
    galpha1.GetYaxis().SetRangeUser(0., 5.)
    c1.cd(4)
    gslope1.Draw("APL")
    islope1.Draw("P, SAME")
    drawRegion(channel)
    gslope1.GetYaxis().SetRangeUser(0., 125.)
    if False:
        c1.cd(5)
        galpha2.Draw("APL")
        ialpha2.Draw("P, SAME")
        drawRegion(channel)
        c1.cd(6)
        gslope2.Draw("APL")
        islope2.Draw("P, SAME")
        drawRegion(channel)
        gslope2.GetYaxis().SetRangeUser(0., 10.)


    c1.Print(PLOTDIR+stype+category+"/"+stype+"_SignalShape.pdf")
    c1.Print(PLOTDIR+stype+category+"/"+stype+"_SignalShape.png")


    c2 = TCanvas("c2", "Signal Efficiency", 800, 600)
    c2.cd(1)
    gnorm.SetMarkerColor(cColor)
    gnorm.SetMarkerStyle(20)
    gnorm.SetLineColor(cColor)
    gnorm.SetLineWidth(2)
    gnorm.Draw("APL")
    inorm.Draw("P, SAME")
    gnorm.GetXaxis().SetRangeUser(genPoints[0]-100, genPoints[-1]+100)
    gnorm.GetYaxis().SetRangeUser(0., gnorm.GetMaximum()*1.25)
    drawCMS(-1,YEAR , "Simulation")
    drawAnalysis(channel)
    drawRegion(channel)
    c2.Print(PLOTDIR+stype+category+"/"+stype+"_SignalNorm.pdf")
    c2.Print(PLOTDIR+stype+category+"/"+stype+"_SignalNorm.png")





    #*******************************************************#
    #                                                       #
    #                   Generate workspace                  #
    #                                                       #
    #*******************************************************#

    # create workspace
    w = RooWorkspace("ZH_RunII", "workspace")
    for m in massPoints:
        getattr(w, "import")(signal[m], RooFit.Rename(signal[m].GetName()))
        getattr(w, "import")(signalNorm[m], RooFit.Rename(signalNorm[m].GetName()))
        getattr(w, "import")(signalXS[m], RooFit.Rename(signalXS[m].GetName()))
    w.writeToFile("%s%s.root" % (WORKDIR, stype+channel), True)
    print "Workspace", "%s%s.root" % (WORKDIR, stype+channel), "saved successfully"
    sys.exit()
Пример #21
0
def alpha(channel):

    nElec = channel.count("e")
    nMuon = channel.count("m")
    nLept = nElec + nMuon
    nBtag = channel.count("b")

    # Channel-dependent settings
    # Background function. Semi-working options are: EXP, EXP2, EXPN, EXPTAIL
    if nLept == 0:
        treeName = "SR"
        signName = "XZh"
        colorVjet = sample["DYJetsToNuNu"]["linecolor"]
        triName = "HLT_PFMET"
        leptCut = "0==0"
        topVeto = selection["TopVetocut"]
        massVar = "X_cmass"
        binFact = 1
        fitFunc = "EXPN" if nBtag < 2 else "EXPN"
        fitAltFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "EXP"
        fitAltFuncVjet = "POL" if nBtag < 2 else "POL"
        fitFuncVV = "EXPGAUS" if nBtag < 2 else "EXPGAUS"
        fitFuncTop = "GAUS2"
    elif nLept == 1:
        treeName = "WCR"
        signName = "XWh"
        colorVjet = sample["WJetsToLNu"]["linecolor"]
        triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
        leptCut = "isWtoEN" if nElec > 0 else "isWtoMN"
        topVeto = selection["TopVetocut"]
        massVar = "X_mass"
        binFact = 2
        if nElec > 0:
            fitFunc = "EXPTAIL" if nBtag < 2 else "EXPN"
            fitAltFunc = "EXPN" if nBtag < 2 else "POW"
        else:
            fitFunc = "EXPN" if nBtag < 2 else "EXPN"
            fitAltFunc = "EXPTAIL" if nBtag < 2 else "POW"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "EXP"
        fitAltFuncVjet = "POL" if nBtag < 2 else "POL"
        fitFuncVV = "EXPGAUS" if nBtag < 2 else "EXPGAUS"
        fitFuncTop = "GAUS3" if nBtag < 2 else "GAUS2"
    else:
        treeName = "XZh"
        signName = "XZh"
        colorVjet = sample["DYJetsToLL"]["linecolor"]
        triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
        leptCut = "isZtoEE" if nElec > 0 else "isZtoMM"
        topVeto = "X_dPhi>2.5"
        massVar = "X_mass"
        binFact = 2
        if nElec > 0:
            fitFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
            fitAltFunc = "POW" if nBtag < 2 else "POW"
        else:
            fitFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
            fitAltFunc = "POW" if nBtag < 2 else "POW"
        fitFuncVjet = "ERFEXP" if nBtag < 2 and nElec < 1 else "EXP"
        fitAltFuncVjet = "POL" if nBtag < 2 else "POL"
        fitFuncVV = "EXPGAUS2" if nBtag < 2 else "EXPGAUS2"
        fitFuncTop = "GAUS"

    btagCut = selection["2Btag"] if nBtag == 2 else selection["1Btag"]

    print "--- Channel", channel, "---"
    print "  number of electrons:", nElec, " muons:", nMuon, " b-tags:", nBtag
    print "  read tree:", treeName, "and trigger:", triName
    if ALTERNATIVE:
        print "  using ALTERNATIVE fit functions"
    print "-" * 11 * 2

    # Silent RooFit
    RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)

    # *******************************************************#
    #                                                       #
    #              Variables and selections                 #
    #                                                       #
    # *******************************************************#

    # Define all the variables from the trees that will be used in the cuts and fits
    # this steps actually perform a "projection" of the entire tree on the variables in thei ranges, so be careful once setting the limits
    X_mass = RooRealVar(massVar, "m_{X}" if nLept > 0 else "m_{T}^{X}", XBINMIN, XBINMAX, "GeV")
    J_mass = RooRealVar("fatjet1_prunedMassCorr", "jet corrected pruned mass", HBINMIN, HBINMAX, "GeV")
    CSV1 = RooRealVar("fatjet1_CSVR1", "", -1.0e99, 1.0e4)
    CSV2 = RooRealVar("fatjet1_CSVR2", "", -1.0e99, 1.0e4)
    nB = RooRealVar("fatjet1_nBtag", "", 0.0, 4)
    CSVTop = RooRealVar("bjet1_CSVR", "", -1.0e99, 1.0e4)
    X_dPhi = RooRealVar("X_dPhi", "", 0.0, 3.15)
    isZtoEE = RooRealVar("isZtoEE", "", 0.0, 2)
    isZtoMM = RooRealVar("isZtoMM", "", 0.0, 2)
    isWtoEN = RooRealVar("isWtoEN", "", 0.0, 2)
    isWtoMN = RooRealVar("isWtoMN", "", 0.0, 2)
    weight = RooRealVar("eventWeightLumi", "", -1.0e9, 1.0)

    # Define the RooArgSet which will include all the variables defined before
    # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add'
    variables = RooArgSet(X_mass, J_mass, CSV1, CSV2, nB, CSVTop, X_dPhi)
    variables.add(RooArgSet(isZtoEE, isZtoMM, isWtoEN, isWtoMN, weight))

    # set reasonable ranges for J_mass and X_mass
    # these are used in the fit in order to avoid ROOFIT to look in regions very far away from where we are fitting
    # (honestly, it is not clear to me why it is necessary, but without them the fit often explodes)
    J_mass.setRange("h_reasonable_range", LOWMIN, HIGMAX)
    X_mass.setRange("X_reasonable_range", XBINMIN, XBINMAX)

    # Set RooArgSets once for all, see https://root.cern.ch/phpBB3/viewtopic.php?t=11758
    jetMassArg = RooArgSet(J_mass)
    # Define the ranges in fatJetMass - these will be used to define SB and SR
    J_mass.setRange("LSBrange", LOWMIN, LOWMAX)
    J_mass.setRange("HSBrange", HIGMIN, HIGMAX)
    J_mass.setRange("VRrange", LOWMAX, SIGMIN)
    J_mass.setRange("SRrange", SIGMIN, SIGMAX)

    # Set binning for plots
    J_mass.setBins(HBINS)
    X_mass.setBins(binFact * XBINS)

    # Define the selection for the various categories (base + SR / LSBcut / HSBcut )
    baseCut = leptCut + " && " + btagCut + "&&" + topVeto
    massCut = massVar + ">%d" % XBINMIN
    baseCut += " && " + massCut

    # Cuts
    SRcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), SIGMIN, J_mass.GetName(), SIGMAX)
    LSBcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), LOWMIN, J_mass.GetName(), LOWMAX)
    HSBcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), HIGMIN, J_mass.GetName(), HIGMAX)
    SBcut = baseCut + " && ((%s>%d && %s<%d) || (%s>%d && %s<%d))" % (
        J_mass.GetName(),
        LOWMIN,
        J_mass.GetName(),
        LOWMAX,
        J_mass.GetName(),
        HIGMIN,
        J_mass.GetName(),
        HIGMAX,
    )
    VRcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), LOWMAX, J_mass.GetName(), SIGMIN)

    # Binning
    binsJmass = RooBinning(HBINS, HBINMIN, HBINMAX)
    # binsJmass.addUniform(HBINS, HBINMIN, HBINMAX)
    binsXmass = RooBinning(binFact * XBINS, XBINMIN, XBINMAX)
    # binsXmass.addUniform(binFact*XBINS, XBINMIN, XBINMAX)

    # *******************************************************#
    #                                                       #
    #                      Input files                      #
    #                                                       #
    # *******************************************************#

    # Import the files using TChains (separately for the bkg "classes" that we want to describe: here DY and VV+ST+TT)
    treeData = TChain(treeName)
    treeMC = TChain(treeName)
    treeVjet = TChain(treeName)
    treeVV = TChain(treeName)
    treeTop = TChain(treeName)
    treeSign = {}
    nevtSign = {}
    for i, m in enumerate(massPoints):
        treeSign[m] = TChain(treeName)

    # Read data
    pd = getPrimaryDataset(triName)
    if len(pd) == 0:
        raw_input("Warning: Primary Dataset not recognized, continue?")
    for i, s in enumerate(pd):
        treeData.Add(NTUPLEDIR + s + ".root")

    # Read V+jets backgrounds
    for i, s in enumerate(["WJetsToLNu_HT", "DYJetsToNuNu_HT", "DYJetsToLL_HT"]):
        for j, ss in enumerate(sample[s]["files"]):
            treeVjet.Add(NTUPLEDIR + ss + ".root")

    # Read VV backgrounds
    for i, s in enumerate(["VV"]):
        for j, ss in enumerate(sample[s]["files"]):
            treeVV.Add(NTUPLEDIR + ss + ".root")

    # Read Top backgrounds
    for i, s in enumerate(["ST", "TTbar"]):
        for j, ss in enumerate(sample[s]["files"]):
            treeTop.Add(NTUPLEDIR + ss + ".root")

    # Read signals
    for i, m in enumerate(massPoints):
        for j, ss in enumerate(sample["%s_M%d" % (signName, m)]["files"]):
            treeSign[m].Add(NTUPLEDIR + ss + ".root")
            sfile = TFile(NTUPLEDIR + ss + ".root", "READ")
            shist = sfile.Get("Counters/Counter")
            nevtSign[m] = shist.GetBinContent(1)
            sfile.Close()

    # Sum all background MC
    treeMC.Add(treeVjet)
    treeMC.Add(treeVV)
    treeMC.Add(treeTop)

    # create a dataset to host data in sideband (using this dataset we are automatically blind in the SR!)
    setDataSB = RooDataSet(
        "setDataSB", "setDataSB", variables, RooFit.Cut(SBcut), RooFit.WeightVar(weight), RooFit.Import(treeData)
    )
    setDataLSB = RooDataSet(
        "setDataLSB", "setDataLSB", variables, RooFit.Import(setDataSB), RooFit.Cut(LSBcut), RooFit.WeightVar(weight)
    )
    setDataHSB = RooDataSet(
        "setDataHSB", "setDataHSB", variables, RooFit.Import(setDataSB), RooFit.Cut(HSBcut), RooFit.WeightVar(weight)
    )

    # Observed data (WARNING, BLIND!)
    setDataSR = RooDataSet(
        "setDataSR", "setDataSR", variables, RooFit.Cut(SRcut), RooFit.WeightVar(weight), RooFit.Import(treeData)
    )
    setDataVR = RooDataSet(
        "setDataVR", "setDataVR", variables, RooFit.Cut(VRcut), RooFit.WeightVar(weight), RooFit.Import(treeData)
    )  # Observed in the VV mass, just for plotting purposes

    setDataSRSB = RooDataSet(
        "setDataSRSB",
        "setDataSRSB",
        variables,
        RooFit.Cut("(" + SRcut + ") || (" + SBcut + ")"),
        RooFit.WeightVar(weight),
        RooFit.Import(treeData),
    )

    # same for the bkg datasets from MC, where we just apply the base selections (not blind)
    setVjet = RooDataSet(
        "setVjet", "setVjet", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeVjet)
    )
    setVjetSB = RooDataSet(
        "setVjetSB", "setVjetSB", variables, RooFit.Import(setVjet), RooFit.Cut(SBcut), RooFit.WeightVar(weight)
    )
    setVjetSR = RooDataSet(
        "setVjetSR", "setVjetSR", variables, RooFit.Import(setVjet), RooFit.Cut(SRcut), RooFit.WeightVar(weight)
    )
    setVV = RooDataSet(
        "setVV", "setVV", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeVV)
    )
    setVVSB = RooDataSet(
        "setVVSB", "setVVSB", variables, RooFit.Import(setVV), RooFit.Cut(SBcut), RooFit.WeightVar(weight)
    )
    setVVSR = RooDataSet(
        "setVVSR", "setVVSR", variables, RooFit.Import(setVV), RooFit.Cut(SRcut), RooFit.WeightVar(weight)
    )
    setTop = RooDataSet(
        "setTop", "setTop", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeTop)
    )
    setTopSB = RooDataSet(
        "setTopSB", "setTopSB", variables, RooFit.Import(setTop), RooFit.Cut(SBcut), RooFit.WeightVar(weight)
    )
    setTopSR = RooDataSet(
        "setTopSR", "setTopSR", variables, RooFit.Import(setTop), RooFit.Cut(SRcut), RooFit.WeightVar(weight)
    )

    print "  Data events SB: %.2f" % setDataSB.sumEntries()
    print "  V+jets entries: %.2f" % setVjet.sumEntries()
    print "  VV, VH entries: %.2f" % setVV.sumEntries()
    print "  Top,ST entries: %.2f" % setTop.sumEntries()

    nVV = RooRealVar("nVV", "VV normalization", setVV.sumEntries(SBcut), 0.0, 2 * setVV.sumEntries(SBcut))
    nTop = RooRealVar("nTop", "Top normalization", setTop.sumEntries(SBcut), 0.0, 2 * setTop.sumEntries(SBcut))
    nVjet = RooRealVar("nVjet", "Vjet normalization", setDataSB.sumEntries(), 0.0, 2 * setDataSB.sumEntries(SBcut))
    nVjet2 = RooRealVar("nVjet2", "Vjet2 normalization", setDataSB.sumEntries(), 0.0, 2 * setDataSB.sumEntries(SBcut))

    # Apply Top SF
    nTop.setVal(nTop.getVal() * topSF[nLept][nBtag])
    nTop.setError(nTop.getVal() * topSFErr[nLept][nBtag])

    # Define entries
    entryVjet = RooRealVar("entryVjets", "V+jets normalization", setVjet.sumEntries(), 0.0, 1.0e6)
    entryVV = RooRealVar("entryVV", "VV normalization", setVV.sumEntries(), 0.0, 1.0e6)
    entryTop = RooRealVar("entryTop", "Top normalization", setTop.sumEntries(), 0.0, 1.0e6)

    entrySB = RooRealVar("entrySB", "Data SB normalization", setDataSB.sumEntries(SBcut), 0.0, 1.0e6)
    entrySB.setError(math.sqrt(entrySB.getVal()))

    entryLSB = RooRealVar("entryLSB", "Data LSB normalization", setDataSB.sumEntries(LSBcut), 0.0, 1.0e6)
    entryLSB.setError(math.sqrt(entryLSB.getVal()))

    entryHSB = RooRealVar("entryHSB", "Data HSB normalization", setDataSB.sumEntries(HSBcut), 0.0, 1.0e6)
    entryHSB.setError(math.sqrt(entryHSB.getVal()))

    ###################################################################################
    #        _   _                                                                    #
    #       | \ | |                          | (_)         | | (_)                    #
    #       |  \| | ___  _ __ _ __ ___   __ _| |_ ___  __ _| |_ _  ___  _ __          #
    #       | . ` |/ _ \| '__| '_ ` _ \ / _` | | / __|/ _` | __| |/ _ \| '_ \         #
    #       | |\  | (_) | |  | | | | | | (_| | | \__ \ (_| | |_| | (_) | | | |        #
    #       |_| \_|\___/|_|  |_| |_| |_|\__,_|_|_|___/\__,_|\__|_|\___/|_| |_|        #
    #                                                                                 #
    ###################################################################################
    # fancy ASCII art thanks to, I guess, Jose

