Пример #1
0
 def __init__(self,tree,name,weight_file,var_file,cutval):
     """ A class to handle the decision of the BDT"""
     TMVA.Tools.Instance()
     self._reader = TMVA.Reader()
     self._tree   = tree
     self._variables = {}
     self._cutvalue = -1
     self._bdtscore = -9999
     self._name = name
     self._weight_file = weight_file
     self._var_file = var_file
     self.SetReader(self._name,self._weight_file,self._var_file)
     self.SetCutValue(cutval)
Пример #2
0
 def __init__(self,
              name,
              weight_file,
              variables,
              cutval,
              training='training'):
     """ A class to handle the decision of the BDT"""
     TMVA.Tools.Instance()
     self._reader = TMVA.Reader()
     self._vars = variables
     self._vals = [array('f', [0.]) for i in range(0, len(variables))]
     self._cutval = cutval
     self._score = -9999
     self._name = name
     self._training = training
    def __init__(self, **kwargs):
        """
        This initialization function sets up the TMVA macro path, and
        sets up variables for the TMVA reader. These variables are defined as 
        single entry Python arrays. One has to use these arrays as TMVA/ROOT works  
        by reference. This means that adding variables to the TMVA reader amounts 
        to adding pointers to the TMVA reader. We have to then iterate
        (not very numpy) through our variable arrays, setting the reader variable           arrays (and evaluating as we go). 
        kwargs:
            - var_names: the names of the variables used in the BDT application 
                (default 10 variables) 
            - tmva_dir: the installation location of TMVA macros (/home/dean/software/tmva/TMVA-v4.2.0/test) 
            
        """
        var_names = kwargs.get('var_names', [
            'peaks', 'mean_peaks', 'integral', 'integral_over_peaks', 'max',
            'mean', 'max_over_mean', 'std_dev_peaks', 'entropy', 'ps_integral'
        ])
        tmvadir = kwargs.get("tmva_dir",
                             "/home/dean/software/tmva/TMVA-v4.2.0/test")

        #setting up TMVA macro path
        try:
            macro = os.path.join(tmvadir, "TMVAlogon.C")
            loadmacro = os.path.join(tmvadir, "TMVAGui.C")
            gROOT.SetMacroPath(tmvadir)
            gROOT.Macro(macro)
            gROOT.LoadMacro(loadmacro)
        except:
            print("Couldn't successfully establish TMVA macro path")
            sys.exit()

        self.reader = TMVA.Reader("!Color")
        variables = []
        for i in xrange(len(var_names)):
            variables.append(array('f', [0]))

        for name, var in zip(var_names, variables):
            self.reader.AddVariable(name, var)
        self.variables = variables
Пример #4
0
class OutputTree(TreeModel):
    classID = FloatCol(default=-1111.)
    var1 = FloatCol(default=-1111.)
    var2 = FloatCol(default=-1111.)
    var3 = FloatCol(default=-1111.)
    weight = FloatCol(default=-1111.)
    cls0 = FloatCol(default=-1111.)
    cls1 = FloatCol(default=-1111.)
    cls2 = FloatCol(default=-1111.)


outfile = root_open('tmva_example_multiple_backgrounds__applied.root',
                    'recreate')
output_tree = Tree('multiBkg', model=OutputTree)
r1 = TMVA.Reader("!Color:!Silent")
r2 = TMVA.Reader("!Color:!Silent")
# r3 = TMVA.Reader( "!Color:!Silent" )

r1.AddVariable('var1', output_tree.var1)
r1.AddVariable('var2', output_tree.var2)
r1.AddVariable('var3', output_tree.var3)

r2.AddVariable('var1', output_tree.var1)
r2.AddVariable('var2', output_tree.var2)
r2.AddVariable('var3', output_tree.var3)

# r3.AddVariable('var1', output_tree.var1)
# r3.AddVariable('var2', output_tree.var2)
# r3.AddVariable('var3', output_tree.var3)
Пример #5
0
Muon3_innerTrack_numberOfLostTrackerInnerHits = array('f', [0.])
Muon3_numberOfMatchedStations = array('f', [0.])
Muon3_calEnergy_had = array('f', [0.])
Muon3_innerTrack_numberofValidHits = array('f', [0.])
Muon3_calEnergy_em = array('f', [0.])
Muon3_innerTrack_numberOfLostTrackerOuterHits = array('f', [0.])
Muon3_innerTrack_normalizedChi2 = array('f', [0.])
Muon3_innerTrack_validFraction = array('f', [0.])
Muon3_innerTrack_pixelLayersWithMeasurement = array('f', [0.])
Muon3_ptErrOverPt = array('f', [0.])

fake = array('f', [0.])

MuonId = array('f', [-99.0])

readerMuonId = TMVA.Reader("!Color:!Silent")
readerMuonId.AddVariable("Muon_caloCompatibility", Muon3_caloCompatibility)
readerMuonId.AddVariable("Muon_segmentCompatibility",
                         Muon3_segmentCompatibility)
readerMuonId.AddVariable("Muon_innerTrack_numberOfLostTrackerHits",
                         Muon3_innerTrack_numberOfLostTrackerHits)
readerMuonId.AddVariable("Muon_innerTrack_numberOfLostTrackerInnerHits",
                         Muon3_innerTrack_numberOfLostTrackerInnerHits)
readerMuonId.AddVariable("Muon_numberOfMatchedStations",
                         Muon3_numberOfMatchedStations)
readerMuonId.AddVariable("Muon_calEnergy_had", Muon3_calEnergy_had)
readerMuonId.AddVariable("Muon_innerTrack_numberofValidHits",
                         Muon3_innerTrack_numberofValidHits)
readerMuonId.AddVariable("Muon_calEnergy_em", Muon3_calEnergy_em)
readerMuonId.AddVariable("Muon_innerTrack_numberOfLostTrackerOuterHits",
                         Muon3_innerTrack_numberOfLostTrackerOuterHits)
## This tutorial shows how to apply a trained model to new data (regression).
##
## \macro_code
##
## \date 2017
## \author TMVA Team

from ROOT import TMVA, TFile, TString
from array import array
from subprocess import call
from os.path import isfile