    # start by creating the fit models to get the normalization:
    # * MAIN and SECONDARY bkg are taken from MC by fitting the whole J_mass range
    # * The two PDFs are added together using the relative normalizations of the two bkg from MC
    # * DATA is then fit in the sidebands only using the combined bkg PDF
    # * The results of the fit are then estrapolated in the SR and the integral is evaluated.
    # * This defines the bkg normalization in the SR

    # *******************************************************#
    #                                                       #
    #                 V+jets normalization                  #
    #                                                       #
    # *******************************************************#

    # Variables for V+jets
    constVjet = RooRealVar("constVjet", "slope of the exp", -0.020, -1.0, 0.0)
    offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 30.0, -50.0, 400.0)
    widthVjet = RooRealVar("widthVjet", "width of the erf", 100.0, 1.0, 200.0)  # 0, 400
    a0Vjet = RooRealVar("a0Vjet", "width of the erf", -0.1, -5, 0)
    a1Vjet = RooRealVar("a1Vjet", "width of the erf", 0.6, 0, 5)
    a2Vjet = RooRealVar("a2Vjet", "width of the erf", -0.1, -1, 1)

    if channel == "XZhnnb":
        offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 500.0, 200.0, 1000.0)
    if channel == "XZhnnbb":
        offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 350.0, 200.0, 500.0)
    #    if channel == "XWhenb" or channel == "XZheeb":
    #        offsetVjet.setVal(120.)
    #        offsetVjet.setConstant(True)
    if channel == "XWhenb":
        offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 120.0, 80.0, 155.0)
    if channel == "XWhenbb" or channel == "XZhmmb":
        offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 67.0, 50.0, 100.0)
    if channel == "XWhmnb":
        offsetVjet = RooRealVar("offsetVjet", "offset of the erf", 30.0, -50.0, 600.0)
    if channel == "XZheeb":
        offsetVjet.setMin(-400)
        offsetVjet.setVal(0.0)
        offsetVjet.setMax(1000)
        widthVjet.setVal(1.0)

    # Define V+jets model
    if fitFuncVjet == "ERFEXP":
        VjetMass = RooErfExpPdf("VjetMass", fitFuncVjet, J_mass, constVjet, offsetVjet, widthVjet)
    elif fitFuncVjet == "EXP":
        VjetMass = RooExponential("VjetMass", fitFuncVjet, J_mass, constVjet)
    elif fitFuncVjet == "GAUS":
        VjetMass = RooGaussian("VjetMass", fitFuncVjet, J_mass, offsetVjet, widthVjet)
    elif fitFuncVjet == "POL":
        VjetMass = RooChebychev("VjetMass", fitFuncVjet, J_mass, RooArgList(a0Vjet, a1Vjet, a2Vjet))
    elif fitFuncVjet == "POW":
        VjetMass = RooGenericPdf("VjetMass", fitFuncVjet, "@0^@1", RooArgList(J_mass, a0Vjet))
    else:
        print "  ERROR! Pdf", fitFuncVjet, "is not implemented for Vjets"
        exit()

    if fitAltFuncVjet == "POL":
        VjetMass2 = RooChebychev("VjetMass2", "polynomial for V+jets mass", J_mass, RooArgList(a0Vjet, a1Vjet, a2Vjet))
    else:
        print "  ERROR! Pdf", fitAltFuncVjet, "is not implemented for Vjets"
        exit()

    # fit to main bkg in MC (whole range)
    frVjet = VjetMass.fitTo(
        setVjet,
        RooFit.SumW2Error(True),
        RooFit.Range("h_reasonable_range"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit2"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )
    frVjet2 = VjetMass2.fitTo(
        setVjet,
        RooFit.SumW2Error(True),
        RooFit.Range("h_reasonable_range"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit2"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )

    if VERBOSE:
        print "********** Fit result [JET MASS Vjets] *" + "*" * 40, "\n", frVjet.Print(), "\n", "*" * 80

    # likelihoodScan(VjetMass, setVjet, [constVjet, offsetVjet, widthVjet])

    # *******************************************************#
    #                                                       #
    #                 VV, VH normalization                  #
    #                                                       #
    # *******************************************************#

    # Variables for VV
    # Error function and exponential to model the bulk
    constVV = RooRealVar("constVV", "slope of the exp", -0.030, -0.1, 0.0)
    offsetVV = RooRealVar("offsetVV", "offset of the erf", 90.0, 1.0, 300.0)
    widthVV = RooRealVar("widthVV", "width of the erf", 50.0, 1.0, 100.0)
    erfrVV = RooErfExpPdf("baseVV", "error function for VV jet mass", J_mass, constVV, offsetVV, widthVV)
    expoVV = RooExponential("baseVV", "error function for VV jet mass", J_mass, constVV)
    # gaussian for the V mass peak
    meanVV = RooRealVar("meanVV", "mean of the gaussian", 90.0, 60.0, 100.0)
    sigmaVV = RooRealVar("sigmaVV", "sigma of the gaussian", 10.0, 6.0, 30.0)
    fracVV = RooRealVar("fracVV", "fraction of gaussian wrt erfexp", 3.2e-1, 0.0, 1.0)
    gausVV = RooGaussian("gausVV", "gaus for VV jet mass", J_mass, meanVV, sigmaVV)
    # gaussian for the H mass peak
    meanVH = RooRealVar("meanVH", "mean of the gaussian", 125.0, 100.0, 150.0)
    sigmaVH = RooRealVar("sigmaVH", "sigma of the gaussian", 10.0, 5.0, 50.0)
    fracVH = RooRealVar("fracVH", "fraction of gaussian wrt erfexp", 1.5e-2, 0.0, 1.0)
    gausVH = RooGaussian("gausVH", "gaus for VH jet mass", J_mass, meanVH, sigmaVH)

    # Define VV model
    if fitFuncVV == "ERFEXPGAUS":
        VVMass = RooAddPdf("VVMass", fitFuncVV, RooArgList(gausVV, erfrVV), RooArgList(fracVV))
    elif fitFuncVV == "ERFEXPGAUS2":
        VVMass = RooAddPdf("VVMass", fitFuncVV, RooArgList(gausVH, gausVV, erfrVV), RooArgList(fracVH, fracVV))
    elif fitFuncVV == "EXPGAUS":
        VVMass = RooAddPdf("VVMass", fitFuncVV, RooArgList(gausVV, expoVV), RooArgList(fracVV))
    elif fitFuncVV == "EXPGAUS2":
        VVMass = RooAddPdf("VVMass", fitFuncVV, RooArgList(gausVH, gausVV, expoVV), RooArgList(fracVH, fracVV))
    else:
        print "  ERROR! Pdf", fitFuncVV, "is not implemented for VV"
        exit()

    # fit to secondary bkg in MC (whole range)
    frVV = VVMass.fitTo(
        setVV,
        RooFit.SumW2Error(True),
        RooFit.Range("h_reasonable_range"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit2"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )

    if VERBOSE:
        print "********** Fit result [JET MASS VV] ****" + "*" * 40, "\n", frVV.Print(), "\n", "*" * 80

    # *******************************************************#
    #                                                       #
    #                 Top, ST normalization                 #
    #                                                       #
    # *******************************************************#

    # Variables for Top
    # Error Function * Exponential to model the bulk
    constTop = RooRealVar("constTop", "slope of the exp", -0.030, -1.0, 0.0)
    offsetTop = RooRealVar("offsetTop", "offset of the erf", 175.0, 50.0, 250.0)
    widthTop = RooRealVar("widthTop", "width of the erf", 100.0, 1.0, 300.0)
    gausTop = RooGaussian("baseTop", "gaus for Top jet mass", J_mass, offsetTop, widthTop)
    erfrTop = RooErfExpPdf("baseTop", "error function for Top jet mass", J_mass, constTop, offsetTop, widthTop)
    # gaussian for the W mass peak
    meanW = RooRealVar("meanW", "mean of the gaussian", 80.0, 70.0, 90.0)
    sigmaW = RooRealVar("sigmaW", "sigma of the gaussian", 10.0, 2.0, 20.0)
    fracW = RooRealVar("fracW", "fraction of gaussian wrt erfexp", 0.1, 0.0, 1.0)
    gausW = RooGaussian("gausW", "gaus for W jet mass", J_mass, meanW, sigmaW)
    # gaussian for the Top mass peak
    meanT = RooRealVar("meanT", "mean of the gaussian", 175.0, 150.0, 200.0)
    sigmaT = RooRealVar("sigmaT", "sigma of the gaussian", 12.0, 5.0, 30.0)
    fracT = RooRealVar("fracT", "fraction of gaussian wrt erfexp", 0.1, 0.0, 1.0)
    gausT = RooGaussian("gausT", "gaus for T jet mass", J_mass, meanT, sigmaT)

    if channel == "XZheeb" or channel == "XZheebb" or channel == "XZhmmb" or channel == "XZhmmbb":
        offsetTop = RooRealVar("offsetTop", "offset of the erf", 200.0, -50.0, 450.0)
        widthTop = RooRealVar("widthTop", "width of the erf", 100.0, 1.0, 1000.0)

    # Define Top model
    if fitFuncTop == "ERFEXPGAUS2":
        TopMass = RooAddPdf("TopMass", fitFuncTop, RooArgList(gausW, gausT, erfrTop), RooArgList(fracW, fracT))
    elif fitFuncTop == "ERFEXPGAUS":
        TopMass = RooAddPdf("TopMass", fitFuncTop, RooArgList(gausT, erfrTop), RooArgList(fracT))
    elif fitFuncTop == "GAUS3":
        TopMass = RooAddPdf("TopMass", fitFuncTop, RooArgList(gausW, gausT, gausTop), RooArgList(fracW, fracT))
    elif fitFuncTop == "GAUS2":
        TopMass = RooAddPdf("TopMass", fitFuncTop, RooArgList(gausT, gausTop), RooArgList(fracT))
    elif fitFuncTop == "GAUS":
        TopMass = RooGaussian("TopMass", fitFuncTop, J_mass, offsetTop, widthTop)
    else:
        print "  ERROR! Pdf", fitFuncTop, "is not implemented for Top"
        exit()

    # fit to secondary bkg in MC (whole range)
    frTop = TopMass.fitTo(
        setTop,
        RooFit.SumW2Error(True),
        RooFit.Range("h_reasonable_range"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit2"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )

    if VERBOSE:
        print "********** Fit result [JET MASS TOP] ***" + "*" * 40, "\n", frTop.Print(), "\n", "*" * 80

    # likelihoodScan(TopMass, setTop, [offsetTop, widthTop])

    # *******************************************************#
    #                                                       #
    #                 All bkg normalization                 #
    #                                                       #
    # *******************************************************#

    #    nVjet.setConstant(False)
    #    nVjet2.setConstant(False)
    #
    #    constVjet.setConstant(False)
    #    offsetVjet.setConstant(False)
    #    widthVjet.setConstant(False)
    #    a0Vjet.setConstant(False)
    #    a1Vjet.setConstant(False)
    #    a2Vjet.setConstant(False)

    constVV.setConstant(True)
    offsetVV.setConstant(True)
    widthVV.setConstant(True)
    meanVV.setConstant(True)
    sigmaVV.setConstant(True)
    fracVV.setConstant(True)
    meanVH.setConstant(True)
    sigmaVH.setConstant(True)
    fracVH.setConstant(True)

    constTop.setConstant(True)
    offsetTop.setConstant(True)
    widthTop.setConstant(True)
    meanW.setConstant(True)
    sigmaW.setConstant(True)
    fracW.setConstant(True)
    meanT.setConstant(True)
    sigmaT.setConstant(True)
    fracT.setConstant(True)

    nVV.setConstant(True)
    nTop.setConstant(True)
    nVjet.setConstant(False)
    nVjet2.setConstant(False)

    # Final background model by adding the main+secondary pdfs (using 'coef': ratio of the secondary/main, from MC)
    TopMass_ext = RooExtendPdf("TopMass_ext", "extended p.d.f", TopMass, nTop)
    VVMass_ext = RooExtendPdf("VVMass_ext", "extended p.d.f", VVMass, nVV)
    VjetMass_ext = RooExtendPdf("VjetMass_ext", "extended p.d.f", VjetMass, nVjet)
    VjetMass2_ext = RooExtendPdf("VjetMass_ext", "extended p.d.f", VjetMass, nVjet2)
    BkgMass = RooAddPdf(
        "BkgMass", "BkgMass", RooArgList(TopMass_ext, VVMass_ext, VjetMass_ext), RooArgList(nTop, nVV, nVjet)
    )
    BkgMass2 = RooAddPdf(
        "BkgMass2", "BkgMass2", RooArgList(TopMass_ext, VVMass_ext, VjetMass2_ext), RooArgList(nTop, nVV, nVjet2)
    )
    BkgMass.fixAddCoefRange("h_reasonable_range")
    BkgMass2.fixAddCoefRange("h_reasonable_range")

    # Extended fit model to data in SB
    frMass = BkgMass.fitTo(
        setDataSB,
        RooFit.SumW2Error(True),
        RooFit.Extended(True),
        RooFit.Range("LSBrange,HSBrange"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )  # , RooFit.NumCPU(10)
    if VERBOSE:
        print "********** Fit result [JET MASS DATA] **" + "*" * 40, "\n", frMass.Print(), "\n", "*" * 80
    frMass2 = BkgMass2.fitTo(
        setDataSB,
        RooFit.SumW2Error(True),
        RooFit.Extended(True),
        RooFit.Range("LSBrange,HSBrange"),
        RooFit.Strategy(2),
        RooFit.Minimizer("Minuit"),
        RooFit.Save(1),
        RooFit.PrintLevel(1 if VERBOSE else -1),
    )
    if VERBOSE:
        print "********** Fit result [JET MASS DATA] **" + "*" * 40, "\n", frMass2.Print(), "\n", "*" * 80

    # if SCAN:
    #    likelihoodScan(VjetMass, setVjet, [constVjet, offsetVjet, widthVjet])

    # Fix normalization and parameters of V+jets after the fit to data
    nVjet.setConstant(True)
    nVjet2.setConstant(True)

    constVjet.setConstant(True)
    offsetVjet.setConstant(True)
    widthVjet.setConstant(True)
    a0Vjet.setConstant(True)
    a1Vjet.setConstant(True)
    a2Vjet.setConstant(True)

    # integrals for global normalization
    # do not integrate the composte model: results have no sense

    # integral for normalization in the SB
    iSBVjet = VjetMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    iSBVV = VVMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    iSBTop = TopMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))

    # integral for normalization in the SR
    iSRVjet = VjetMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    iSRVV = VVMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    iSRTop = TopMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))

    # integral for normalization in the VR
    iVRVjet = VjetMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    iVRVV = VVMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    iVRTop = TopMass.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))

    # formual vars
    SByield = RooFormulaVar(
        "SByield", "extrapolation to SR", "@0*@1 + @2*@3 + @4*@5", RooArgList(iSBVjet, nVjet, iSBVV, nVV, iSBTop, nTop)
    )
    VRyield = RooFormulaVar(
        "VRyield", "extrapolation to VR", "@0*@1 + @2*@3 + @4*@5", RooArgList(iVRVjet, nVjet, iVRVV, nVV, iVRTop, nTop)
    )
    SRyield = RooFormulaVar(
        "SRyield", "extrapolation to SR", "@0*@1 + @2*@3 + @4*@5", RooArgList(iSRVjet, nVjet, iSRVV, nVV, iSRTop, nTop)
    )

    # fractions
    fSBVjet = RooRealVar(
        "fVjet", "Fraction of Vjet events in SB", iSBVjet.getVal() * nVjet.getVal() / SByield.getVal(), 0.0, 1.0
    )
    fSBVV = RooRealVar(
        "fSBVV", "Fraction of VV events in SB", iSBVV.getVal() * nVV.getVal() / SByield.getVal(), 0.0, 1.0
    )
    fSBTop = RooRealVar(
        "fSBTop", "Fraction of Top events in SB", iSBTop.getVal() * nTop.getVal() / SByield.getVal(), 0.0, 1.0
    )

    fSRVjet = RooRealVar(
        "fSRVjet", "Fraction of Vjet events in SR", iSRVjet.getVal() * nVjet.getVal() / SRyield.getVal(), 0.0, 1.0
    )
    fSRVV = RooRealVar(
        "fSRVV", "Fraction of VV events in SR", iSRVV.getVal() * nVV.getVal() / SRyield.getVal(), 0.0, 1.0
    )
    fSRTop = RooRealVar(
        "fSRTop", "Fraction of Top events in SR", iSRTop.getVal() * nTop.getVal() / SRyield.getVal(), 0.0, 1.0
    )