# Setup TMVA
TMVA.Tools.Instance()
TMVA.PyMethodBase.PyInitialize()
reader = TMVA.Reader("Color:!Silent")

# Load data
if not isfile('tmva_reg_example.root'):
    call([
        'curl', '-L', '-O', 'http://root.cern.ch/files/tmva_reg_example.root'
    ])

data = TFile.Open('tmva_reg_example.root')
tree = data.Get('TreeR')

branches = {}
for branch in tree.GetListOfBranches():
    branchName = branch.GetName()
    branches[branchName] = array('f', [-999])
    tree.SetBranchAddress(branchName, branches[branchName])
Пример #7
0
from root_numpy.tmva import add_classification_events, evaluate_reader
from root_numpy import ROOT_VERSION
from ROOT import TMVA, TFile, TCut

reader = TMVA.Reader()


def arr():
    return array('f', [0.])


reader2j.AddVariable("hmmpt", arr())
reader2j.AddVariable("hmmrap", arr())
reader2j.AddVariable("hmmthetacs", arr())
reader2j.AddVariable("hmmphics", arr())
reader2j.AddVariable("j1pt", arr())
reader2j.AddVariable("j1eta", arr())
reader2j.AddVariable("j2pt", arr())
reader2j.AddVariable("detajj", arr())
reader2j.AddVariable("dphijj", arr())
reader2j.AddVariable("mjj", arr())
reader2j.AddVariable("met", arr())
reader2j.AddVariable("zepen", arr())
reader2j.AddVariable("njets", arr())
reader2j.AddVariable("drmj", arr())
reader2j.AddVariable("m1ptOverMass", arr())
reader2j.AddVariable("m2ptOverMass", arr())
reader2j.AddVariable("m1eta", arr())
reader2j.AddVariable("m2eta", arr())
reader2j.AddSpectator("hmerr", arr())
reader2j.AddSpectator("weight", arr())
Пример #8
0
def main():

    try:
        # Retrive command line options
        shortopts = "m:i:t:o:vh?"
        longopts = [
            "methods=", "inputfile=", "inputtrees=", "outputfile=", "verbose",
            "help", "usage"
        ]
        opts, args = getopt.getopt(sys.argv[1:], shortopts, longopts)

    except getopt.GetoptError:
        # Print help information and exit:
        print "ERROR: unknown options in argument %s" % sys.argv[1:]
        usage()
        sys.exit(1)

    infname = DEFAULT_INFNAME
    treeNameSig = DEFAULT_TREESIG
    treeNameBkg = DEFAULT_TREEBKG
    outfname = DEFAULT_OUTFNAME
    methods = DEFAULT_METHODS
    verbose = False
    for o, a in opts:
        if o in ("-?", "-h", "--help", "--usage"):
            usage()
            sys.exit(0)
        elif o in ("-m", "--methods"):
            methods = a
        elif o in ("-i", "--inputfile"):
            infname = a
        elif o in ("-o", "--outputfile"):
            outfname = a
        elif o in ("-t", "--inputtrees"):
            a.strip()
            trees = a.rsplit(' ')
            trees.sort()
            trees.reverse()
            if len(trees) - trees.count('') != 2:
                print "ERROR: need to give two trees (each one for signal and background)"
                print trees
                sys.exit(1)

            treeNameSig = trees[0]
            treeNameBkg = trees[1]
        elif o in ("-v", "--verbose"):
            verbose = True

    # Print methods
    mlist = methods.replace(' ', ',').split(',')
    print "=== TMVApplication: use method(s)..."
    for m in mlist:
        if m.strip() != '':
            print "=== - <%s>" % m.strip()

    # Import ROOT classes
    from ROOT import gSystem, gROOT, gApplication, TFile, TTree, TCut, TH1F, TStopwatch

    # check ROOT version, give alarm if 5.18
    if gROOT.GetVersionCode() >= 332288 and gROOT.GetVersionCode() < 332544:
        print "*** You are running ROOT version 5.18, which has problems in PyROOT such that TMVA"
        print "*** does not run properly (function calls with enums in the argument are ignored)."
        print "*** Solution: either use CINT or a C++ compiled version (see TMVA/macros or TMVA/examples),"
        print "*** or use another ROOT version (e.g., ROOT 5.19)."
        sys.exit(1)

    # Logon not automatically loaded through PyROOT (logon loads TMVA library) load also GUI
    gROOT.SetMacroPath("../macros/")
    gROOT.Macro("../macros/TMVAlogon.C")

    # Import TMVA classes from ROOT
    from ROOT import TMVA

    # Create the Reader object
    reader = TMVA.Reader("!Color")

    # Create a set of variables and declare them to the reader
    # - the variable names must corresponds in name and type to
    # those given in the weight file(s) that you use

    # what to do ???
    var1 = array('f', [0])
    var2 = array('f', [0])
    var3 = array('f', [0])
    var4 = array('f', [0])
    reader.AddVariable("var1+var2", var1)
    reader.AddVariable("var1-var2", var2)
    reader.AddVariable("var3", var3)
    reader.AddVariable("var4", var4)

    # book the MVA methods
    dir = "weights/"
    prefix = "TMVAnalysis_"

    for m in mlist:
        reader.BookMVA(m + " method", dir + prefix + m + ".weights.txt")

    #######################################################################
    # For an example how to apply your own plugin method, please see
    # TMVA/macros/TMVApplication.C
    #######################################################################

    # Book output histograms
    nbin = 80

    histList = []
    for m in mlist:
        histList.append(TH1F(m, m, nbin, -3, 3))