    # final normalization values
    bkgYield = SRyield.getVal()
    bkgYield2 = (
        (VjetMass2.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))).getVal()
        * nVjet2.getVal()
        + iSRVV.getVal() * nVV.getVal()
        + iSRTop.getVal() * nTop.getVal()
    )
    bkgYield_syst = math.sqrt(SRyield.getPropagatedError(frVV) ** 2 + SRyield.getPropagatedError(frTop) ** 2)
    bkgYield_stat = math.sqrt(SRyield.getPropagatedError(frMass) ** 2)
    bkgYield_alte = abs(bkgYield - bkgYield2)  # /bkgYield
    bkgYield_eig_norm = RooRealVar("predSR_eig_norm", "expected yield in SR", bkgYield, 0.0, 1.0e6)

    print "Events in channel", channel, ": V+jets %.3f (%.1f%%),   VV %.3f (%.1f%%),   Top %.3f (%.1f%%)" % (
        iSRVjet.getVal() * nVjet.getVal(),
        fSRVjet.getVal() * 100,
        iSRVV.getVal() * nVV.getVal(),
        fSRVV.getVal() * 100,
        iSRTop.getVal() * nTop.getVal(),
        fSRTop.getVal() * 100,
    )
    print "Events in channel", channel, ": Integral = $%.3f$ & $\pm %.3f$ & $\pm %.3f$ & $\pm %.3f$, observed = %.0f" % (
        bkgYield,
        bkgYield_stat,
        bkgYield_syst,
        bkgYield_alte,
        setDataSR.sumEntries() if not False else -1,
    )
Пример #22
0
resultM = rowM * ( corM * colM )
print "resultM(0,0):", resultM(0,0)

var_by_hand_error = math.sqrt( pow( resultM(0,0) , 2 ) )


print "var_by_hand_central: ", var_by_hand_central ," +/- ",var_by_hand_error

# -------------------------------------------------
# Rooformula var = [ 2*mean2 + 3*sigma2 ]

mean2.setVal(par1_value)
sigma2.setVal(par2_value)

var_formula = RooFormulaVar("var", "2*mean2 + 3*sigma2", "2 * @0  + 3 * @1", RooArgList(mean2,sigma2) )
var_formula_error = var_formula.getPropagatedError( fit_result )

print "var_formula:         ", var_formula.getVal()," +/- ", var_formula_error

print ""
# save
Save_Dir = "/afs/cern.ch/user/y/yuchang/www/jacopo_plotsAlpha/my_test_plot"

c1 = TCanvas("c1","c 1",800,600)
c1.cd()
xframe.Draw()
c1.SaveAs(Save_Dir+"/"+"test_correlation_matrix_and_error.pdf")


Пример #23
0
myReader = TTreeReader("outuple", inputfile)
nentries = xTuple.GetEntries()
print nentries

# In[8]:

massbins = (6.0 - 4.0) / 0.005
mass = RooRealVar("xM", "M(#mu#muKK)[GeV]", 4.0, 6.0)
mass.setBins(int(massbins))
lxy = RooRealVar("xL", "l(xy)", 0.0, 10000.)
hlt = RooRealVar("xHlt", "xHlt", 0.0, 20.0)
masskk = RooRealVar("kkM", "kkM", 0.5, 1.5)
massbins = 100
masskk.setBins(int(massbins))
massmumu = RooRealVar("mumuM", "mumuM", 2.5, 3.5)
cutFormula = RooFormulaVar("cutFormula", "cutFormula", "xHlt!=8.0",
                           RooArgList(hlt))

# In[9]:

alldata = RooDataSet("alldata", "alldata", xTuple,
                     RooArgSet(masskk, mass, lxy, hlt,
                               massmumu))  #,cutFormula)
datasetfile = TFile("xMassDataset.root", "RECREATE")
datasetfile.cd()
alldata.Write()

# In[10]:

alldata.numEntries()

# In[ ]:
Пример #24
0
mumuMass = RooRealVar("mumuMass", "mumuMass", 0, 6)
mumuMassE = RooRealVar("mumuMassE", "mumuMassE", 0, 10000)
tagB0 = RooRealVar("tagB0", "tagB0", 0, 6)
genSignal = RooRealVar("genSignal", "genSignal", 0, 6)

tagged_mass.setRange("full", 5.0, 5.6)
thevars = RooArgSet()
thevars.add(tagged_mass)
thevars.add(mumuMass)
thevars.add(mumuMassE)
thevars.add(tagB0)
thevars.add(genSignal)

fulldata = RooDataSet('fulldata', 'fulldataset', tData, RooArgSet(thevars))
## add to the input tree the combination of the variables, to be used for the cuts on the dimuon mass
deltaB0Mfunc = RooFormulaVar("deltaB0M", "deltaB0M", "@0 - @1",
                             RooArgList(tagged_mass, B0Mass))
deltaJMfunc = RooFormulaVar("deltaJpsiM", "deltaJpsiM", "@0 - @1",
                            RooArgList(mumuMass, JPsiMass))
deltaPMfunc = RooFormulaVar("deltaPsiPM", "deltaPsiPM", "@0 - @1",
                            RooArgList(mumuMass, PsiPMass))
deltaB0M = fulldata.addColumn(deltaB0Mfunc)
deltaJpsiM = fulldata.addColumn(deltaJMfunc)
deltaPsiPM = fulldata.addColumn(deltaPMfunc)
thevars.add(deltaB0M)
thevars.add(deltaJpsiM)
thevars.add(deltaPsiPM)

out_f = TFile("checkfrt%s_jpsi.root" % args.year, "RECREATE")
out_w = ROOT.RooWorkspace("toy_w")

for ibin in range(len(q2binning) - 1):
Пример #25
0
    thevars = RooArgSet()
    thevars.add(bMass)
    thevars.add(bBarMass)
    thevars.add(mumuMass)
    thevars.add(mumuMassE)
    thevars.add(tagB0)
    thevars.add(bdt_prob)

    tree = ROOT.TChain('ntuple')
    tree.AddFile(ifileMC)
    fulldata = RooDataSet('fulldata', 'fulldataset', tree, RooArgSet(thevars))

    ## add to the input tree the combination of the variables for the B0 arb. mass
    theBMassfunc = RooFormulaVar("theBMass",
                                 "#mu^{+}#mu^{-}K^{#pm}#pi^{#mp} mass [GeV]",
                                 "@0*@1 + (1-@0)*@2",
                                 RooArgList(tagB0, bMass, bBarMass))
    ## add to the input tree the combination of the variables, to be used for the cuts on the dimuon mass
    theBMass = fulldata.addColumn(theBMassfunc)
    deltaB0Mfunc = RooFormulaVar("deltaB0M", "deltaB0M", "@0 - @1",
                                 RooArgList(theBMass, B0Mass))
    deltaJMfunc = RooFormulaVar("deltaJpsiM", "deltaJpsiM", "@0 - @1",
                                RooArgList(mumuMass, JPsiMass))
    deltaPMfunc = RooFormulaVar("deltaPsiPM", "deltaPsiPM", "@0 - @1",
                                RooArgList(mumuMass, PsiPMass))

    theBMass.setRange(4.9, 5.6)
    deltaB0M = fulldata.addColumn(deltaB0Mfunc)
    deltaJpsiM = fulldata.addColumn(deltaJMfunc)
    deltaPsiPM = fulldata.addColumn(deltaPMfunc)
Пример #26
0
def pdf_logPt2_incoh():

    #PDF fit to log_10(pT^2)

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #output log file
    out = open("out.txt", "w")
    ut.log_results(
        out, "in " + infile + " in_coh " + infile_coh + " in_gg " + infile_gg)
    loglist = [(x, eval(x)) for x in
               ["ptbin", "ptmin", "ptmax", "mmin", "mmax", "fitran", "binned"]]
    strlog = ut.make_log_string(loglist)
    ut.log_results(out, strlog + "\n")

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar("x", "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})",
                              draw, RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    tree_in.Draw(draw + " >> hPt", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    ut.log_results(out, ut.log_fit_result(r1))

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    ut.log_results(out, "log_10(pT^2) parametrization:")
    ut.log_results(out, "A = {0:.2f}".format(a))
    ut.log_results(out, ut.log_fit_parameters(r1, 0, 2))
    print "a =", a

    #Coherent contribution
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.Sumw2()
    #tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_coh.Draw("TMath::Log10(jGenPt*jGenPt) >> hPtCoh", strsel)
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    #ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5, -2.1)
    #ut.norm_to_num(hPtCoh, 405, rt.kBlue)
    print "Coherent integral:", hPtCoh.Integral()

    #TMath::Log10(jRecPt*jRecPt)

    #Sartre generated coherent shape
    sartre = TFile.Open(
        "/home/jaroslav/sim/sartre_tx/sartre_AuAu_200GeV_Jpsi_coh_2p7Mevt.root"
    )
    sartre_tree = sartre.Get("sartre_tree")
    hSartre = ut.prepare_TH1D("hSartre", ptbin, ptmin, ptmax)
    sartre_tree.Draw("TMath::Log10(pT*pT) >> hSartre",
                     "rapidity>-1 && rapidity<1")
    ut.norm_to_data(hSartre, hPt, rt.kViolet, -5, -2)  # norm for Sartre

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen)

    print "Int GG:", hPtGG.Integral()

    #psi' contribution
    psiP = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP.Get("jRecTree")
    hPtPsiP = ut.prepare_TH1D("hPtPsiP", ptbin, ptmin, ptmax)
    psiP_tree.Draw(draw + " >> hPtPsiP", strsel)
    ut.norm_to_num(hPtPsiP, 12, rt.kViolet)

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    hSum.Add(hPtCoh)
    #add psi(2S) contribution
    #hSum.Add(hPtPsiP)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")
    frame.SetMaximum(75)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    amin = TMath.Power(10, ptmin)
    amax = TMath.Power(10, ptmax) - 1
    print amin, amax
    pt2func = TF1("f1", "TMath::Power(10, x)", amin,
                  amax)  #TMath::Power(x, 10)
    aPt2 = TGaxis(-5, 75, 1, 75, "f1", 510, "-")
    ut.set_axis(aPt2)
    aPt2.SetTitle("pt2")
    #aPt2.Draw();

    leg = ut.prepare_leg(0.57, 0.78, 0.14, 0.19, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed)
    leg.AddEntry(hx, "Data")
    leg.AddEntry(hPtCoh, "Sartre MC", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    #leg.AddEntry(ln, "Incoherent fit", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    desc = pdesc(frame, 0.14, 0.8, 0.054)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    desc.draw()

    #put the sum
    #hSum.Draw("same")

    #gPad.SetLogy()

    frame.Draw("same")

    #put gamma-gamma
    hPtGG.Draw("same")
    #put coherent J/psi
    hPtCoh.Draw("same")

    #put Sartre generated coherent shape
    #hSartre.Draw("same")

    #put psi(2S) contribution
    #hPtPsiP.Draw("same")

    leg2 = ut.prepare_leg(0.14, 0.9, 0.14, 0.08, 0.03)
    leg2.AddEntry(
        ln,
        "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})",
        "l")
    #leg2.AddEntry(hPtCoh, "Sartre MC reconstructed", "l")
    #leg2.AddEntry(hSartre, "Sartre MC generated", "l")
    leg2.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Пример #27
0
# retrieve acceptance functions
acceptance1 = workspace.function('acceptance_%s' % mode1) # DsK
acceptance2 = workspace.function('acceptance_%s' % mode2) # Dsπ

# Acceptance ratio FIXME: hardcoded ROOT file
rfile = TFile('data/acceptance-ratio-hists.root', 'read')
hcorr = rfile.Get('haccratio_cpowerlaw')

ardhist = RooDataHist('ardhist', 'DsK/DsPi acceptance ratio datahist',
                      RooArgList(time), RooFit.Import(hcorr, False))
accratio = RooHistFunc('accratio', 'DsK/DsPi acceptance ratio',
                       RooArgSet(time), ardhist)
cacceptance = PowLawAcceptance(acceptance2, 'cacceptance', accratio)
# cacceptance = PowLawAcceptance('cacceptance', 'Corrected Power law acceptance',
#                                turnon, time, offset, exponent, beta, accratio)

ratio = RooFormulaVar('ratio', '@0/@1', RooArgList(acceptance1, cacceptance))

tframe = time.frame(RooFit.Range('fullrange'), RooFit.Name('ptime'),
                    RooFit.Title('Acceptance ratio (0.2 - 10 ps)'))

acceptance1.plotOn(tframe, RooFit.LineColor(kBlue))
# acceptance2.plotOn(tframe, RooFit.LineColor(kRed))
# accratio.plotOn(tframe, RooFit.LineColor(kBlack))
cacceptance.plotOn(tframe, RooFit.LineColor(kRed))
ratio.plotOn(tframe, RooFit.LineColor(kGreen))
tframe.Draw()

if doPrint: gPad.Print('plots/flat-test.png')
Пример #28
0
models = {}
gauss_models = {}
canvases = {}
__objects = []
for o, d in zip((x_obs, y_obs, pull_xm, pull_ym), ('x', 'y', 'xm', 'ym')):
    tag = '_' + d
    mean1 = RooRealVar('mean1' + tag, 'mean1' + tag, 0, -10, 10)
    s1 = RooRealVar('s1' + tag, 's1' + tag, 10, 0, 20)
    s2 = RooRealVar('s2' + tag, 's2' + tag, 15, 0, 40)
    frac = RooRealVar('f' + tag, 'f' + tag, 0.2, 0.001, 0.499)
    __objects += [mean1, s1, s2, frac]
    sm = RooRealVar('sm' + tag, 'sm' + tag, 1, 0.02, 20)
    ss = RooRealVar('ss' + tag, 'ss' + tag, 1, 0.01, 19)
    sf1 = RooFormulaVar("sf1" + tag, "sf1" + tag,
                        "- sqrt(@0 / (1 - @0)) * @1 + @2",
                        RooArgList(frac, ss, sm))
    sf2 = RooFormulaVar("sf2" + tag, "sf2" + tag,
                        "sqrt((1 - @0) / @0) * @1 + @2",
                        RooArgList(frac, ss, sm))
    __objects += [sm, ss, sf1, sf2]
    # else:
    #     mean2 = RooRealVar('mean2' + tag, 'mean2' + tag, 0, -10, 10)
    #     __objects += [mean2]
    gauss = RooGaussian("gauss" + tag, "gauss" + tag, o, mean1, s1)
    gauss_models[d] = gauss
    g1 = RooGaussian("g1" + tag, "g1" + tag, o, mean1, sf1)
    g2 = RooGaussian("g2" + tag, "g2" + tag, o, mean1, sf2)
    model = RooAddModel("model" + tag, "model" + tag, RooArgList(g1, g2),
                        RooArgList(frac))
    __objects += [g1, g2, model]
Пример #29
0
def signal(category):

    interPar = True
    n = len(genPoints)

    cColor = color[category] if category in color else 4
    nBtag = category.count('b')
    isAH = False  #relict from using Alberto's more complex script

    if not os.path.exists(PLOTDIR + "MC_signal_" + YEAR):
        os.makedirs(PLOTDIR + "MC_signal_" + YEAR)

    #*******************************************************#
    #                                                       #
    #              Variables and selections                 #
    #                                                       #
    #*******************************************************#

    X_mass = RooRealVar("jj_mass_widejet", "m_{jj}", X_min, X_max, "GeV")
    j1_pt = RooRealVar("jpt_1", "jet1 pt", 0., 13000., "GeV")
    jj_deltaEta = RooRealVar("jj_deltaEta_widejet", "", 0., 5.)
    jbtag_WP_1 = RooRealVar("jbtag_WP_1", "", -1., 4.)
    jbtag_WP_2 = RooRealVar("jbtag_WP_2", "", -1., 4.)
    fatjetmass_1 = RooRealVar("fatjetmass_1", "", -1., 2500.)
    fatjetmass_2 = RooRealVar("fatjetmass_2", "", -1., 2500.)
    jid_1 = RooRealVar("jid_1", "j1 ID", -1., 8.)
    jid_2 = RooRealVar("jid_2", "j2 ID", -1., 8.)
    jnmuons_1 = RooRealVar("jnmuons_1", "j1 n_{#mu}", -1., 8.)
    jnmuons_2 = RooRealVar("jnmuons_2", "j2 n_{#mu}", -1., 8.)
    jnmuons_loose_1 = RooRealVar("jnmuons_loose_1", "jnmuons_loose_1", -1., 8.)
    jnmuons_loose_2 = RooRealVar("jnmuons_loose_2", "jnmuons_loose_2", -1., 8.)
    nmuons = RooRealVar("nmuons", "n_{#mu}", -1., 10.)
    nelectrons = RooRealVar("nelectrons", "n_{e}", -1., 10.)
    HLT_AK8PFJet500 = RooRealVar("HLT_AK8PFJet500", "", -1., 1.)
    HLT_PFJet500 = RooRealVar("HLT_PFJet500", "", -1., 1.)
    HLT_CaloJet500_NoJetID = RooRealVar("HLT_CaloJet500_NoJetID", "", -1., 1.)
    HLT_PFHT900 = RooRealVar("HLT_PFHT900", "", -1., 1.)
    HLT_AK8PFJet550 = RooRealVar("HLT_AK8PFJet550", "", -1., 1.)
    HLT_PFJet550 = RooRealVar("HLT_PFJet550", "", -1., 1.)
    HLT_CaloJet550_NoJetID = RooRealVar("HLT_CaloJet550_NoJetID", "", -1., 1.)
    HLT_PFHT1050 = RooRealVar("HLT_PFHT1050", "", -1., 1.)
    #HLT_DoublePFJets100_CaloBTagDeepCSV_p71                 =RooRealVar("HLT_DoublePFJets100_CaloBTagDeepCSV_p71"                , "", -1., 1. )
    #HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71", "", -1., 1. )
    #HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71 =RooRealVar("HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71", "", -1., 1. )
    #HLT_DoublePFJets200_CaloBTagDeepCSV_p71                 =RooRealVar("HLT_DoublePFJets200_CaloBTagDeepCSV_p71"                , "", -1., 1. )
    #HLT_DoublePFJets350_CaloBTagDeepCSV_p71                 =RooRealVar("HLT_DoublePFJets350_CaloBTagDeepCSV_p71"                , "", -1., 1. )
    #HLT_DoublePFJets40_CaloBTagDeepCSV_p71                  =RooRealVar("HLT_DoublePFJets40_CaloBTagDeepCSV_p71"                 , "", -1., 1. )

    weight = RooRealVar("eventWeightLumi", "", -1.e9, 1.e9)

    # Define the RooArgSet which will include all the variables defined before
    # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add'
    variables = RooArgSet(X_mass)
    variables.add(
        RooArgSet(j1_pt, jj_deltaEta, jbtag_WP_1, jbtag_WP_2, fatjetmass_1,
                  fatjetmass_2, jnmuons_1, jnmuons_2, weight))
    variables.add(
        RooArgSet(nmuons, nelectrons, jid_1, jid_2, jnmuons_loose_1,
                  jnmuons_loose_2))
    variables.add(
        RooArgSet(HLT_AK8PFJet500, HLT_PFJet500, HLT_CaloJet500_NoJetID,
                  HLT_PFHT900, HLT_AK8PFJet550, HLT_PFJet550,
                  HLT_CaloJet550_NoJetID, HLT_PFHT1050))
    #variables.add(RooArgSet(HLT_DoublePFJets100_CaloBTagDeepCSV_p71, HLT_DoublePFJets116MaxDeta1p6_DoubleCaloBTagDeepCSV_p71, HLT_DoublePFJets128MaxDeta1p6_DoubleCaloBTagDeepCSV_p71, HLT_DoublePFJets200_CaloBTagDeepCSV_p71, HLT_DoublePFJets350_CaloBTagDeepCSV_p71, HLT_DoublePFJets40_CaloBTagDeepCSV_p71))
    X_mass.setRange("X_reasonable_range", X_mass.getMin(), X_mass.getMax())
    X_mass.setRange("X_integration_range", X_mass.getMin(), X_mass.getMax())

    if VARBINS:
        binsXmass = RooBinning(len(abins) - 1, abins)
        X_mass.setBinning(binsXmass)
        plot_binning = RooBinning(
            int((X_mass.getMax() - X_mass.getMin()) / 100.), X_mass.getMin(),
            X_mass.getMax())
    else:
        X_mass.setBins(int((X_mass.getMax() - X_mass.getMin()) / 10))
        binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin()) / 100.),
                               X_mass.getMin(), X_mass.getMax())
        plot_binning = binsXmass

    X_mass.setBinning(plot_binning, "PLOT")

    #X_mass.setBins(int((X_mass.getMax() - X_mass.getMin())/10))
    #binsXmass = RooBinning(int((X_mass.getMax() - X_mass.getMin())/100), X_mass.getMin(), X_mass.getMax())
    #X_mass.setBinning(binsXmass, "PLOT")
    massArg = RooArgSet(X_mass)

    # Cuts
    if BTAGGING == 'semimedium':
        SRcut = aliasSM[category]
        #SRcut = aliasSM[category+"_vetoAK8"]
    else:
        SRcut = alias[category].format(WP=working_points[BTAGGING])
        #SRcut = alias[category+"_vetoAK8"].format(WP=working_points[BTAGGING])

    if ADDSELECTION: SRcut += SELECTIONS[options.selection]

    print "  Cut:\t", SRcut

    #*******************************************************#
    #                                                       #
    #                    Signal fits                        #
    #                                                       #
    #*******************************************************#

    treeSign = {}
    setSignal = {}

    vmean = {}
    vsigma = {}
    valpha1 = {}
    vslope1 = {}
    valpha2 = {}
    vslope2 = {}
    smean = {}
    ssigma = {}
    salpha1 = {}
    sslope1 = {}
    salpha2 = {}
    sslope2 = {}
    sbrwig = {}
    signal = {}
    signalExt = {}
    signalYield = {}
    signalIntegral = {}
    signalNorm = {}
    signalXS = {}
    frSignal = {}
    frSignal1 = {}
    frSignal2 = {}
    frSignal3 = {}

    # Signal shape uncertainties (common amongst all mass points)
    xmean_jes = RooRealVar(
        "CMS" + YEAR + "_sig_" + category + "_p1_scale_jes",
        "Variation of the resonance position with the jet energy scale", 0.02,
        -1., 1.)  #0.001
    smean_jes = RooRealVar(
        "CMS" + YEAR + "_sig_" + category + "_p1_jes",
        "Change of the resonance position with the jet energy scale", 0., -10,
        10)

    xsigma_jer = RooRealVar(
        "CMS" + YEAR + "_sig_" + category + "_p2_scale_jer",
        "Variation of the resonance width with the jet energy resolution",
        0.10, -1., 1.)
    ssigma_jer = RooRealVar(
        "CMS" + YEAR + "_sig_" + category + "_p2_jer",
        "Change of the resonance width with the jet energy resolution", 0.,
        -10, 10)

    xmean_jes.setConstant(True)
    smean_jes.setConstant(True)

    xsigma_jer.setConstant(True)
    ssigma_jer.setConstant(True)

    for m in massPoints:

        signalMass = "%s_M%d" % (stype, m)
        signalName = "ZpBB_{}_{}_M{}".format(YEAR, category, m)
        sampleName = "ZpBB_M{}".format(m)

        signalColor = sample[sampleName][
            'linecolor'] if signalName in sample else 1

        # define the signal PDF
        vmean[m] = RooRealVar(signalName + "_vmean", "Crystal Ball mean", m,
                              m * 0.96, m * 1.05)
        smean[m] = RooFormulaVar(signalName + "_mean", "@0*(1+@1*@2)",
                                 RooArgList(vmean[m], xmean_jes, smean_jes))

        vsigma[m] = RooRealVar(signalName + "_vsigma", "Crystal Ball sigma",
                               m * 0.0233, m * 0.019, m * 0.025)
        ssigma[m] = RooFormulaVar(
            signalName + "_sigma", "@0*(1+@1*@2)",
            RooArgList(vsigma[m], xsigma_jer, ssigma_jer))

        valpha1[m] = RooRealVar(
            signalName + "_valpha1", "Crystal Ball alpha 1", 0.2, 0.05, 0.28
        )  # number of sigmas where the exp is attached to the gaussian core. >0 left, <0 right
        salpha1[m] = RooFormulaVar(signalName + "_alpha1", "@0",
                                   RooArgList(valpha1[m]))

        #vslope1[m] = RooRealVar(signalName + "_vslope1", "Crystal Ball slope 1", 10., 0.1, 20.) # slope of the power tail
        vslope1[m] = RooRealVar(signalName + "_vslope1",
                                "Crystal Ball slope 1", 13., 10.,
                                20.)  # slope of the power tail
        sslope1[m] = RooFormulaVar(signalName + "_slope1", "@0",
                                   RooArgList(vslope1[m]))

        valpha2[m] = RooRealVar(signalName + "_valpha2",
                                "Crystal Ball alpha 2", 1.)
        valpha2[m].setConstant(True)
        salpha2[m] = RooFormulaVar(signalName + "_alpha2", "@0",
                                   RooArgList(valpha2[m]))

        #vslope2[m] = RooRealVar(signalName + "_vslope2", "Crystal Ball slope 2", 6., 2.5, 15.) # slope of the higher power tail
        ## FIXME test FIXME
        vslope2_estimation = -5.88111436852 + m * 0.00728809389442 + m * m * (
            -1.65059568762e-06) + m * m * m * (1.25128996309e-10)
        vslope2[m] = RooRealVar(signalName + "_vslope2",
                                "Crystal Ball slope 2", vslope2_estimation,
                                vslope2_estimation * 0.9, vslope2_estimation *
                                1.1)  # slope of the higher power tail
        ## FIXME end FIXME
        sslope2[m] = RooFormulaVar(
            signalName + "_slope2", "@0",
            RooArgList(vslope2[m]))  # slope of the higher power tail

        signal[m] = RooDoubleCrystalBall(signalName,
                                         "m_{%s'} = %d GeV" % ('X', m), X_mass,
                                         smean[m], ssigma[m], salpha1[m],
                                         sslope1[m], salpha2[m], sslope2[m])

        # extend the PDF with the yield to perform an extended likelihood fit
        signalYield[m] = RooRealVar(signalName + "_yield", "signalYield", 50,
                                    0., 1.e15)
        signalNorm[m] = RooRealVar(signalName + "_norm", "signalNorm", 1., 0.,
                                   1.e15)
        signalXS[m] = RooRealVar(signalName + "_xs", "signalXS", 1., 0., 1.e15)
        signalExt[m] = RooExtendPdf(signalName + "_ext", "extended p.d.f",
                                    signal[m], signalYield[m])

        # ---------- if there is no simulated signal, skip this mass point ----------
        if m in genPoints:
            if VERBOSE: print " - Mass point", m

            # define the dataset for the signal applying the SR cuts
            treeSign[m] = TChain("tree")

            if YEAR == 'run2':
                pd = sample[sampleName]['files']
                if len(pd) > 3:
                    print "multiple files given than years for a single masspoint:", pd
                    sys.exit()
                for ss in pd:
                    if not '2016' in ss and not '2017' in ss and not '2018' in ss:
                        print "unknown year given in:", ss
                        sys.exit()
            else:
                pd = [x for x in sample[sampleName]['files'] if YEAR in x]
                if len(pd) > 1:
                    print "multiple files given for a single masspoint/year:", pd
                    sys.exit()

            for ss in pd:

                if options.unskimmed:
                    j = 0
                    while True:
                        if os.path.exists(NTUPLEDIR + ss + "/" + ss +
                                          "_flatTuple_{}.root".format(j)):
                            treeSign[m].Add(NTUPLEDIR + ss + "/" + ss +
                                            "_flatTuple_{}.root".format(j))
                            j += 1
                        else:
                            print "found {} files for sample:".format(j), ss
                            break
                else:
                    if os.path.exists(NTUPLEDIR + ss + ".root"):
                        treeSign[m].Add(NTUPLEDIR + ss + ".root")
                    else:
                        print "found no file for sample:", ss

            if treeSign[m].GetEntries() <= 0.:
                if VERBOSE:
                    print " - 0 events available for mass", m, "skipping mass point..."
                signalNorm[m].setVal(-1)
                vmean[m].setConstant(True)
                vsigma[m].setConstant(True)
                salpha1[m].setConstant(True)
                sslope1[m].setConstant(True)
                salpha2[m].setConstant(True)
                sslope2[m].setConstant(True)
                signalNorm[m].setConstant(True)
                signalXS[m].setConstant(True)
                continue

            #setSignal[m] = RooDataSet("setSignal_"+signalName, "setSignal", variables, RooFit.Cut(SRcut), RooFit.WeightVar("eventWeightLumi*BTagAK4Weight_deepJet"), RooFit.Import(treeSign[m]))
            setSignal[m] = RooDataSet("setSignal_" + signalName, "setSignal",
                                      variables, RooFit.Cut(SRcut),
                                      RooFit.WeightVar(weight),
                                      RooFit.Import(treeSign[m]))
            if VERBOSE:
                print " - Dataset with", setSignal[m].sumEntries(
                ), "events loaded"

            # FIT
            entries = setSignal[m].sumEntries()
            if entries < 0. or entries != entries: entries = 0
            signalYield[m].setVal(entries)
            # Instead of eventWeightLumi
            #signalYield[m].setVal(entries * LUMI / (300000 if YEAR=='run2' else 100000) )

            if treeSign[m].GetEntries(SRcut) > 5:
                if VERBOSE: print " - Running fit"
                frSignal[m] = signalExt[m].fitTo(setSignal[m], RooFit.Save(1),
                                                 RooFit.Extended(True),
                                                 RooFit.SumW2Error(True),
                                                 RooFit.PrintLevel(-1))
                if VERBOSE:
                    print "********** Fit result [", m, "] **", category, "*" * 40, "\n", frSignal[
                        m].Print(), "\n", "*" * 80
                if VERBOSE: frSignal[m].correlationMatrix().Print()
                drawPlot(signalMass + "_" + category, stype + category, X_mass,
                         signal[m], setSignal[m], frSignal[m])

            else:
                print "  WARNING: signal", stype, "and mass point", m, "in category", category, "has 0 entries or does not exist"

            # Remove HVT cross sections
            #xs = getCrossSection(stype, channel, m)
            xs = 1.
            signalXS[m].setVal(xs * 1000.)

            signalIntegral[m] = signalExt[m].createIntegral(
                massArg, RooFit.NormSet(massArg),
                RooFit.Range("X_integration_range"))
            boundaryFactor = signalIntegral[m].getVal()
            if boundaryFactor < 0. or boundaryFactor != boundaryFactor:
                boundaryFactor = 0
            if VERBOSE:
                print " - Fit normalization vs integral:", signalYield[
                    m].getVal(), "/", boundaryFactor, "events"
            signalNorm[m].setVal(boundaryFactor * signalYield[m].getVal() /
                                 signalXS[m].getVal()
                                 )  # here normalize to sigma(X) x Br = 1 [fb]

        vmean[m].setConstant(True)
        vsigma[m].setConstant(True)
        valpha1[m].setConstant(True)
        vslope1[m].setConstant(True)
        valpha2[m].setConstant(True)
        vslope2[m].setConstant(True)
        signalNorm[m].setConstant(True)
        signalXS[m].setConstant(True)

    #*******************************************************#
    #                                                       #
    #                 Signal interpolation                  #
    #                                                       #
    #*******************************************************#

    ### FIXME FIXME just for a test FIXME FIXME

    #print
    #print
    #print "slope2 fit results:"
    #print
    #y_vals = []
    #for m in genPoints:
    #    y_vals.append(vslope2[m].getVal())
    #print "m =", genPoints
    #print "y =", y_vals
    #sys.exit()

    ### FIXME FIXME test end FIXME FIXME

    # ====== CONTROL PLOT ======
    color_scheme = [
        636, 635, 634, 633, 632, 633, 636, 635, 634, 633, 632, 633, 636, 635,
        634, 633, 632, 633, 636, 635, 634, 633, 632, 633, 636, 635, 634, 633,
        632, 633, 636, 635, 634, 633, 632, 633, 636, 635, 634, 633, 632, 633
    ]
    c_signal = TCanvas("c_signal", "c_signal", 800, 600)
    c_signal.cd()
    frame_signal = X_mass.frame()
    for j, m in enumerate(genPoints):
        if m in signalExt.keys():
            #print "color:",(j%9)+1
            #print "signalNorm[m].getVal() =", signalNorm[m].getVal()
            #print "RooAbsReal.NumEvent =", RooAbsReal.NumEvent
            signal[m].plotOn(
                frame_signal, RooFit.LineColor(color_scheme[j]),
                RooFit.Normalization(signalNorm[m].getVal(),
                                     RooAbsReal.NumEvent),
                RooFit.Range("X_reasonable_range"))
    frame_signal.GetXaxis().SetRangeUser(0, 10000)
    frame_signal.Draw()
    drawCMS(-1, "Simulation Preliminary", year=YEAR)
    #drawCMS(-1, "Work in Progress", year=YEAR, suppressCMS=True)
    #drawCMS(-1, "", year=YEAR, suppressCMS=True)
    drawAnalysis(category)
    drawRegion(category)

    c_signal.SaveAs(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" +
                    category + "_Signal.pdf")
    c_signal.SaveAs(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" +
                    category + "_Signal.png")
    #if VERBOSE: raw_input("Press Enter to continue...")
    # ====== CONTROL PLOT ======

    # Normalization
    gnorm = TGraphErrors()
    gnorm.SetTitle(";m_{X} (GeV);integral (GeV)")
    gnorm.SetMarkerStyle(20)
    gnorm.SetMarkerColor(1)
    gnorm.SetMaximum(0)
    inorm = TGraphErrors()
    inorm.SetMarkerStyle(24)
    fnorm = TF1("fnorm", "pol9", 700, 3000)
    fnorm.SetLineColor(920)
    fnorm.SetLineStyle(7)
    fnorm.SetFillColor(2)
    fnorm.SetLineColor(cColor)

    # Mean
    gmean = TGraphErrors()
    gmean.SetTitle(";m_{X} (GeV);gaussian mean (GeV)")
    gmean.SetMarkerStyle(20)
    gmean.SetMarkerColor(cColor)
    gmean.SetLineColor(cColor)
    imean = TGraphErrors()
    imean.SetMarkerStyle(24)
    fmean = TF1("fmean", "pol1", 0, 10000)
    fmean.SetLineColor(2)
    fmean.SetFillColor(2)

    # Width
    gsigma = TGraphErrors()
    gsigma.SetTitle(";m_{X} (GeV);gaussian width (GeV)")
    gsigma.SetMarkerStyle(20)
    gsigma.SetMarkerColor(cColor)
    gsigma.SetLineColor(cColor)
    isigma = TGraphErrors()
    isigma.SetMarkerStyle(24)
    fsigma = TF1("fsigma", "pol1", 0, 10000)
    fsigma.SetLineColor(2)
    fsigma.SetFillColor(2)

    # Alpha1
    galpha1 = TGraphErrors()
    galpha1.SetTitle(";m_{X} (GeV);crystal ball lower alpha")
    galpha1.SetMarkerStyle(20)
    galpha1.SetMarkerColor(cColor)
    galpha1.SetLineColor(cColor)
    ialpha1 = TGraphErrors()
    ialpha1.SetMarkerStyle(24)
    falpha1 = TF1("falpha", "pol1", 0, 10000)  #pol0
    falpha1.SetLineColor(2)
    falpha1.SetFillColor(2)