    # Book example histogram for probability (the other methods would be done similarly)
    if "Fisher" in mlist:
        probHistFi = TH1F("PROBA_MVA_Fisher", "PROBA_MVA_Fisher", nbin, 0, 1)
        rarityHistFi = TH1F("RARITY_MVA_Fisher", "RARITY_MVA_Fisher", nbin, 0,
                            1)

    # Prepare input tree (this must be replaced by your data source)
    # in this example, there is a toy tree with signal and one with background events
    # we'll later on use only the "signal" events for the test in this example.
    #
    fname = "./tmva_example.root"
    print "--- Accessing data file: %s" % fname
    input = TFile.Open(fname)
    if not input:
        print "ERROR: could not open data file: %s" % fname
        sys.exit(1)

    #
    # Prepare the analysis tree
    # - here the variable names have to corresponds to your tree
    # - you can use the same variables as above which is slightly faster,
    #   but of course you can use different ones and copy the values inside the event loop
    #
    print "--- Select signal sample"
    theTree = input.Get("TreeS")
    userVar1 = array('f', [0])
    userVar2 = array('f', [0])
    theTree.SetBranchAddress("var1", userVar1)
    theTree.SetBranchAddress("var2", userVar2)
    theTree.SetBranchAddress("var3", var3)
    theTree.SetBranchAddress("var4", var4)

    # Efficiency calculator for cut method
    nSelCuts = 0
    effS = 0.7

    # Process the events
    print "--- Processing: %i events" % theTree.GetEntries()
    sw = TStopwatch()
    sw.Start()
    for ievt in range(theTree.GetEntries()):

        if ievt % 1000 == 0:
            print "--- ... Processing event: %i" % ievt

        # Fill event in memory
        theTree.GetEntry(ievt)

        # Compute MVA input variables
        var1[0] = userVar1[0] + userVar2[0]
        var2[0] = userVar1[0] - userVar2[0]

        # Return the MVAs and fill to histograms
        if "CutsGA" in mlist:
            passed = reader.EvaluateMVA("CutsGA method", effS)
            if passed:
                nSelCuts = nSelCuts + 1

        # Fill histograms with MVA outputs
        for h in histList:
            h.Fill(reader.EvaluateMVA(h.GetName() + " method"))

        # Retrieve probability instead of MVA output
        if "Fisher" in mlist:
            probHistFi.Fill(reader.GetProba("Fisher method"))
            rarityHistFi.Fill(reader.GetRarity("Fisher method"))

    # Get elapsed time
    sw.Stop()
    print "--- End of event loop: %s" % sw.Print()

    # Return computed efficeincies
    if "CutsGA" in mlist:
        eff = float(nSelCuts) / theTree.GetEntries()
        deff = math.sqrt(eff * (1.0 - eff) / theTree.GetEntries())
        print "--- Signal efficiency for Cuts method : %.5g +- %.5g (required was: %.5g)" % (
            eff, deff, effS)

        # Test: retrieve cuts for particular signal efficiency
        mcuts = reader.FindMVA("CutsGA method")
        cutsMin = array('d', [0, 0, 0, 0])
        cutsMax = array('d', [0, 0, 0, 0])
        mcuts.GetCuts(0.7, cutsMin, cutsMax)
        print "--- -------------------------------------------------------------"
        print "--- Retrieve cut values for signal efficiency of 0.7 from Reader"
        for ivar in range(4):
            print "... Cut: %.5g < %s <= %.5g" % (
                cutsMin[ivar], reader.GetVarName(ivar), cutsMax[ivar])

        print "--- -------------------------------------------------------------"

    #
    # write histograms
    #
    target = TFile("TMVApp.root", "RECREATE")
    for h in histList:
        h.Write()

    # Write also probability hists
    if "Fisher" in mlist:
        probHistFi.Write()
        rarityHistFi.Write()

    target.Close()

    print "--- Created root file: \"TMVApp.root\" containing the MVA output histograms"
    print "==> TMVApplication is done!"
Пример #9
0



# In[11]:


#path = "/eos/uscms/store/user/corderom/Corrections2016Rereco/"
#phVals = ["EE","EB"]
phVals = ["EE"]
path = ""
file = {}
reader = {}
for ph in phVals:
    file[ph] = "TMVAnalysis_BDT_"+ph+".weights.xml"
    reader[ph] = TMVA.Reader()


# In[12]:


varName= {
        "recoPhi"                :["photonOnePhi"],
        "r9"                     :["photonOneR9"],
        "sieieFull5x5"           :["photonOneSieie"],
        "sieipFull5x5"           :["photonOneSieip"],
        "e2x2Full5x5/e5x5Full5x5":["photonOneE2x2","photonOneE5x5"],
        "recoSCEta"              :["photonOneEta"],
        "rawE"                   :["photonOneScRawE"],
        "scEtaWidth"             :["photonOneScEtaWidth"],
        "scPhiWidth"             :["photonOneScPhiWidth"],
Пример #10
0
    'var_Iso08MuMin', 'var_MaxMuonImpactAngle', 'var_MaxtrkKink',
    'var_MuonglbkinkSum', 'var_MinMatchedStations', 'var_MaxdeltaMuZ'
]

varlist_help = ['var_mass12', 'var_mass13']

print "Initializing TMVA..."
# Setup TMVA
TMVA.Tools.Instance()
mvaReaderList = ['readerA', 'readerB', 'readerC', 'readerBC']
mvaReaders = {}
mvaWeights = {}

print "Setting up reader..."
for reader in mvaReaderList:
    mvaReaders[reader] = TMVA.Reader('Color:!Silent')
    #    tmpstr = 'MyTMVAClassification_Test_vars_'+fileStr(reader)
    tmpstr = args.weights_prefix + '_vars_' + fileStr(reader)
    #--weights-prefix

    mvaWeights[reader] = TString(
        BASEDIR + '/' + tmpstr + '_BDT.weights.xml'
    )  # weights weights.xml file after training, place it to CommonFiles

#Vars2016_vars_

# Open input file and set branch addresses
rootfile = TFile(filename, 'READ')
rootfile.ls()
tree_bkg = rootfile.Get('TreeB')
tree_ds = rootfile.Get('TreeS_Ds')
Пример #11
0
def main():

    usage = 'usage: %prog [options]'
    parser = optparse.OptionParser(usage)
    parser.add_option(
        '-s',
        '--suffix',
        dest='input_suffix',
        help='suffix used to identify inputs from network training',
        default=None,
        type='string')

    (opt, args) = parser.parse_args()
    '''if opt.json == None:
        print 'input variable .json not defined!'
        sys.exit(1)'''
    if opt.input_suffix == None:
        print 'Input files suffix not defined!'
        sys.exit(1)

    classifier_suffix = opt.input_suffix
    classifier_parent_dir = 'BinaryClassifier_BDTG_%s' % (classifier_suffix)

    # Setup TMVA
    TMVA.Tools.Instance()
    TMVA.PyMethodBase.PyInitialize()
    reader = TMVA.Reader("Color:!Silent")

    #ttH_filename = 'samples/2017MC/training_region/TTHnobb.root'
    ttH_filename = 'samples/DiLepTR_ttH_bInclude.root'
    data_ttH = TFile.Open(ttH_filename)
    #data_ttH_tree = data_ttH.Get('syncTree')
    data_ttH_tree = data_ttH.Get('BOOM')
    print 'ttH file to evaluate: ', ttH_filename

    if classifier_suffix == "ttHvsttJets":
        #bckg_filename = 'samples/2017MC/testing_region/TTJets.root'
        #bckg_filename = 'samples/2017MC/training_region/TTJets.root'
        bckg_filename = 'samples/DiLepTR_ttJets_bInclude.root'
        data_bckg = TFile.Open(bckg_filename)
        #data_bckg_tree = data_bckg.Get('syncTree')
        data_bckg_tree = data_bckg.Get('BOOM')
    elif classifier_suffix == "ttHvsttV":
        #bckg_filename = 'samples/2017MC/testing_region/ttV.root'
        #bckg_filename = 'samples/2017MC/training_region/ttV.root'
        bckg_filename = 'samples/DiLepTR_ttV_bInclude.root'
        data_bckg = TFile.Open(bckg_filename)
        #data_bckg_tree = data_bckg.Get('syncTree')
        data_bckg_tree = data_bckg.Get('BOOM')

    print 'ttJets file to evaluate: ', bckg_filename

    keys_list = []
    if classifier_suffix == "ttHvsttJets":
        keys_list = [(
            "max(abs(LepGood_eta[iLepFO_Recl[0]]),abs(LepGood_eta[iLepFO_Recl[1]]))",
            "maxeta"), ("nJet25_Recl", "Jet_numLoose"),
                     ("mindr_lep1_jet", "mindrlep1jet"),
                     ("mindr_lep2_jet", "mindrlep2jet"),
                     ("MT_met_lep1", "SR_InvarMassT"),
                     ("max(-1.1,BDTv8_eventReco_mvaValue)", "hadTop_BDT")]
    elif classifier_suffix == "ttHvsttV":
        keys_list = [(
            "max(abs(LepGood_eta[iLepFO_Recl[0]]),abs(LepGood_eta[iLepFO_Recl[1]]))",
            "maxeta"), ("nJet25_Recl", "Jet_numLoose"),
                     ("mindr_lep1_jet", "mindrlep1jet"),
                     ("mindr_lep2_jet", "mindrlep2jet"),
                     ("MT_met_lep1", "SR_InvarMassT"),
                     ("LepGood_conePt[iLepFO_Recl[1]]", "corrptlep1"),
                     ("LepGood_conePt[iLepFO_Recl[0]]", "corrptlep2"),
                     ("max(-1.1,BDTv8_eventReco_Hj_score)", "Hj1_BDT")]

    branches_ttree = {}
    for reader_key, ttree_key in keys_list:
        print 'Setting Branch address: ', ttree_key
        if ttree_key == 'Jet_numLoose':
            #branches_ttree[ttree_key] = array('I', [999])
            branches_ttree[ttree_key] = array('d', [999])
        else:
            #branches_ttree[ttree_key] = array('f', [-999])
            branches_ttree[ttree_key] = array('d', [-999])
        if 'hadTop_BDT' in ttree_key:
            keyname = 'hadTop_BDT'
            data_ttH_tree.SetBranchAddress(str(keyname),
                                           branches_ttree[ttree_key])
            data_bckg_tree.SetBranchAddress(str(keyname),
                                            branches_ttree[ttree_key])
        elif 'Hj1_BDT' in ttree_key:
            keyname = 'Hj1_BDT'
            data_ttH_tree.SetBranchAddress(str(keyname),
                                           branches_ttree[ttree_key])
            data_bckg_tree.SetBranchAddress(str(keyname),
                                            branches_ttree[ttree_key])
        else:
            data_ttH_tree.SetBranchAddress(str(ttree_key),
                                           branches_ttree[ttree_key])
            data_bckg_tree.SetBranchAddress(str(ttree_key),
                                            branches_ttree[ttree_key])

    # Keep track of event numbers for cross-checks.
    event_number_branch = array('L', [999])
    data_ttH_tree.SetBranchAddress('nEvent', event_number_branch)

    branches_reader = {}
    # Register names of inputs with reader. Together with the name give the address of the local variable that carries the updated input variables during event loop.
    for reader_key, ttree_key in keys_list:
        print 'Add variable name %s: ' % reader_key
        branches_reader[reader_key] = array('f', [-999])
        reader.AddVariable(str(reader_key), branches_reader[reader_key])

    iLepFO_Recl0 = array('f', [-999])
    reader.AddSpectator('iLepFO_Recl[0]', iLepFO_Recl0)
    iLepFO_Recl1 = array('f', [-999])
    reader.AddSpectator('iLepFO_Recl[1]', iLepFO_Recl1)
    iLepFO_Recl2 = array('f', [-999])
    reader.AddSpectator('iLepFO_Recl[2]', iLepFO_Recl2)