    # Slope1
    gslope1 = TGraphErrors()
    gslope1.SetTitle(";m_{X} (GeV);exponential lower slope (1/Gev)")
    gslope1.SetMarkerStyle(20)
    gslope1.SetMarkerColor(cColor)
    gslope1.SetLineColor(cColor)
    islope1 = TGraphErrors()
    islope1.SetMarkerStyle(24)
    fslope1 = TF1("fslope", "pol1", 0, 10000)  #pol0
    fslope1.SetLineColor(2)
    fslope1.SetFillColor(2)

    # Alpha2
    galpha2 = TGraphErrors()
    galpha2.SetTitle(";m_{X} (GeV);crystal ball upper alpha")
    galpha2.SetMarkerStyle(20)
    galpha2.SetMarkerColor(cColor)
    galpha2.SetLineColor(cColor)
    ialpha2 = TGraphErrors()
    ialpha2.SetMarkerStyle(24)
    falpha2 = TF1("falpha", "pol1", 0, 10000)  #pol0
    falpha2.SetLineColor(2)
    falpha2.SetFillColor(2)

    # Slope2
    gslope2 = TGraphErrors()
    gslope2.SetTitle(";m_{X} (GeV);exponential upper slope (1/Gev)")
    gslope2.SetMarkerStyle(20)
    gslope2.SetMarkerColor(cColor)
    gslope2.SetLineColor(cColor)
    islope2 = TGraphErrors()
    islope2.SetMarkerStyle(24)
    fslope2 = TF1("fslope", "pol1", 0, 10000)  #pol0
    fslope2.SetLineColor(2)
    fslope2.SetFillColor(2)

    n = 0
    for i, m in enumerate(genPoints):
        if not m in signalNorm.keys(): continue
        if signalNorm[m].getVal() < 1.e-6: continue

        if gnorm.GetMaximum() < signalNorm[m].getVal():
            gnorm.SetMaximum(signalNorm[m].getVal())
        gnorm.SetPoint(n, m, signalNorm[m].getVal())
        #gnorm.SetPointError(i, 0, signalNorm[m].getVal()/math.sqrt(treeSign[m].GetEntriesFast()))
        gmean.SetPoint(n, m, vmean[m].getVal())
        gmean.SetPointError(n, 0,
                            min(vmean[m].getError(), vmean[m].getVal() * 0.02))
        gsigma.SetPoint(n, m, vsigma[m].getVal())
        gsigma.SetPointError(
            n, 0, min(vsigma[m].getError(), vsigma[m].getVal() * 0.05))
        galpha1.SetPoint(n, m, valpha1[m].getVal())
        galpha1.SetPointError(
            n, 0, min(valpha1[m].getError(), valpha1[m].getVal() * 0.10))
        gslope1.SetPoint(n, m, vslope1[m].getVal())
        gslope1.SetPointError(
            n, 0, min(vslope1[m].getError(), vslope1[m].getVal() * 0.10))
        galpha2.SetPoint(n, m, salpha2[m].getVal())
        galpha2.SetPointError(
            n, 0, min(valpha2[m].getError(), valpha2[m].getVal() * 0.10))
        gslope2.SetPoint(n, m, sslope2[m].getVal())
        gslope2.SetPointError(
            n, 0, min(vslope2[m].getError(), vslope2[m].getVal() * 0.10))
        #tmpVar = w.var(var+"_"+signalString)
        #print m, tmpVar.getVal(), tmpVar.getError()
        n = n + 1

    gmean.Fit(fmean, "Q0", "SAME")
    gsigma.Fit(fsigma, "Q0", "SAME")
    galpha1.Fit(falpha1, "Q0", "SAME")
    gslope1.Fit(fslope1, "Q0", "SAME")
    galpha2.Fit(falpha2, "Q0", "SAME")
    gslope2.Fit(fslope2, "Q0", "SAME")
    #    gnorm.Fit(fnorm, "Q0", "", 700, 5000)
    #for m in [5000, 5500]: gnorm.SetPoint(gnorm.GetN(), m, gnorm.Eval(m, 0, "S"))
    #gnorm.Fit(fnorm, "Q", "SAME", 700, 6000)
    gnorm.Fit(fnorm, "Q", "SAME", 1800, 8000)  ## adjusted recently

    for m in massPoints:

        if vsigma[m].getVal() < 10.: vsigma[m].setVal(10.)

        # Interpolation method
        syield = gnorm.Eval(m)
        spline = gnorm.Eval(m, 0, "S")
        sfunct = fnorm.Eval(m)

        #delta = min(abs(1.-spline/sfunct), abs(1.-spline/syield))
        delta = abs(1. - spline / sfunct) if sfunct > 0 else 0
        syield = spline

        if interPar:
            #jmean = gmean.Eval(m)
            #jsigma = gsigma.Eval(m)
            #jalpha1 = galpha1.Eval(m)
            #jslope1 = gslope1.Eval(m)
            #jalpha2 = galpha2.Eval(m)
            #jslope2 = gslope2.Eval(m)
            jmean = gmean.Eval(m, 0, "S")
            jsigma = gsigma.Eval(m, 0, "S")
            jalpha1 = galpha1.Eval(m, 0, "S")
            jslope1 = gslope1.Eval(m, 0, "S")
            jalpha2 = galpha2.Eval(m, 0, "S")
            jslope2 = gslope2.Eval(m, 0, "S")

        else:
            jmean = fmean.GetParameter(
                0) + fmean.GetParameter(1) * m + fmean.GetParameter(2) * m * m
            jsigma = fsigma.GetParameter(0) + fsigma.GetParameter(
                1) * m + fsigma.GetParameter(2) * m * m
            jalpha1 = falpha1.GetParameter(0) + falpha1.GetParameter(
                1) * m + falpha1.GetParameter(2) * m * m
            jslope1 = fslope1.GetParameter(0) + fslope1.GetParameter(
                1) * m + fslope1.GetParameter(2) * m * m
            jalpha2 = falpha2.GetParameter(0) + falpha2.GetParameter(
                1) * m + falpha2.GetParameter(2) * m * m
            jslope2 = fslope2.GetParameter(0) + fslope2.GetParameter(
                1) * m + fslope2.GetParameter(2) * m * m

        inorm.SetPoint(inorm.GetN(), m, syield)
        signalNorm[m].setVal(max(0., syield))

        imean.SetPoint(imean.GetN(), m, jmean)
        if jmean > 0: vmean[m].setVal(jmean)

        isigma.SetPoint(isigma.GetN(), m, jsigma)
        if jsigma > 0: vsigma[m].setVal(jsigma)

        ialpha1.SetPoint(ialpha1.GetN(), m, jalpha1)
        if not jalpha1 == 0: valpha1[m].setVal(jalpha1)

        islope1.SetPoint(islope1.GetN(), m, jslope1)
        if jslope1 > 0: vslope1[m].setVal(jslope1)

        ialpha2.SetPoint(ialpha2.GetN(), m, jalpha2)
        if not jalpha2 == 0: valpha2[m].setVal(jalpha2)

        islope2.SetPoint(islope2.GetN(), m, jslope2)
        if jslope2 > 0: vslope2[m].setVal(jslope2)

        #### newly introduced, not yet sure if helpful:
        vmean[m].removeError()
        vsigma[m].removeError()
        valpha1[m].removeError()
        valpha2[m].removeError()
        vslope1[m].removeError()
        vslope2[m].removeError()

        #signalNorm[m].setConstant(False)  ## newly put here to ensure it's freely floating in the combine fit

    #c1 = TCanvas("c1", "Crystal Ball", 1200, 1200) #if not isAH else 1200
    #c1.Divide(2, 3)
    c1 = TCanvas("c1", "Crystal Ball", 1800, 800)
    c1.Divide(3, 2)
    c1.cd(1)
    gmean.SetMinimum(0.)
    gmean.Draw("APL")
    imean.Draw("P, SAME")
    drawRegion(category)
    drawCMS(-1, "Simulation Preliminary", year=YEAR)  ## new FIXME
    c1.cd(2)
    gsigma.SetMinimum(0.)
    gsigma.Draw("APL")
    isigma.Draw("P, SAME")
    drawRegion(category)
    drawCMS(-1, "Simulation Preliminary", year=YEAR)  ## new FIXME
    c1.cd(3)
    galpha1.Draw("APL")
    ialpha1.Draw("P, SAME")
    drawRegion(category)
    drawCMS(-1, "Simulation Preliminary", year=YEAR)  ## new FIXME
    galpha1.GetYaxis().SetRangeUser(0., 1.1)  #adjusted upper limit from 5 to 2
    c1.cd(4)
    gslope1.Draw("APL")
    islope1.Draw("P, SAME")
    drawRegion(category)
    drawCMS(-1, "Simulation Preliminary", year=YEAR)  ## new FIXME
    gslope1.GetYaxis().SetRangeUser(0.,
                                    150.)  #adjusted upper limit from 125 to 60
    if True:  #isAH:
        c1.cd(5)
        galpha2.Draw("APL")
        ialpha2.Draw("P, SAME")
        drawRegion(category)
        drawCMS(-1, "Simulation Preliminary", year=YEAR)  ## new FIXME
        galpha2.GetYaxis().SetRangeUser(0., 2.)
        c1.cd(6)
        gslope2.Draw("APL")
        islope2.Draw("P, SAME")
        drawRegion(category)
        drawCMS(-1, "Simulation Preliminary", year=YEAR)  ## new FIXME
        gslope2.GetYaxis().SetRangeUser(0., 20.)

    c1.Print(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" + category +
             "_SignalShape.pdf")
    c1.Print(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" + category +
             "_SignalShape.png")

    c2 = TCanvas("c2", "Signal Efficiency", 800, 600)
    c2.cd(1)
    gnorm.SetMarkerColor(cColor)
    gnorm.SetMarkerStyle(20)
    gnorm.SetLineColor(cColor)
    gnorm.SetLineWidth(2)
    gnorm.Draw("APL")
    inorm.Draw("P, SAME")
    gnorm.GetXaxis().SetRangeUser(genPoints[0] - 100, genPoints[-1] + 100)
    gnorm.GetYaxis().SetRangeUser(0., gnorm.GetMaximum() * 1.25)
    drawCMS(-1, "Simulation Preliminary", year=YEAR)
    #drawCMS(-1, "Work in Progress", year=YEAR, suppressCMS=True)
    #drawCMS(-1, "", year=YEAR, suppressCMS=True)
    drawAnalysis(category)
    drawRegion(category)
    c2.Print(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" + category +
             "_SignalNorm.pdf")
    c2.Print(PLOTDIR + "MC_signal_" + YEAR + "/" + stype + "_" + category +
             "_SignalNorm.png")

    #*******************************************************#
    #                                                       #
    #                   Generate workspace                  #
    #                                                       #
    #*******************************************************#

    # create workspace
    w = RooWorkspace("Zprime_" + YEAR, "workspace")
    for m in massPoints:
        getattr(w, "import")(signal[m], RooFit.Rename(signal[m].GetName()))
        getattr(w, "import")(signalNorm[m],
                             RooFit.Rename(signalNorm[m].GetName()))
        getattr(w, "import")(signalXS[m], RooFit.Rename(signalXS[m].GetName()))
    w.writeToFile(WORKDIR + "MC_signal_%s_%s.root" % (YEAR, category), True)
    print "Workspace", WORKDIR + "MC_signal_%s_%s.root" % (
        YEAR, category), "saved successfully"
Пример #30
0
def pdf_logPt2_prelim():

    #PDF fit to log_10(pT^2) for preliminary figure

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar(
        "x", "Dielectron log_{10}( #it{p}_{T}^{2} ) ((GeV/c)^{2})", draw,
        RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.SetLineWidth(2)
    #fill in binned data
    tree_in.Draw(draw + " >> hPt", strsel)
    tree_coh.Draw(draw + " >> hPtCoh", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    print "a =", a

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen + 1)

    print "Int GG:", hPtGG.Integral()

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    hSum.Add(hPtCoh)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")

    frame.SetYTitle("J/#psi candidates / ({0:.3f}".format(ptbin) +
                    " (GeV/c)^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    leg = ut.prepare_leg(0.61, 0.77, 0.16, 0.19, 0.03)
    #ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed, 2)
    leg.AddEntry(hx, "Data", "p")
    leg.AddEntry(hSum, "Sum", "l")
    leg.AddEntry(hPtCoh, "Coherent J/#psi", "l")
    leg.AddEntry(ln, "Incoherent parametrization", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    pleg = ut.prepare_leg(0.12, 0.75, 0.14, 0.22, 0.03)
    pleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(pleg, mmin, mmax)
    pleg.AddEntry(None, "STAR Preliminary", "")
    pleg.AddEntry(None, "AuAu@200 GeV", "")
    pleg.AddEntry(None, "UPC sample", "")
    pleg.Draw("same")

    desc = pdesc(frame, 0.14, 0.9, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    #desc.draw()

    #put the sum
    hSum.Draw("same")

    frame.Draw("same")

    #put gamma-gamma and coherent J/psi
    hPtGG.Draw("same")
    hPtCoh.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
Пример #31
0
#h_background_m3Hist.Add(h_wjets_m3Hist)
h_background_m3Hist.Add(h_singletop_t_m3HistS)
h_background_m3Hist.Add(h_zjets_m3HistS)

rttbar = n_ttbar / (n_ttbar + n_background)  #+n_qcd)

x = RooRealVar("x", "x",
               h_zjets_m3Hist.GetXaxis().GetXmin(),
               h_zjets_m3Hist.GetXaxis().GetXmax())
k2 = RooRealVar("k2", "normalization factor", 1.0, 0.5, 1.5)
k1 = RooRealVar("k1", "k1", rttbar, 0., 0.5)
#k2 =RooRealVar("k2","k2",rQCD,0.0,0.2);

nttbar = RooRealVar("nttbar", "number of ttbar events", n_ttbar, n_ttbar,
                    n_ttbar)
k1nttbar = RooFormulaVar("k1nttbar", "number of ttbar events after fitting",
                         "k*nttbar", RooArgList(k1, nttbar))

n_mc = n_ttbar + n_background
nmc = RooRealVar("nmc", "number of mc events", n_mc, n_mc, n_mc)
k2nmc = RooFormulaVar("k2nmc", "number of mc events", " ", RooArgList(k2, nmc))
#RooRealVar    nbackground("nbackground","number of background events", n_background , n_background, n_background);
#RooFormulaVar k2background("k2background","number of background events after fitting","k2*nbackground",RooArgList(k2,nbackground) );
nqcd = RooRealVar("nqcd", "number of qcd events", n_qcd, n_qcd, n_qcd)
#k2nqcd = RooFormulaVar("k2nqcd","number of qcd events"," ",RooArgList(k2,nqcd))

data = RooDataHist("data", "data set with (x)", RooArgList(x), h_data_m3HistS)
ttbar = RooDataHist("ttbar", "data set with (x)", RooArgList(x),
                    h_ttbar_m3HistS)
background = RooDataHist("background", "data set with (x)", RooArgList(x),
                         h_background_m3Hist)
Пример #32
0
def fitMass(rangem=[0.4, 2.0], iflag=1, iopt_bkgshape=0, CBpar=[0., 0., 0.]):
    global myc, fitres
    m0 = sum(rangem) / 2
    #w0=(rangem[1]-rangem[0])/10
    w0 = 0.004
    mass = RooRealVar("ee_ivm", "ee_ivm", rangem[0], rangem[1])

    if iflag == 1:
        ###Construct signal pdf with gaus
        mean = RooRealVar("mean", "mean", m0)
        sigma = RooRealVar("sigma", "sigma", w0)
        signal = RooGaussian("signal", "signal", mass, mean, sigma)
    elif iflag == 2 or iflag == 3:
        ## Construct signal pdf with CB function
        ##print "outinfo",x,CBpar[0],CBpar[1],CBpar[2],CBpar[3]
        cbmean = RooRealVar("cbmean", "cbmean", m0)
        cbsigma = RooRealVar("cbsigma", "cbsigma", CBpar[0])
        n1 = RooRealVar("n1", "", CBpar[1])
        alpha = RooRealVar("alpha", "", CBpar[2])
        cbsigma.setConstant(ROOT.kTRUE)
        n1.setConstant(ROOT.kTRUE)
        alpha.setConstant(ROOT.kTRUE)
        signal = RooCBShape("cball", "crystal ball1", mass, cbmean, cbsigma,
                            alpha, n1)


#    elif iflag ==3:
#        pass
    else:
        print "ERROR, please specify signal shape for fitting!!"
        sys.exit()

    # Construct background pdf
    a0 = RooRealVar("a0", "a0", 0.1, -1, 1)
    a1 = RooRealVar("a1", "a1", 0.004, -1, 1)
    a2 = RooRealVar("a2", "a2", 0.001, -1, 1)
    if iopt_bkgshape == 0:
        background = RooChebychev("background", "background", mass,
                                  RooArgList(a0, a1))
    else:
        background = RooChebychev("background", "background", mass,
                                  RooArgList(a0, a1, a2))
    # Construct composite pdf
    if iflag == 1:
        up_nsig = 40
    else:
        up_nsig = 60
    nsig = RooRealVar("nsig", "nsig", 5, 0.0, up_nsig)
    nbkg = RooRealVar("nbkg", "nbkg", 800, 0, 3000)