    # Book methods
    # First argument is user defined name. Doesn not have to be same as training name.
    # True type of method and full configuration are read from the weights file specified in the second argument.
    if classifier_suffix == "ttHvsttJets":
        #mva_weights_dir = 'BinaryClassifier_BDTG_%s/weights/2lss_ttbar_withBDTv8_BDTG.weights.xml' % classifier_suffix
        mva_weights_dir = '../../../FromMarco/2lss_ttbar_withBDTv8_BDTG.weights.xml'
    elif classifier_suffix == "ttHvsttV":
        #mva_weights_dir = 'BinaryClassifier_BDTG_%s/weights/2lss_ttV_withHj_BDTG.weights.xml' % classifier_suffix
        mva_weights_dir = '../../../FromMarco/2lss_ttV_withHj_BDTG.weights.xml'

    print 'using weights file: ', mva_weights_dir
    reader.BookMVA('BDTG', TString(mva_weights_dir))

    classifier_samples_dir = classifier_parent_dir + "/outputs"
    classifier_plots_dir = classifier_parent_dir + "/plots"
    if not os.path.exists(classifier_plots_dir):
        os.makedirs(classifier_plots_dir)
    if not os.path.exists(classifier_samples_dir):
        os.makedirs(classifier_samples_dir)

    # Define outputs: files to store histograms/ttree with results from application of classifiers and any histos/trees themselves.
    output_file_name = '%s/Applied_%s.root' % (classifier_samples_dir,
                                               classifier_parent_dir)
    output_file = TFile.Open(output_file_name, 'RECREATE')

    network_evaluation(data_ttH_tree, keys_list, 'ttH', branches_ttree,
                       branches_reader, reader)
    if classifier_suffix == 'ttHvsttJets':
        network_evaluation(data_bckg_tree, keys_list, 'ttjets', branches_ttree,
                           branches_reader, reader)
    if classifier_suffix == 'ttHvsttV':
        network_evaluation(data_bckg_tree, keys_list, 'ttV', branches_ttree,
                           branches_reader, reader)
    output_file.Close()
    foutname += str(emax) + '.root'
    fout = TFile(foutname, 'recreate')

    if sample == 'ttbar': is_ttbar = 1
    else: is_ttbar = 0

    #      print 'emin and max', emin, emax
    if emax == 0:
        print 'emax == 0'
    print "Using top mass constraint"
    # if sample != 'data': b1 = Particle('b1',tkin,1)
    # else: b1 = Particle('b1',tkin)
    # if sample != 'data': b2 = Particle('b2',tkin,1)
    # else: b2 = Particle('b2',tkin)

    reader = TMVA.Reader("!Color:!Silent")
    readerMisc = TMVA.Reader("!Color:!Silent")
    readerQGL = TMVA.Reader("!Color:!Silent")

    mytree = ManageTTree(tvars, tkin)

    #usevar = ['top1_m','top2_m','w1_m','w2_m','deltaRl1l2','deltaRq1q2','deltaRb1b2','deltaRb1w1','deltaRb2w2','deltaPhiw1w2','deltaPhit1t2','q1b1_mass','p1b2_mass','deltaRb1w2','deltaRb2w1','mindeltaRb1q','simple_chi2','mindeltaRb2p', 'deltaEtal1l2', 'deltaEtaq1q2','jet_CSV[0]','jet_CSV[1]','jet_CSV[2]','jet_CSV[3]','jet_CSV[4]','jet_CSV[5]']

    #usevar = ['top1_m','top2_m','w1_m','w2_m','deltaRl1l2','deltaRq1q2','deltaRb1b2','deltaRb1w1','deltaRb2w2','deltaPhit1t2','q1b1_mass','p1b2_mass','deltaRb1w2','deltaRb2w1','simple_chi2','mindeltaRb2p', 'deltaEtal1l2', 'deltaEtaq1q2','jet_CSV[0]','jet_CSV[1]','jet_CSV[2]','jet_CSV[3]','jet_CSV[4]','jet_CSV[5]']

    usevar = [
        'top1_m', 'top2_m', 'w1_m', 'w2_m', 'deltaRl1l2', 'deltaRq1q2',
        'deltaRb1b2', 'deltaRb1w1', 'deltaRb2w2', 'deltaPhiw1w2',
        'deltaPhit1t2', 'q1b1_mass', 'p1b2_mass', 'deltaRb1w2', 'deltaRb2w1',
        'mindeltaRb1q', 'mindeltaRb2p', 'deltaEtal1l2', 'deltaEtaq1q2',
        'jet_CSV[0]', 'jet_CSV[1]', 'jet_CSV[2]', 'jet_CSV[3]', 'jet_CSV[4]',
Пример #13
0
file2 = open('../mvavars2.txt')
file3 = open('../mvavars3.txt')

mvavars1 = []
mvavars2 = []
mvavars3 = []

for line in file1:
	mvavars1.append(line.strip())
for line in file2:
	mvavars2.append(line.strip())
for line in file3:
	print line
	mvavars3.append(line.strip())

reader3 = TMVA.Reader()
var3_ = []
for i, var3 in enumerate(mvavars1):
	var3_.append(array.array('f',[0]))
	reader3.AddVariable(var3,var3_[i])
reader3.BookMVA("MLP","weights/TMVAClassification_HZZ_2e2mu_MLP.weights.xml")


#weight	weight	ele1_pt	ele1_eta	ele1_phi	ele1_charge	ele1_trackIso	ele1_EcalIso	ele1_HcalIso	ele1_X	ele1_SIP	ele2_pt	ele2_eta	ele2_phi	ele2_charge	ele2_trackIso	ele2_EcalIso	ele2_HcalIso	ele2_X	ele2_SIP	ele3_pt	ele3_eta	ele3_phi	ele3_charge	ele3_trackIso	ele3_EcalIso	ele3_HcalIso	ele3_X	ele3_SIP	ele4_pt	ele4_eta	ele4_phi	ele4_charge	ele4_trackIso	ele4_EcalIso	ele4_HcalIso	ele4_X	ele4_SIP	

#worst_iso_X	second_worst_iso_X	worst_vertex	second_worst_vertex	mZ	mZstar	mbestH	index	channel	sample	end

def loop(hweights, sig, hs, c1):


	#------- sig events ---------
Пример #14
0
    for period, channel in itertools.product(periods, channels):
        dijetDEta = array.array('f', [-999])
        dijetDPhi = array.array('f', [-999])
        llgJJDPhi = array.array('f', [-999])
        jPhotonDRMin = array.array('f', [-999])
        ptt = array.array('f', [-999])
        jetOnePt = array.array('f', [-999])
        jetTwoPt = array.array('f', [-999])
        kin_bdt = array.array('f', [-999])
        vbfPtBalance = array.array('f', [-999])
        photonZepp = array.array('f', [-999])

        kin_bdt_james = array.array('f', [-999])

        vbfWeightsFile = 'trained_bdts/vbf_bdt_combined_ming-yan_current.xml'
        vbf_reader = t.Reader("!Color:Silent")

        vbf_reader.AddVariable('dijetDEta', dijetDEta)
        vbf_reader.AddVariable('dijetDPhi', dijetDPhi)
        vbf_reader.AddVariable('llgJJDPhi', llgJJDPhi)
        vbf_reader.AddVariable('jPhotonDRMin', jPhotonDRMin)
        vbf_reader.AddVariable('ptt', ptt)
        vbf_reader.AddVariable('jetOnePt', jetOnePt)
        vbf_reader.AddVariable('jetTwoPt', jetTwoPt)
        vbf_reader.AddVariable('kin_bdt', kin_bdt)
        vbf_reader.AddVariable('vbfPtBalance', vbfPtBalance)
        vbf_reader.AddVariable('photonZepp', photonZepp)

        vbf_reader.BookMVA('BDT method', vbfWeightsFile)

        #vbfWeightsFileJames = 'trained_bdts/vbf_bdt_combined_james_current_half_signal_BDT.weights.xml'
Пример #15
0
## \macro_code
##
## \author Lailin XU

from ROOT import TMVA, TFile, TTree, TCut, TH1F, TCanvas, gROOT, TLegend
from subprocess import call
from os.path import isfile
from array import array

gROOT.SetStyle("ATLAS")

# Setup TMVA
TMVA.Tools.Instance()

# Reader. One reader for each application.
reader = TMVA.Reader("Color:!Silent")
reader_S = TMVA.Reader("Color:!Silent")
reader_B = TMVA.Reader("Color:!Silent")

# Inputs
# =============
# Load data
# An unknown sample
trfile = "Zp2TeV_ttbar.root"
data = TFile.Open(trfile)
tree = data.Get('tree')

# Known signal
trfile_S = "Zp1TeV_ttbar.root"
data_S = TFile.Open(trfile_S)
tree_S = data_S.Get('tree')
Пример #16
0
    def beginLoop(self, setup):
        super(TreeProducer, self).beginLoop(setup)
        self.rootfile = TFile('/'.join([self.dirName, 'tree.root']),
                              'recreate')
        self.tree = Tree('events', '')
        self.tree.var('weight', float)
        self.tree.var('nbjets', float)

        bookParticle(self.tree, 'l')
        bookMet(self.tree, 'met')

        # fatjet stuff
        for flavour in ['higgs', 'top']:

            bookParticle(self.tree, '{}jet'.format(flavour))
            bookParticle(self.tree, 'softDropped_{}jet'.format(flavour))

            self.tree.var('{}jet_tau1'.format(flavour), float)
            self.tree.var('{}jet_tau2'.format(flavour), float)
            self.tree.var('{}jet_tau3'.format(flavour), float)
            self.tree.var('{}jet_tau32'.format(flavour), float)
            self.tree.var('{}jet_tau31'.format(flavour), float)
            self.tree.var('{}jet_tau21'.format(flavour), float)

            self.tree.var('{}jet_flow15'.format(flavour), float)
            self.tree.var('{}jet_flow25'.format(flavour), float)
            self.tree.var('{}jet_flow35'.format(flavour), float)
            self.tree.var('{}jet_flow45'.format(flavour), float)
            self.tree.var('{}jet_flow55'.format(flavour), float)

            self.tree.var('{}jet_nbs'.format(flavour), float)
            self.tree.var('{}jet_mbs'.format(flavour), float)
            self.tree.var('{}jet_bdt_th'.format(flavour), float)

        # for MVA
        self.reader = TMVA.Reader()

        self.bdt_tau1 = array.array('f', [0])
        self.bdt_tau2 = array.array('f', [0])
        self.bdt_tau3 = array.array('f', [0])
        self.bdt_tau21 = array.array('f', [0])
        self.bdt_tau31 = array.array('f', [0])
        self.bdt_tau32 = array.array('f', [0])
        self.bdt_flow15 = array.array('f', [0])
        self.bdt_flow25 = array.array('f', [0])
        self.bdt_flow35 = array.array('f', [0])
        self.bdt_flow45 = array.array('f', [0])
        self.bdt_flow55 = array.array('f', [0])
        self.bdt_jet_m = array.array('f', [0])
        self.bdt_softDropped_jet_m = array.array('f', [0])
        self.bdt_jet_nbs = array.array('f', [0])