    #frac = RooRealVar("frac", "frac", 0.001, 0.0001, 0.1)
    model = RooAddPdf("model", "model", RooArgList(signal, background),
                      RooArgList(nsig, nbkg))
    #model = RooAddPdf("model", "model", RooArgList(signal, background), RooArgList(frac))
    mcdata = RooDataSet(
        "ds", "ds", RooArgSet(mass), RooFit.Import(data),
        RooFit.Cut("ee_ivm<" + str(rangem[1]) + "&&ee_ivm>" + str(rangem[0])))
    if optp == 1:
        ipr = 1
        verbose = 0
    elif optp == 2:
        ipr = 1
        verbose = 1
    else:
        ipr = -1
        verbose = 0

    fitres=model.fitTo(mcdata,RooFit.Save(),RooFit.Minos(1), RooFit.Strategy(2),\
                       RooFit.PrintLevel(ipr), RooFit.Verbose(verbose))
    nll = RooNLLVar("nll", "nll", model, mcdata,
                    RooFit.Range(rangem[0], rangem[1]))
    pll = nll.createProfile(RooArgSet(nsig))
    Profile = RooProfileLL("Profile", "Profile", nll, RooArgSet(nsig))
    llhoodP = RooFormulaVar("llhoodP", "exp(-0.5*Profile)",
                            RooArgList(Profile))
    xframe2 = nsig.frame(RooFit.Title("number of signal"))
    nllplot = nll.plotOn(xframe2, RooFit.ShiftToZero())
    themin = RooConstVar("themin", "themin", nllplot.GetMinimum())

    llhood = RooFormulaVar("llhood", "exp(-0.5*(nll-themin*0.95))",
                           RooArgList(nll, themin))

    if optp:
        xframe = mass.frame(RooFit.Title("mass of ee pair"))

        xframe3 = nsig.frame(RooFit.Title("number of signal"))
        xframe3.SetYTitle("Likelihood")

        mcdata.plotOn(xframe)
        model.plotOn(xframe)
        model.plotOn(xframe, RooFit.Components("background"),
                     RooFit.LineStyle(ROOT.kDashed),
                     RooFit.LineColor(ROOT.kRed))
        model.plotOn(xframe, RooFit.Components("cball"),
                     RooFit.LineStyle(ROOT.kDashed),
                     RooFit.LineColor(ROOT.kGreen))

        myc.cd(1)
        xframe.Draw()

        #pll.plotOn(xframe2,RooFit.LineColor(ROOT.kRed))
        if optp: print "***** archmin ", themin.Print()
        #llhoodP.plotOn(xframe3, RooFit.LineColor(ROOT.kRed))

        llhood.plotOn(xframe3)
        myc.cd(2)

        xframe2.SetMinimum(0)
        xframe2.Draw()
        myc.cd(3)
        xframe3.Draw()
        myc.Update()
        raw_input()

    nsig.setRange("IntRange1", 0, 1000.)
    Int1 = llhood.createIntegral(RooArgSet(nsig),
                                 ROOT.RooFit.Range('IntRange1'))
    Int1Val = Int1.getVal()
    i = 0
    hit = False
    while not (hit):
        i = i + 1
        nsig.setRange("IntRange2", 0, float(i))
        Int2 = llhood.createIntegral(RooArgSet(nsig),
                                     ROOT.RooFit.Range('IntRange2'))
        if Int2.getVal() >= Int1Val * 0.9:
            if optp: print "&&& ", i
            hit = True
            return i
Пример #33
0
    if i < n_sig_pdf - 1 :
        fracs.append(RooRealVar("frac_{}".format(i), "frac_{}".format(i), p_fracFits[i], 0, 1))
        fracs[i].setConstant(True)   


for i in range(n_regions) :
  
    region = regions[i]

    #Setting up parameters to allow only single shift (means) and scale (sigmas)
    shifts.append(RooRealVar("shift_"+region, "shift_"+region, 0., -1, 1))
    shifts[i].setError(0.01)
    scales.append(RooRealVar("scale_"+region, "scale_"+region, 1., 0.001, 5))
    scales[i].setError(0.01)
    for j in range(n_sig_pdf) :
        shiftedMeans[i].append(RooFormulaVar("shifted_mean_{}_".format(j)+region, "mean_{}+shift_".format(j)+region, RooArgList(means[j], shifts[i])))
        scaledWidths[i].append(RooFormulaVar("scaled_width_{}_".format(j)+region, "width_{}*scale_".format(j)+region, RooArgList(widths[j], scales[i])))
        sig[i].append(RooGaussian("sig_{}_".format(j)+region, "sig_{}_".format(j)+region, deltam, shiftedMeans[i][j], scaledWidths[i][j]))

    #Adding components to form total signal pdf
    region_sig_pdfs.append(RooAddPdf("signal_pdf_"+region, "signal_pdf_"+region, RooArgList(*sig[i]), RooArgList(*fracs)))
    bg_fracs.append(RooRealVar("bg_frac_"+region, "bg_frac_"+region, 0.107, 0, 1))
    region_total_pdfs.append(RooAddPdf("total_pdf_"+region, "total_pdf_"+region, RooArgList(region_sig_pdfs[i], bg_pdf), RooArgList(bg_fracs[i])))

    #Adding to simultaneous pdf
    total_pdf.addPdf(region_total_pdfs[i], region)


#Simultaneously fit all mass regions - bg free and signal with shift/scale only
total_pdf.fitTo(datahist)
Пример #34
0
def buildDataAndCategories(ws,options,args):
    #Get the input data
    inputData = TChain(options.treeName,'The input data')
    for arg in args:
        print 'Adding data from: ',arg
        inputData.Add(arg)

    foldname = ''
    phirange = [0,90]
    
    if not options.folded:
        foldname=''
        phirange = [-180,180]
    
    #variables necessary for j/psi mass,lifetime,polarization fit
    jPsiMass      = RooRealVar('JpsiMass','M [GeV]',2.7,3.5)
    jPsiRap       = RooRealVar('JpsiRap','#nu',-2.3,2.3)
    jPsiPt        = RooRealVar("JpsiPt","pT [GeV]",0,40);
    jPsicTau      = RooRealVar('Jpsict','l_{J/#psi} [mm]',-1,2.5)
    jPsicTauError = RooRealVar('JpsictErr','Error on l_{J/#psi} [mm]',0,2)
    jPsiVprob     = RooRealVar('JpsiVprob','',.01,1)
    jPsiHXcosth   = None
    jPsiHXphi     = None

    jPsicTau.setBins(10000,"cache")
        
    if options.fitFrame is not None:
        jPsiHXcosth   = RooRealVar('costh_'+options.fitFrame+foldname,'cos(#theta)_{'+options.fitFrame+'}',-1,1)
        jPsiHXphi     = RooRealVar('phi_'+options.fitFrame+foldname,'#phi_{'+options.fitFrame+'}',phirange[0],phirange[1])
    else:
        jPsiHXcosth   = RooRealVar('costh_CS'+foldname,'cos(#theta)_{CS}',-1,1)
        jPsiHXphi     = RooRealVar('phi_CS'+foldname,'#phi_{CS}',phirange[0],phirange[1])
    
    #vars needed for on the fly calc of polarization variables
    jPsimuPosPx = RooRealVar('muPosPx','+ Muon P_{x} [GeV]',0)
    jPsimuPosPy = RooRealVar('muPosPy','+ Muon P_{y} [GeV]',0)
    jPsimuPosPz = RooRealVar('muPosPz','+ Muon P_{z} [GeV]',0)
    jPsimuNegPx = RooRealVar('muNegPx','- Muon P_{x} [GeV]',0)
    jPsimuNegPy = RooRealVar('muNegPy','- Muon P_{y} [GeV]',0)
    jPsimuNegPz = RooRealVar('muNegPz','- Muon P_{z} [GeV]',0)

    #create RooArgSet for eventual dataset creation
    dataVars = RooArgSet(jPsiMass,jPsiRap,jPsiPt,
                         jPsicTau,jPsicTauError,
                         jPsimuPosPx,jPsimuPosPy,jPsimuPosPz)
    
    #add trigger requirement if specified
    if options.triggerName:
        trigger = RooRealVar(options.triggerName,'Passes Trigger',0.5,1.5)
        dataVars.add(trigger)

    dataVars.add(jPsiVprob)
    dataVars.add(jPsimuNegPx)
    dataVars.add(jPsimuNegPy)
    dataVars.add(jPsimuNegPz)
    dataVars.add(jPsiHXcosth)
    dataVars.add(jPsiHXphi)
    
    
    redVars = RooArgSet(jPsiMass,jPsiRap,jPsiPt,
                        jPsicTau,jPsicTauError)
    redVars.add(jPsiHXcosth)
    redVars.add(jPsiHXphi)
    fitVars = redVars.Clone()    

    ### HERE IS WHERE THE BIT FOR CALCULATING POLARIZATION VARS GOES

    ctauStates = RooCategory('ctauRegion','Cut Region in lifetime')
    ctauStates.defineType('prompt',0)
    ctauStates.defineType('nonPrompt',1)

    massStates = RooCategory('massRegion','Cut Region in mass')
    massStates.defineType('signal',1)
    massStates.defineType('separation',0)
    massStates.defineType('leftMassSideBand',-2)
    massStates.defineType('rightMassSideBand',-1)

    states = RooCategory('mlRegion','Cut Region in mass')
    states.defineType('nonPromptSignal',2)
    states.defineType('promptSignal',1)
    states.defineType('separation',0)
    states.defineType('leftMassSideBand',-2)
    states.defineType('rightMassSideBand',-1)


    #define corresponding ranges in roorealvars
    #mass is a little tricky since the sidebands change definitions in each rap bin
    #define the names here and change as we do the fits
    #jPsiMass.setRange('NormalizationRangeFormlfit_promptSignal',2.7,3.5)
    #jPsiMass.setRange('NormalizationRangeFormlfit_nonPromptSignal',2.7,3.5)
    #jPsiMass.setRange('NormalizationRangeFormlfit_leftMassSideBand',2.7,3.1)
    #jPsiMass.setRange('NormalizationRangeFormlfit_rightMassSideBand',3.1,3.5)

    #want the prompt fit only done in prompt region
    #non-prompt only in non-prompt region
    #background over entire cTau range
    #jPsicTau.setRange('NormalizationRangeFormlfit_promptSignal',-1,.1)
    #jPsicTau.setRange('NormalizationRangeFormlfit_nonPromptSignal',.1,2.5)
    #jPsicTau.setRange('NormalizationRangeFormlfit_leftMassSideBand',-1,2.5)
    #jPsicTau.setRange('NormalizationRangeFormlfit_rightMassSideBand',-1,2.5)

    #redVars.add(ctauStates)
    #redVars.add(massStates)
    #redVars.add(states)
    fitVars.add(ctauStates)
    fitVars.add(massStates)
    fitVars.add(states)
    
    fullData = RooDataSet('fullData','The Full Data From the Input ROOT Trees',
                          dataVars,
                          ROOT.RooFit.Import(inputData))    

    for rap_bin in range(1,len(jpsi.pTRange)):
        yMin  = jpsi.rapForPTRange[rap_bin-1][0]
        yMax  = jpsi.rapForPTRange[rap_bin-1][-1]
        for pt_bin in range(len(jpsi.pTRange[rap_bin])):

            ptMin = jpsi.pTRange[rap_bin][pt_bin][0]
            ptMax = jpsi.pTRange[rap_bin][pt_bin][-1]               

            sigMaxMass = jpsi.polMassJpsi[rap_bin] + jpsi.nSigMass*jpsi.sigmaMassJpsi[rap_bin]
            sigMinMass = jpsi.polMassJpsi[rap_bin] - jpsi.nSigMass*jpsi.sigmaMassJpsi[rap_bin]

            sbHighMass = jpsi.polMassJpsi[rap_bin] + jpsi.nSigBkgHigh*jpsi.sigmaMassJpsi[rap_bin]
            sbLowMass  = jpsi.polMassJpsi[rap_bin] - jpsi.nSigBkgLow*jpsi.sigmaMassJpsi[rap_bin]

            ctauNonPrompt = .1
            
            massFun = RooFormulaVar('massRegion','Function that returns the mass state.',
                                     '('+jPsiMass.GetName()+' < '+str(sigMaxMass)+' && '+jPsiMass.GetName()+' > '+str(sigMinMass)+
                                     ') - ('+jPsiMass.GetName()+' > '+str(sbHighMass)+')'+
                                     '-2*('+jPsiMass.GetName()+' < '+str(sbLowMass)+')',
                                     RooArgList(jPsiMass,jPsicTau))
            
            ctauFun = RooFormulaVar('ctauRegion','Function that returns the ctau state.',
                                     '('+jPsicTau.GetName()+' > '+str(ctauNonPrompt)+')',
                                     RooArgList(jPsiMass,jPsicTau))

            mlFun = RooFormulaVar('mlRegion','Function that returns the mass and lifetime state.',
                                  '('+jPsiMass.GetName()+' < '+str(sigMaxMass)+' && '+jPsiMass.GetName()+' > '+str(sigMinMass)+
                                  ') + ('+jPsiMass.GetName()+' < '+str(sigMaxMass)+' && '+jPsiMass.GetName()+' > '+
                                  str(sigMinMass)+' && '+jPsicTau.GetName()+' > '+str(ctauNonPrompt)+
                                  ') - ('+jPsiMass.GetName()+' > '+str(sbHighMass)+')'+
                                  '-2*('+jPsiMass.GetName()+' < '+str(sbLowMass)+')',
                                  RooArgList(jPsiMass,jPsicTau))
            

            cutStringPt = '('+jPsiPt.GetName()+' > '+str(ptMin)+' && '+jPsiPt.GetName()+' < '+str(ptMax)+')'
            cutStringY  = '( abs('+jPsiRap.GetName()+') > '+str(yMin)+' && abs('+jPsiRap.GetName()+') < '+str(yMax)+')'
            #cutStringM1 = '('+jPsiMass.GetName()+' < '+str(sigMinMass)+' && '+jPsiMass.GetName()+' > '+str(sbLowMass)+')'
            #cutStringM2 = '('+jPsiMass.GetName()+' < '+str(sbHighMass)+' && '+jPsiMass.GetName()+' > '+str(sigMaxMass)+')'
            #cutStringMT = '!('+cutStringM1+' || '+cutStringM2+')'
            cutString   = cutStringPt+' && '+cutStringY #+' && '+cutStringMT

            print cutString

            #get the reduced dataset we'll do the fit on
            binData = fullData.reduce(ROOT.RooFit.SelectVars(redVars),
                                      ROOT.RooFit.Cut(cutString),
                                      ROOT.RooFit.Name('data_rap'+str(rap_bin)+'_pt'+str(pt_bin+1)),
                                      ROOT.RooFit.Title('Data For Fitting'))

            binDataWithCategory = RooDataSet('data_rap'+str(rap_bin)+'_pt'+str(pt_bin+1),
                                             'Data For Fitting',
                                             fitVars)
            #categorize
            binData.addColumn(ctauStates)
            binData.addColumn(massStates)
            binData.addColumn(states)
            for ev in range(binData.numEntries()):
                args = binData.get(ev)
                                
                jPsiMass.setVal(args.find(jPsiMass.GetName()).getVal())
                jPsiRap.setVal(args.find(jPsiRap.GetName()).getVal())
                jPsiPt.setVal(args.find(jPsiPt.GetName()).getVal())
                jPsicTau.setVal(args.find(jPsicTau.GetName()).getVal())                    
                jPsicTauError.setVal(args.find(jPsicTauError.GetName()).getVal())
            
                jPsiHXcosth.setVal(args.find(jPsiHXcosth.GetName()).getVal())
                jPsiHXphi.setVal(args.find(jPsiHXphi.GetName()).getVal())

                massStates.setIndex(int(massFun.getVal()))
                ctauStates.setIndex(int(ctauFun.getVal()))
                states.setIndex(int(mlFun.getVal()))
                
                binDataWithCategory.add(fitVars)
            

            getattr(ws,'import')(binDataWithCategory)
Пример #35
0
if ratiofn == 'exponential':
    # ratio parameters: only for DsK
    rturnon = RooRealVar('rturnon', 'rturnon', 6.4, 0.5, 10.0)
    roffset = RooRealVar('roffset', 'roffset', 0.0, -0.5, 0.1)
    rbeta = RooRealVar('rbeta', 'rbeta', 0.01, -0.05, 0.05)
    # rbeta = RooRealConstant.value(0.0)
    ratio = AcceptanceRatio('ratio', 'Acceptance ratio', time, rturnon,
                            roffset, rbeta)
    varlist += [rturnon, roffset, rbeta]
elif ratiofn == 'quadratic':
    rquad = RooRealVar('rquad', 'rquad', 1.0, -10.0, 10.0)
    rlinear = RooRealVar('rlinear', 'rlinear', 1.0, -10.0, 10.0)
    # roffset = RooRealVar('roffset', 'roffset', 1.0, 0.0, 2.0)
    roffset = RooRealConstant.value(0.0)
    ratio = RooFormulaVar(
        'ratio', '@2*(@0-@1)**2 + @3*(@0-@1) - @4',
        RooArgList(time, dsk_time_avg, rquad, rlinear, roffset))
    varlist += [rquad, rlinear, roffset]
elif ratiofn == 'linear':
    rslope = RooRealVar('rslope', 'rslope', 0.01, -0.2, 0.2)
    roffset = RooRealConstant.value(0.9)
    ratio = RooFormulaVar('ratio', '@2*(@0-@1) - @3',
                          RooArgList(time, dsk_time_avg, rslope, roffset))
    varlist += [rslope, roffset]
elif ratiofn == 'flat':
    ratio = RooRealVar('ratio', 'ratio', 1.0, 0.0, 2.0)
    varlist += [ratio]
else:
    sys.exit('Unknown acceptance type. Aborting')
dsk_acceptance = RooProduct('dsk_acceptance', 'DsK Acceptance with ratio',
                            RooArgList(dspi_acceptance, ratio))
Пример #36
0
def fitChicSpectrum(dataset, binname):
    """ Fit chic spectrum"""

    x = RooRealVar('Qvalue', 'Q', 9.7, 10.1)
    x.setBins(80)

    mean_1 = RooRealVar("mean_1", "mean ChiB1", 9.892, 9, 10, "GeV")
    sigma_1 = RooRealVar("sigma_1", "sigma ChiB1", 0.0058, 'GeV')
    a1_1 = RooRealVar('#alpha1_1', '#alpha1_1', 0.748)
    n1_1 = RooRealVar('n1_1', 'n1_1', 2.8)
    a2_1 = RooRealVar('#alpha2_1', '#alpha2_1', 1.739)
    n2_1 = RooRealVar('n2_1', 'n2_1', 3.0)

    deltam = RooRealVar('deltam', 'deltam', 0.01943)

    mean_2 = RooFormulaVar("mean_2", "@0+@1", RooArgList(mean_1, deltam))
    sigma_2 = RooRealVar("sigma_2", "sigma ChiB2", 0.0059, 'GeV')
    a1_2 = RooRealVar('#alpha1_2', '#alpha1_2', 0.738)
    n1_2 = RooRealVar('n1_2', 'n1_2', 2.8)
    a2_2 = RooRealVar('#alpha2_2', '#alpha2_2', 1.699)
    n2_2 = RooRealVar('n2_2', 'n2_2', 3.0)

    parameters = RooArgSet()

    parameters.add(RooArgSet(sigma_1, sigma_2))
    parameters = RooArgSet(a1_1, a2_1, n1_1, n2_1)
    parameters.add(RooArgSet(a1_2, a2_2, n1_2, n2_2))

    chib1_pdf = My_double_CB('chib1', 'chib1', x, mean_1, sigma_1, a1_1, n1_1,
                             a2_1, n2_1)
    chib2_pdf = My_double_CB('chib2', 'chib2', x, mean_2, sigma_2, a1_2, n1_2,
                             a2_2, n2_2)

    #background
    q01S_Start = 9.5
    alpha = RooRealVar("#alpha", "#alpha", 1.5, -1, 3.5)  #0.2 anziche' 1
    beta = RooRealVar("#beta", "#beta", -2.5, -7., 0.)
    q0 = RooRealVar("q0", "q0", q01S_Start)  #,9.5,9.7)
    delta = RooFormulaVar("delta", "TMath::Abs(@0-@1)", RooArgList(x, q0))
    b1 = RooFormulaVar("b1", "@0*(@1-@2)", RooArgList(beta, x, q0))
    signum1 = RooFormulaVar("signum1", "( TMath::Sign( -1.,@0-@1 )+1 )/2.",
                            RooArgList(x, q0))

    background = RooGenericPdf("background", "Background",
                               "signum1*pow(delta,#alpha)*exp(b1)",
                               RooArgList(signum1, delta, alpha, b1))

    parameters.add(RooArgSet(alpha, beta, q0))

    #together
    chibs = RooArgList(chib1_pdf, chib2_pdf, background)

    n_chib = RooRealVar("n_chib", "n_chib", 2075, 0, 100000)
    ratio_21 = RooRealVar("ratio_21", "ratio_21", 0.5, 0, 1)
    n_chib1 = RooFormulaVar("n_chib1", "@0/(1+@1)",
                            RooArgList(n_chib, ratio_21))
    n_chib2 = RooFormulaVar("n_chib2", "@0/(1+1/@1)",
                            RooArgList(n_chib, ratio_21))
    n_background = RooRealVar('n_background', 'n_background', 4550, 0, 50000)
    ratio_list = RooArgList(n_chib1, n_chib2, n_background)

    modelPdf = RooAddPdf('ModelPdf', 'ModelPdf', chibs, ratio_list)

    frame = x.frame(RooFit.Title('m'))
    range = x.setRange('range', 9.7, 10.1)
    result = modelPdf.fitTo(dataset, RooFit.Save(), RooFit.Range('range'))
    dataset.plotOn(frame, RooFit.MarkerSize(0.7))

    modelPdf.plotOn(frame, RooFit.LineWidth(2))

    #plotting
    canvas = TCanvas('fit', "", 1400, 700)
    canvas.Divide(1)
    canvas.cd(1)
    gPad.SetRightMargin(0.3)
    gPad.SetFillColor(10)
    modelPdf.paramOn(frame, RooFit.Layout(0.725, 0.9875, 0.9))
    frame.Draw()
    canvas.SaveAs('out-' + binname + '.png')
Пример #37
0
def alpha(channel):

    nElec = channel.count('e')
    nMuon = channel.count('m')
    nLept = nElec + nMuon
    nBtag = channel.count('b')
    
    # Channel-dependent settings
    # Background function. Semi-working options are: EXP, EXP2, EXPN, EXPTAIL
    if nLept == 0:
        treeName = 'SR'
        signName = 'XZh'
        colorVjet = sample['DYJetsToNuNu']['linecolor']
        triName = "HLT_PFMET"
        leptCut = "0==0"
        topVeto = selection["TopVetocut"]
        massVar = "X_cmass"
        binFact = 1
        #fitFunc = "EXP"
        #fitFunc = "EXP2"
        #fitFunc = "EXPN"
        #fitFunc = "EXPTAIL"
        fitFunc = "EXPN" if nBtag < 2 else "EXP"
        fitAltFunc = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "ERFEXP"
        fitFuncVV   = "EXPGAUS"
        fitFuncTop  = "GAUS2"
    elif nLept == 1:
        treeName = 'WCR'
        signName = 'XWh'
        colorVjet = sample['WJetsToLNu']['linecolor']
        triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
        leptCut = "isWtoEN" if nElec > 0 else "isWtoMN"
        topVeto = selection["TopVetocut"]
        massVar = "X_mass"
        binFact = 2
        if nElec > 0:
            fitFunc = "EXP" if nBtag < 2 else "EXP"
            fitAltFunc  = "EXPTAIL" if nBtag < 2 else "EXPTAIL"
        else:
            fitFunc = "EXPTAIL" if nBtag < 2 else "EXP"
            fitAltFunc  = "EXPN" if nBtag < 2 else "EXPTAIL"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "ERFEXP"
        fitFuncVV   = "EXPGAUS"
        fitFuncTop  = "GAUS3" if nBtag < 2 else "GAUS2"
    else:
        treeName = 'XZh'
        signName = 'XZh'
        colorVjet = sample['DYJetsToLL']['linecolor']
        triName = "HLT_Ele" if nElec > 0 else "HLT_Mu"
        leptCut = "isZtoEE" if nElec > 0 else "isZtoMM"
        topVeto = "0==0"
        massVar = "X_mass"
        binFact = 5
        if nElec > 0:
            fitFunc = "EXP" if nBtag < 2 else "EXP"
            fitAltFunc = "POW" if nBtag < 2 else "POW"
        else:
            fitFunc = "EXP" if nBtag < 2 else "EXP"
            fitAltFunc = "POW" if nBtag < 2 else "POW"
        fitFuncVjet = "ERFEXP" if nBtag < 2 else "EXP"
        fitFuncVV   = "EXPGAUS2"
        fitFuncTop  = "GAUS"
    
    btagCut = selection["2Btag"] if nBtag == 2 else selection["1Btag"]
    
    print "--- Channel", channel, "---"
    print "  number of electrons:", nElec, " muons:", nMuon, " b-tags:", nBtag
    print "  read tree:", treeName, "and trigger:", triName
    if ALTERNATIVE: print "  using ALTERNATIVE fit functions"
    print "-"*11*2
    
    # Silent RooFit
    RooMsgService.instance().setGlobalKillBelow(RooFit.FATAL)
    
    #*******************************************************#
    #                                                       #
    #              Variables and selections                 #
    #                                                       #
    #*******************************************************#
    
    # Define all the variables from the trees that will be used in the cuts and fits
    # this steps actually perform a "projection" of the entire tree on the variables in thei ranges, so be careful once setting the limits
    X_mass = RooRealVar(  massVar, "m_{X}" if nLept > 0 else "m_{T}^{X}", XBINMIN, XBINMAX, "GeV")
    J_mass = RooRealVar( "fatjet1_prunedMassCorr",       "corrected pruned mass", HBINMIN, HBINMAX, "GeV")
    CSV1 = RooRealVar(   "fatjet1_CSVR1",                           "",        -1.e99,   1.e4     )
    CSV2 = RooRealVar(   "fatjet1_CSVR2",                           "",        -1.e99,   1.e4     )
    nBtag = RooRealVar(  "fatjet1_nBtag",                           "",            0.,   4        )
    CSVTop = RooRealVar( "bjet1_CSVR",                              "",        -1.e99,   1.e4     )
    isZtoEE = RooRealVar("isZtoEE",                                 "",            0.,   2        )
    isZtoMM = RooRealVar("isZtoMM",                                 "",            0.,   2        )
    isWtoEN = RooRealVar("isWtoEN",                                 "",            0.,   2        )
    isWtoMN = RooRealVar("isWtoMN",                                 "",            0.,   2        )
    weight = RooRealVar( "eventWeightLumi",                         "",         -1.e9,   1.       )
    
    # Define the RooArgSet which will include all the variables defined before
    # there is a maximum of 9 variables in the declaration, so the others need to be added with 'add'
    variables = RooArgSet(X_mass, J_mass, CSV1, CSV2, nBtag, CSVTop)
    variables.add(RooArgSet(isZtoEE, isZtoMM, isWtoEN, isWtoMN, weight))
    
    # Define the ranges in fatJetMass - these will be used to define SB and SR
    J_mass.setRange("LSBrange", LOWMIN, LOWMAX)
    J_mass.setRange("HSBrange", HIGMIN, HIGMAX)
    J_mass.setRange("VRrange",  LOWMAX, SIGMIN)
    J_mass.setRange("SRrange",  SIGMIN, SIGMAX)
    J_mass.setBins(54)
    
    # Define the selection for the various categories (base + SR / LSBcut / HSBcut )
    baseCut = leptCut + " && " + btagCut + "&&" + topVeto
    massCut = massVar + ">%d" % XBINMIN
    baseCut += " && " + massCut
    
    # Cuts
    SRcut  = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), SIGMIN, J_mass.GetName(), SIGMAX)
    LSBcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), LOWMIN, J_mass.GetName(), LOWMAX)
    HSBcut = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), HIGMIN, J_mass.GetName(), HIGMAX)
    SBcut  = baseCut + " && ((%s>%d && %s<%d) || (%s>%d && %s<%d))" % (J_mass.GetName(), LOWMIN, J_mass.GetName(), LOWMAX, J_mass.GetName(), HIGMIN, J_mass.GetName(), HIGMAX)
    VRcut  = baseCut + " && %s>%d && %s<%d" % (J_mass.GetName(), LOWMAX, J_mass.GetName(), SIGMIN)
    
    # Binning
    binsJmass = RooBinning(HBINMIN, HBINMAX)
    binsJmass.addUniform(HBINS, HBINMIN, HBINMAX)
    binsXmass = RooBinning(XBINMIN, XBINMAX)
    binsXmass.addUniform(binFact*XBINS, XBINMIN, XBINMAX)
    
    #*******************************************************#
    #                                                       #
    #                      Input files                      #
    #                                                       #
    #*******************************************************#
    
    # Import the files using TChains (separately for the bkg "classes" that we want to describe: here DY and VV+ST+TT)
    treeData = TChain(treeName)
    treeMC   = TChain(treeName)
    treeVjet = TChain(treeName)
    treeVV   = TChain(treeName)
    treeTop  = TChain(treeName)
#    treeSign = {}
#    nevtSign = {}
    
    # Read data
    pd = getPrimaryDataset(triName)
    if len(pd)==0: raw_input("Warning: Primary Dataset not recognized, continue?")
    for i, s in enumerate(pd): treeData.Add(NTUPLEDIR + s + ".root")
    
    # Read V+jets backgrounds
    for i, s in enumerate(["WJetsToLNu_HT", "DYJetsToNuNu_HT", "DYJetsToLL_HT"]):
        for j, ss in enumerate(sample[s]['files']): treeVjet.Add(NTUPLEDIR + ss + ".root")
    
    # Read VV backgrounds
    for i, s in enumerate(["VV"]):
        for j, ss in enumerate(sample[s]['files']): treeVV.Add(NTUPLEDIR + ss + ".root")
    
    # Read Top backgrounds
    for i, s in enumerate(["ST", "TTbar"]):
        for j, ss in enumerate(sample[s]['files']): treeTop.Add(NTUPLEDIR + ss + ".root")
        
    # Sum all background MC
    treeMC.Add(treeVjet)
    treeMC.Add(treeVV)
    treeMC.Add(treeTop)
    
    # create a dataset to host data in sideband (using this dataset we are automatically blind in the SR!)
    setDataSB = RooDataSet("setDataSB", "setDataSB", variables, RooFit.Cut(SBcut), RooFit.WeightVar(weight), RooFit.Import(treeData))
    setDataLSB = RooDataSet("setDataLSB", "setDataLSB", variables, RooFit.Import(setDataSB), RooFit.Cut(LSBcut), RooFit.WeightVar(weight))
    setDataHSB = RooDataSet("setDataHSB", "setDataHSB", variables, RooFit.Import(setDataSB), RooFit.Cut(HSBcut), RooFit.WeightVar(weight))
    
    # Observed data (WARNING, BLIND!)
    setDataSR = RooDataSet("setDataSR", "setDataSR", variables, RooFit.Cut(SRcut), RooFit.WeightVar(weight), RooFit.Import(treeData))
    setDataVR = RooDataSet("setDataVR", "setDataVR", variables, RooFit.Cut(VRcut), RooFit.WeightVar(weight), RooFit.Import(treeData)) # Observed in the VV mass, just for plotting purposes
    
    # same for the bkg datasets from MC, where we just apply the base selections (not blind)
    setVjet = RooDataSet("setVjet", "setVjet", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeVjet))
    setVjetSB = RooDataSet("setVjetSB", "setVjetSB", variables, RooFit.Import(setVjet), RooFit.Cut(SBcut), RooFit.WeightVar(weight))
    setVjetSR = RooDataSet("setVjetSR", "setVjetSR", variables, RooFit.Import(setVjet), RooFit.Cut(SRcut), RooFit.WeightVar(weight))
    setVV = RooDataSet("setVV", "setVV", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeVV))
    setVVSB = RooDataSet("setVVSB", "setVVSB", variables, RooFit.Import(setVV), RooFit.Cut(SBcut), RooFit.WeightVar(weight))
    setVVSR = RooDataSet("setVVSR", "setVVSR", variables, RooFit.Import(setVV), RooFit.Cut(SRcut), RooFit.WeightVar(weight))
    setTop = RooDataSet("setTop", "setTop", variables, RooFit.Cut(baseCut), RooFit.WeightVar(weight), RooFit.Import(treeTop))
    setTopSB = RooDataSet("setTopSB", "setTopSB", variables, RooFit.Import(setTop), RooFit.Cut(SBcut), RooFit.WeightVar(weight))
    setTopSR = RooDataSet("setTopSR", "setTopSR", variables, RooFit.Import(setTop), RooFit.Cut(SRcut), RooFit.WeightVar(weight))
    
    print "  Data events SB: %.2f" % setDataSB.sumEntries()
    print "  V+jets entries: %.2f" % setVjet.sumEntries()
    print "  VV, VH entries: %.2f" % setVV.sumEntries()
    print "  Top,ST entries: %.2f" % setTop.sumEntries()
    
    
    # the relative normalization of the varius bkg is taken from MC by counting all the events in the full fatJetMass range
    #coef = RooRealVar("coef", "coef", setVV.sumEntries()/setVjet.sumEntries(),0.,1.)
    coef_VV_Vjet = RooRealVar("coef2_1", "coef2_1", setVV.sumEntries()/setVjet.sumEntries(), 0., 1.)
    coef_Top_VVVjet = RooRealVar("coef3_21", "coef3_21", setTop.sumEntries()/(setVjet.sumEntries()+setVV.sumEntries()),0.,1.);
    coef_VV_Vjet.setConstant(True)
    coef_Top_VVVjet.setConstant(True)
    
    # Define entries
    entryVjet = RooRealVar("entryVjets",  "V+jets normalization", setVjet.sumEntries(), 0., 1.e6)
    entryVV = RooRealVar("entryVV",  "VV normalization", setVV.sumEntries(), 0., 1.e6)
    entryTop = RooRealVar("entryTop",  "Top normalization", setTop.sumEntries(), 0., 1.e6)
    
    entrySB = RooRealVar("entrySB",  "Data SB normalization", setDataSB.sumEntries(SBcut), 0., 1.e6)
    entrySB.setError(math.sqrt(entrySB.getVal()))
    
    entryLSB = RooRealVar("entryLSB",  "Data LSB normalization", setDataSB.sumEntries(LSBcut), 0., 1.e6)
    entryLSB.setError(math.sqrt(entryLSB.getVal()))

    entryHSB = RooRealVar("entryHSB",  "Data HSB normalization", setDataSB.sumEntries(HSBcut), 0., 1.e6)
    entryHSB.setError(math.sqrt(entryHSB.getVal()))
    
    #*******************************************************#
    #                                                       #
    #                    NORMALIZATION                      #
    #                                                       #
    #*******************************************************#
    