        self.reader.AddVariable('jet_m', self.bdt_jet_m)
        self.reader.AddVariable('softDropped_jet_m',
                                self.bdt_softDropped_jet_m)
        self.reader.AddVariable('jet_tau1', self.bdt_tau1)
        self.reader.AddVariable('jet_tau2', self.bdt_tau2)
        self.reader.AddVariable('jet_tau3', self.bdt_tau3)
        self.reader.AddVariable('jet_tau32', self.bdt_tau32)
        self.reader.AddVariable('jet_tau31', self.bdt_tau31)
        self.reader.AddVariable('jet_tau21', self.bdt_tau21)
        self.reader.AddVariable('jet_flow15', self.bdt_flow15)
        self.reader.AddVariable('jet_flow25', self.bdt_flow25)
        self.reader.AddVariable('jet_flow35', self.bdt_flow35)
        self.reader.AddVariable('jet_flow45', self.bdt_flow45)
        self.reader.AddVariable('jet_flow55', self.bdt_flow55)
        self.reader.AddVariable('jet_nbs', self.bdt_jet_nbs)

        #path = "/afs/cern.ch/work/s/selvaggi/private/FCCSW/heppy/FCChhAnalyses/tth_boosted/"
        path = "/eos/experiment/fcc/hh/analyses/Higgs/ttH/BDT/"
        self.reader.BookMVA("BDT",
                            str(path) + "BDT_BDT_Higgs_vs_Top.weights.xml")
Пример #17
0
from array import array
from tqdm import tqdm
import math
from bdt_common import total_pot, variables, spectators, choose_shower
from bdt_common import is_active, is_fiducial, distance
from bdt_common import ELECTRON_MASS, PROTON_MASS, MAX_N_SHOWERS, MAX_N_TRACKS, N_UNI
from bdt_common import PROTON_THRESHOLD, ELECTRON_THRESHOLD

from proton_energy import length2energy
import time
import statistics
import sys

STORE_SYS = True

reader_reclass = TMVA.Reader(":".join(["!V", "!Silent", "Color"]))
angle = array("f", [0])
pca = array("f", [0])
res = array("f", [0])
open_angle = array("f", [0])
n_hits = array("f", [0])
ratio = array("f", [0])

reader_reclass.AddVariable("angle", angle)
reader_reclass.AddVariable("pca", pca)
reader_reclass.AddVariable("res", res)
reader_reclass.AddVariable("open_angle", open_angle)
reader_reclass.AddVariable("ratio", ratio)
reader_reclass.AddVariable("n_hits", n_hits)

reader_reclass.BookMVA(
Пример #18
0
        zgLittleTheta = array.array('f', [-999])
        zgBigTheta = array.array('f', [-999])
        llgPtOverM = array.array('f', [-999])
        leptonOneEta = array.array('f', [-999])
        leptonTwoEta = array.array('f', [-999])
        photonEta = array.array('f', [-999])
        zgPhi = array.array('f', [-999])
        photonMVA = array.array('f', [-999])
        corrPhotonMVA = array.array('f', [-999])
        photonERes = array.array('f', [-999])
        lPhotonDRMin = array.array('f', [-999])
        lPhotonDRMax = array.array('f', [-999])

        kinWeightsFile = 'trained_bdts/kin_bdt_combined_ming-yan_current.xml'
        kin_reader = t.Reader("!Color:Silent")

        kin_reader.AddVariable('zgLittleTheta', zgLittleTheta)
        kin_reader.AddVariable('zgBigTheta', zgBigTheta)
        kin_reader.AddVariable('llgPtOverM', llgPtOverM)
        kin_reader.AddVariable('leptonOneEta', leptonOneEta)
        kin_reader.AddVariable('leptonTwoEta', leptonTwoEta)
        kin_reader.AddVariable('photonEta', photonEta)
        kin_reader.AddVariable('zgPhi', zgPhi)
        kin_reader.AddVariable('photonMVA', corrPhotonMVA)
        kin_reader.AddVariable('photonERes', photonERes)
        kin_reader.AddVariable('lPhotonDRMin', lPhotonDRMin)
        kin_reader.AddVariable('lPhotonDRMax', lPhotonDRMax)

        kin_reader.BookMVA('BDT method', kinWeightsFile)
    with open(filename) as f:
        lines = f.read().splitlines()
        emin = map(int, re.findall(r'\d+', lines[0]))[0]
        emax = map(int, re.findall(r'\d+', lines[0]))[1]

    foutname = 'Skim_'
    foutname += sample + '_'
    foutname += str(emax) + '.root'
    fout = TFile(foutname, 'recreate')

    if sample == 'ttbar': is_ttbar = 1
    else: is_ttbar = 0
    if emax == 0:
        print 'emax == 0'

    reader = TMVA.Reader("!Color:!Silent")
    readerQCD = TMVA.Reader("!Color:!Silent")

    mytree = ManageTTree(tvars, tkin)

    usevar = [
        'lp1_eta', 'lp2_eta', 'lq1_eta', 'lq2_eta', 'b1_eta', 'b2_eta',
        'top1_m', 'top2_m', 'w1_m', 'w2_m', 'deltaRp1p2', 'deltaRq1q2',
        'jet_MOverPt[0]', 'jet_MOverPt[1]', 'jet_MOverPt[2]', 'jet_MOverPt[3]',
        'jet_MOverPt[4]', 'jet_MOverPt[5]', 'deltaRb1b2', 'deltaRb1w1',
        'deltaRb2w2', 'deltaPhiw1w2', 'deltaPhit1t2', 'p1b1_mass', 'q1b2_mass',
        'deltaRb1w2', 'deltaRb2w1', 'mindeltaRb1p', 'simple_chi2',
        'mindeltaRb2q', 'deltaEtap1p2', 'deltaEtaq1q2', 'jet_CSV[0]',
        'jet_CSV[1]', 'jet_CSV[2]', 'jet_CSV[3]', 'jet_CSV[4]', 'jet_CSV[5]'
    ]
    useQCD = [
def tmva_model():

    model_path = "dataset_dnn/weights/TMVAClassification_BDT.weights.xml"
    print "loading TMVA........."
    print "....\n...\n..\n."
    reader = tmva.Reader()