    # set reasonable ranges for J_mass and X_mass
    # these are used in the fit in order to avoid ROOFIT to look in regions very far away from where we are fitting 
    J_mass.setRange("h_reasonable_range", LOWMIN, HIGMAX)
    X_mass.setRange("X_reasonable_range", XBINMIN, XBINMAX)
    
    # Set RooArgSets once for all, see https://root.cern.ch/phpBB3/viewtopic.php?t=11758
    jetMassArg = RooArgSet(J_mass)
    
    #*******************************************************#
    #                                                       #
    #                 V+jets normalization                  #
    #                                                       #
    #*******************************************************#
    
    # Variables for V+jets
    constVjet   = RooRealVar("constVjet",   "slope of the exp",      -0.020, -1.,   0.)
    offsetVjet  = RooRealVar("offsetVjet",  "offset of the erf",     30.,   -50., 200.)
    widthVjet   = RooRealVar("widthVjet",   "width of the erf",     100.,     1., 200.)
    offsetVjet.setConstant(True)
    a0Vjet = RooRealVar("a0Vjet", "width of the erf", -0.1, -5, 0)
    a1Vjet = RooRealVar("a1Vjet", "width of the erf", 0.6,  0, 5)
    a2Vjet = RooRealVar("a2Vjet", "width of the erf", -0.1, -1, 1)
    
    # Define V+jets model
    if fitFuncVjet == "ERFEXP": modelVjet = RooErfExpPdf("modelVjet", "error function for V+jets mass", J_mass, constVjet, offsetVjet, widthVjet)
    elif fitFuncVjet == "EXP": modelVjet = RooExponential("modelVjet", "exp for V+jets mass", J_mass, constVjet)
    elif fitFuncVjet == "POL": modelVjet = RooChebychev("modelVjet", "polynomial for V+jets mass", J_mass, RooArgList(a0Vjet, a1Vjet, a2Vjet))
    elif fitFuncVjet == "POW": modelVjet = RooGenericPdf("modelVjet", "powerlaw for X mass", "@0^@1", RooArgList(J_mass, a0Vjet))
    else:
        print "  ERROR! Pdf", fitFuncVjet, "is not implemented for Vjets"
        exit()
    
    # fit to main bkg in MC (whole range)
    frVjet = modelVjet.fitTo(setVjet, RooFit.SumW2Error(True), RooFit.Range("h_reasonable_range"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.Save(1), RooFit.PrintLevel(1 if VERBOSE else -1))
    
    # integrals and number of events
    iSBVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    iLSBVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange"))
    iHSBVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("HSBrange"))
    iSRVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    iVRVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    # Do not remove the following lines, integrals are computed here
    iALVjet = modelVjet.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg))
    nSBVjet = iSBVjet.getVal()/iALVjet.getVal()*setVjet.sumEntries(SBcut)
    nLSBVjet = iLSBVjet.getVal()/iALVjet.getVal()*setVjet.sumEntries(LSBcut)
    nHSBVjet = iHSBVjet.getVal()/iALVjet.getVal()*setVjet.sumEntries(HSBcut)
    nSRVjet = iSRVjet.getVal()/iALVjet.getVal()*setVjet.sumEntries(SRcut)
    
    drawPlot("JetMass_Vjet", channel, J_mass, modelVjet, setVjet, binsJmass, frVjet)

    if VERBOSE: print "********** Fit result [JET MASS Vjets] *"+"*"*40, "\n", frVjet.Print(), "\n", "*"*80
    
    #*******************************************************#
    #                                                       #
    #                 VV, VH normalization                  #
    #                                                       #
    #*******************************************************#
    
    # Variables for VV
    # Error function and exponential to model the bulk
    constVV  = RooRealVar("constVV",  "slope of the exp",  -0.030, -0.1,   0.)
    offsetVV = RooRealVar("offsetVV", "offset of the erf", 90.,     1., 300.)
    widthVV  = RooRealVar("widthVV",  "width of the erf",  50.,     1., 100.)
    erfrVV   = RooErfExpPdf("baseVV", "error function for VV jet mass", J_mass, constVV, offsetVV, widthVV)
    expoVV   = RooExponential("baseVV", "error function for VV jet mass", J_mass, constVV)
    # gaussian for the V mass peak
    meanVV   = RooRealVar("meanVV",   "mean of the gaussian",           90.,    60., 100.)
    sigmaVV  = RooRealVar("sigmaVV",  "sigma of the gaussian",          10.,     6.,  30.)
    fracVV   = RooRealVar("fracVV",   "fraction of gaussian wrt erfexp", 3.2e-1, 0.,   1.)
    gausVV   = RooGaussian("gausVV",  "gaus for VV jet mass", J_mass, meanVV, sigmaVV)
    # gaussian for the H mass peak
    meanVH   = RooRealVar("meanVH",   "mean of the gaussian",           125.,   100., 150.)
    sigmaVH  = RooRealVar("sigmaVH",  "sigma of the gaussian",           30.,     5.,  40.)
    fracVH   = RooRealVar("fracVH",   "fraction of gaussian wrt erfexp",  1.5e-2, 0.,   1.)
    gausVH   = RooGaussian("gausVH",  "gaus for VH jet mass", J_mass, meanVH, sigmaVH)
    
    # Define VV model
    if fitFuncVV == "ERFEXPGAUS": modelVV  = RooAddPdf("modelVV",   "error function + gaus for VV jet mass", RooArgList(gausVV, erfrVV), RooArgList(fracVV))
    elif fitFuncVV == "ERFEXPGAUS2": modelVV  = RooAddPdf("modelVV",   "error function + gaus + gaus for VV jet mass", RooArgList(gausVH, gausVV, erfrVV), RooArgList(fracVH, fracVV))
    elif fitFuncVV == "EXPGAUS": modelVV  = RooAddPdf("modelVV",   "error function + gaus for VV jet mass", RooArgList(gausVV, expoVV), RooArgList(fracVV))
    elif fitFuncVV == "EXPGAUS2": modelVV  = RooAddPdf("modelVV",   "error function + gaus + gaus for VV jet mass", RooArgList(gausVH, gausVV, expoVV), RooArgList(fracVH, fracVV))
    else:
        print "  ERROR! Pdf", fitFuncVV, "is not implemented for VV"
        exit()
    
    # fit to secondary bkg in MC (whole range)
    frVV = modelVV.fitTo(setVV, RooFit.SumW2Error(True), RooFit.Range("h_reasonable_range"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.Save(1), RooFit.PrintLevel(1 if VERBOSE else -1))
    
    # integrals and number of events
    iSBVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    iLSBVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange"))
    iHSBVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("HSBrange"))
    iSRVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    iVRVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    # Do not remove the following lines, integrals are computed here
    iALVV = modelVV.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg))
    nSBVV = iSBVV.getVal()/iALVV.getVal()*setVV.sumEntries(SBcut)
    nLSBVV = iLSBVV.getVal()/iALVV.getVal()*setVV.sumEntries(LSBcut)
    nHSBVV = iHSBVV.getVal()/iALVV.getVal()*setVV.sumEntries(HSBcut)
    nSRVV = iSRVV.getVal()/iALVV.getVal()*setVV.sumEntries(SRcut)
    rSBSRVV = nSRVV/nSBVV
    
    drawPlot("JetMass_VV", channel, J_mass, modelVV, setVV, binsJmass, frVV)
    
    if VERBOSE: print "********** Fit result [JET MASS VV] ****"+"*"*40, "\n", frVV.Print(), "\n", "*"*80
    
    #*******************************************************#
    #                                                       #
    #                 Top, ST normalization                 #
    #                                                       #
    #*******************************************************#
    
    # Variables for Top
    # Error Function * Exponential to model the bulk
    constTop  = RooRealVar("constTop",  "slope of the exp", -0.030,   -1.,   0.)
    offsetTop = RooRealVar("offsetTop", "offset of the erf", 175.0,   50., 250.)
    widthTop  = RooRealVar("widthTop",  "width of the erf",  100.0,    1., 300.)
    gausTop   = RooGaussian("baseTop",  "gaus for Top jet mass", J_mass, offsetTop, widthTop)
    erfrTop   = RooErfExpPdf("baseTop", "error function for Top jet mass", J_mass, constTop, offsetTop, widthTop)
    # gaussian for the W mass peak
    meanW     = RooRealVar("meanW",     "mean of the gaussian",           80., 70., 90.)
    sigmaW    = RooRealVar("sigmaW",    "sigma of the gaussian",          10.,  2., 20.)
    fracW     = RooRealVar("fracW",     "fraction of gaussian wrt erfexp", 0.1, 0.,  1.)
    gausW     = RooGaussian("gausW",    "gaus for W jet mass", J_mass, meanW, sigmaW)
    # gaussian for the Top mass peak
    meanT     = RooRealVar("meanT",     "mean of the gaussian",           175., 150., 200.)
    sigmaT    = RooRealVar("sigmaT",    "sigma of the gaussian",           12.,   5.,  50.)
    fracT     = RooRealVar("fracT",     "fraction of gaussian wrt erfexp",  0.1,  0.,   1.)
    gausT     = RooGaussian("gausT",    "gaus for T jet mass", J_mass, meanT, sigmaT)
    
    # Define Top model
    if fitFuncTop == "ERFEXPGAUS2": modelTop = RooAddPdf("modelTop",   "error function + gaus + gaus for Top jet mass", RooArgList(gausW, gausT, erfrTop), RooArgList(fracW, fracT))
    elif fitFuncTop == "ERFEXPGAUS": modelTop = RooAddPdf("modelTop",   "error function + gaus for Top jet mass", RooArgList(gausT, erfrTop), RooArgList(fracT))
    elif fitFuncTop == "GAUS3": modelTop  = RooAddPdf("modelTop",   "gaus + gaus + gaus for Top jet mass", RooArgList(gausW, gausT, gausTop), RooArgList(fracW, fracT))
    elif fitFuncTop == "GAUS2": modelTop  = RooAddPdf("modelTop",   "gaus + gaus for Top jet mass", RooArgList(gausT, gausTop), RooArgList(fracT))
    elif fitFuncTop == "GAUS": modelTop  = RooGaussian("modelTop", "gaus for Top jet mass", J_mass, offsetTop, widthTop)
    else:
        print "  ERROR! Pdf", fitFuncTop, "is not implemented for Top"
        exit()
    
    # fit to secondary bkg in MC (whole range)
    frTop = modelTop.fitTo(setTop, RooFit.SumW2Error(True), RooFit.Range("h_reasonable_range"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.Save(1), RooFit.PrintLevel(1 if VERBOSE else -1))
    
    # integrals and number of events
    iSBTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    iLSBTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange"))
    iHSBTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("HSBrange"))
    iSRTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    iVRTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    # Do not remove the following lines, integrals are computed here
    iALTop = modelTop.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg))
    nSBTop = iSBTop.getVal()/iALTop.getVal()*setTop.sumEntries(SBcut)
    nLSBTop = iLSBTop.getVal()/iALTop.getVal()*setTop.sumEntries(LSBcut)
    nHSBTop = iHSBTop.getVal()/iALTop.getVal()*setTop.sumEntries(HSBcut)
    nSRTop = iSRTop.getVal()/iALTop.getVal()*setTop.sumEntries(SRcut)
    
    drawPlot("JetMass_Top", channel, J_mass, modelTop, setTop, binsJmass, frTop)
    
    if VERBOSE: print "********** Fit result [JET MASS TOP] ***"+"*"*40, "\n", frTop.Print(), "\n", "*"*80
    
    #*******************************************************#
    #                                                       #
    #                 All bkg normalization                 #
    #                                                       #
    #*******************************************************#
    
    constVjet.setConstant(True)
    offsetVjet.setConstant(True)
    widthVjet.setConstant(True)
    a0Vjet.setConstant(True)
    a1Vjet.setConstant(True)
    a2Vjet.setConstant(True)
    
    constVV.setConstant(True)
    offsetVV.setConstant(True)
    widthVV.setConstant(True)
    meanVV.setConstant(True)
    sigmaVV.setConstant(True)
    fracVV.setConstant(True)
    meanVH.setConstant(True)
    sigmaVH.setConstant(True)
    fracVH.setConstant(True)
    
    constTop.setConstant(True)
    offsetTop.setConstant(True)
    widthTop.setConstant(True)
    meanW.setConstant(True)
    sigmaW.setConstant(True)
    fracW.setConstant(True)
    meanT.setConstant(True)
    sigmaT.setConstant(True)
    fracT.setConstant(True)
    
    
    # Final background model by adding the main+secondary pdfs (using 'coef': ratio of the secondary/main, from MC)
    model = RooAddPdf("model", "model", RooArgList(modelTop, modelVV, modelVjet), RooArgList(coef_Top_VVVjet, coef_VV_Vjet))#FIXME
    model.fixAddCoefRange("h_reasonable_range")
    
    # Extended fit model to data in SB
    # all the 3 sidebands (Low / High / the 2 combined) could be used
    # currently using the LOW+HIGH (the others are commented out)
    yieldLSB = RooRealVar("yieldLSB", "Lower SB normalization",  10, 0., 1.e6)
    yieldHSB = RooRealVar("yieldHSB", "Higher SB normalization", 10, 0., 1.e6)
    yieldSB  = RooRealVar("yieldSB",  "All SB normalization",    10, 0., 1.e6)
    #model_ext = RooExtendPdf("model_ext", "extended p.d.f",   model,  yieldLSB)
    #model_ext = RooExtendPdf("model_ext", "extended p.d.f",   model,  yieldHSB)
    model_ext = RooExtendPdf("model_ext", "extended p.d.f",   model,  yieldSB)
    #frMass = model_ext.fitTo(setDataSB, RooFit.ConditionalObservables(RooArgSet(J_mass)),RooFit.SumW2Error(True),RooFit.Extended(True),RooFit.Range("LSBrange"),RooFit.PrintLevel(-1))
    #frMass = model_ext.fitTo(setDataSB, RooFit.ConditionalObservables(RooArgSet(J_mass)),RooFit.SumW2Error(True),RooFit.Extended(True),RooFit.Range("HSBrange"),RooFit.PrintLevel(-1))
    #frMass = model_ext.fitTo(setDataSB, RooFit.ConditionalObservables(RooArgSet(J_mass)), RooFit.SumW2Error(True), RooFit.Extended(True), RooFit.Range("LSBrange,HSBrange"), RooFit.Strategy(2), RooFit.Minimizer("Minuit2"), RooFit.PrintLevel(1 if VERBOSE else -1))
    
    #print "********** Fit result [JET MASS DATA] **"+"*"*40
    #print frMass.Print()
    #print "*"*80
    
    # Calculate integral of the model obtained from the fit to data (fraction of PDF that is within a given region)
    #nSB = model_ext.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange,HSBrange"))
    #nSB = model_ext.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("LSBrange"))
    #nSB = model_ext.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("HSBrange"))
    #nSR = model_ext.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("SRrange"))
    #nVR = model_ext.createIntegral(jetMassArg, RooFit.NormSet(jetMassArg), RooFit.Range("VRrange"))
    
    # scale the yieldSB from SB to SR using the ratio of the PDFs defined by the two integrals
    SRyield = RooFormulaVar("SRyield", "extrapolation to SR","(@0-@1*@3-@2*@4) * @5/@6 +@1*@7+@2*@8", RooArgList(entrySB, entryVV, entryTop, iSBVV, iSBTop, iSRVjet, iSBVjet, iSRVV, iSRTop))
    VRyield = RooFormulaVar("VRyield", "extrapolation to VR","(@0-@1*@3-@2*@4) * @5/@6 +@1*@7+@2*@8", RooArgList(entrySB, entryVV, entryTop, iSBVV, iSBTop, iVRVjet, iSBVjet, iVRVV, iVRTop))
    HSByield = RooFormulaVar("SRyield", "extrapolation to SR","(@0-@1*@3-@2*@4) * @5/@6 +@1*@7+@2*@8", RooArgList(entryLSB, entryVV, entryTop, iLSBVV, iLSBTop, iHSBVjet, iLSBVjet, iHSBVV, iHSBTop))
    #   RooFormulaVar SRyield("SRyield","extrapolation to SR","(@0/@1)*@2",RooArgList(*nSR,*nSB,yieldLowerSB))
    #   RooFormulaVar SRyield("SRyield","extrapolation to SR","(@0/@1)*@2",RooArgList(*nSR,*nSB,yieldHigherSB))
    #SRyield = RooFormulaVar("SRyield", "extrapolation to SR","(@0/@1)*@2", RooArgList(nSR, nSB, entrySB))
    
    bkgYield            = SRyield.getVal()
    bkgYield_error      = math.sqrt(SRyield.getPropagatedError(frVjet)**2 + SRyield.getPropagatedError(frVV)**2 + SRyield.getPropagatedError(frTop)**2 + (entrySB.getError()*rSBSRVV)**2)
    bkgNorm             = entrySB.getVal() + SRyield.getVal() + VRyield.getVal()
    bkgYield_eig_norm   = RooRealVar("predSR_eig_norm", "expected yield in SR", bkgYield, 0., 1.e6)
    bkgYieldExt         = HSByield.getVal()
    
    drawPlot("JetMass", channel, J_mass, model, setDataSB, binsJmass, None, None, "", bkgNorm, True)

    
    print channel, "normalization = %.3f +/- %.3f, observed = %.0f" % (bkgYield, bkgYield_error, setDataSR.sumEntries() if not BLIND else -1)
    if VERBOSE: raw_input("Press Enter to continue...")