    #reloading all the features into the loader
    #tmva requires that
    le = len(y_test)
    for col in columns:
        reader.AddVariable(col,
                           np.zeros(le,
                                    dtype='float32'))  # accepts 32 bit only.

    reader.BookMVA("BDT", model_path)

    decision_value = []
    prediction = []
    for row in x_test:
        a = root.std.vector(root.Double)()
        for r in row:
            a.push_back(r)

        value = reader.EvaluateMVA(a, "BDT")
        decision_value.append(value)
        if value > 0:
            prediction.append(1)
        else:
            prediction.append(0)

    # print classification_report(y_test, prediction, target_names=["background", "signal"])
    # print "Area under ROC curve: %.4f"%(roc_auc_score(y_test, prediction))

    dval_arr = np.array(decision_value)

    bg_scores = dval_arr[y_test == 0]  # scores corresponding to background
    sg_scores = dval_arr[y_test == 1]  # scores corresponding to signal

    plt.figure("fig-1")
    plt.subplot(1, 2, 1)
    #background histogram
    h2 = plt.hist(bg_scores.ravel(),
                  color='r',
                  alpha=0.5,
                  range=(-0.7, 0.4),
                  bins=30)

    #SIGNAL(tau-tau decay) histogram
    h1 = plt.hist(sg_scores.ravel(),
                  color='b',
                  ec='b',
                  alpha=0.5,
                  range=(-.7, 0.4),
                  bins=30)

    plt.xlabel("TMVA BDT output")
    plt.ylabel("Events")

    handles = [
        Rectangle((0, 1), 1, 1, color='r', ec="k"),
        Rectangle((0, 1), 1, 1, color='b', ec="k")
    ]

    plt.legend(handles, ["background", "signal"])

    AUC = roc_auc_score(y_test, prediction)
    print "Area under ROC curve: %.4f" % (AUC)

    plt.subplot(1, 2, 2)
    #calculating false and true postive rate
    fpr, tpr, thresholds = roc_curve(y_test, dval_arr)
    draw_roc_curve(plt, fpr, tpr, AUC)
    plt.show()
import ROOT, array
import ROOT, array
from ROOT import TFile, TH1F, TGraph, TCanvas, TLegend, TTree
from ROOT import TMVA, TMath
import sys

print sys.argv
process = sys.argv[1]

reader = TMVA.Reader("!V")
nJet = array.array('f', [0])
mindr_lep1_jet = array.array('f', [0])
mindr_lep2_jet = array.array('f', [0])
mindr_lep3_jet = array.array('f', [0])
avg_dr_jet = array.array('f', [0])
lep1_abs_eta = array.array('f', [0])
lep2_abs_eta = array.array('f', [0])
lep3_abs_eta = array.array('f', [0])
max_lep_eta = array.array('f', [0])
lep1_conePt = array.array('f', [0])
lep2_conePt = array.array('f', [0])
lep3_conePt = array.array('f', [0])
mindr_tau_jet = array.array('f', [0])
ptmiss = array.array('f', [0])
mT_lep1 = array.array('f', [0])
mT_lep2 = array.array('f', [0])
mT_lep3 = array.array('f', [0])
htmiss = array.array('f', [0])
dr_leps = array.array('f', [0])
tau_pt = array.array('f', [0])
tau_abs_eta = array.array('f', [0])
Пример #22
0
def main(weights, picklename, filename, treename='bTag_AntiKt2PV0TrackJets'):
    '''
    evaluate the tmva method after transforming input data into right format
    Args:
    -----
        weights:    .xml file out of mv2 training containing bdt parameters
        picklename: name of the output pickle to store new mv2 values
        filename:   .root file with ntuples used to evaluate the tmva method
        treename:   (optional) name of the TTree to consider 
    Returns:
    --------
        status
    Raises:
    -------
        nothing yet, but to be improved
    '''
    print 'Parsing XML file...'
    # -- Load XML file
    tree = ET.parse(weights)
    root = tree.getroot()

    # -- Get list of variable names from XML file
    var_list = [
        var.attrib['Label']
        for var in root.findall('Variables')[0].findall('Variable')
    ]

    # -- Count the input variables that go into MV2:
    n_vars = len(var_list)

    print 'Loading .root file for evaluation...'
    # -- Get ntuples:
    df = pup.root2panda(
        filename,
        treename,
        branches=[
            'jet_pt', 'jet_eta', 'jet_phi', 'jet_m', 'jet_ip2d_pu',
            'jet_ip2d_pc', 'jet_ip2d_pb', 'jet_ip3d_pu', 'jet_ip3d_pc',
            'jet_ip3d_pb', 'jet_sv1_vtx_x', 'jet_sv1_vtx_y', 'jet_sv1_vtx_z',
            'jet_sv1_ntrkv', 'jet_sv1_m', 'jet_sv1_efc', 'jet_sv1_n2t',
            'jet_sv1_sig3d', 'jet_jf_n2t', 'jet_jf_ntrkAtVx', 'jet_jf_nvtx',
            'jet_jf_nvtx1t', 'jet_jf_m', 'jet_jf_efc', 'jet_jf_sig3d',
            'jet_jf_deta', 'jet_jf_dphi', 'PVx', 'PVy', 'PVz'
        ])

    # -- Insert default values, calculate MV2 variables from the branches in df
    df = transformVars(df)

    # -- Map ntuple names to var_list
    names_mapping = {
        'pt': 'jet_pt',
        'abs(eta)': 'abs(jet_eta)',
        'ip2': 'jet_ip2',
        'ip2_c': 'jet_ip2_c',
        'ip2_cu': 'jet_ip2_cu',
        'ip3': 'jet_ip3',
        'ip3_c': 'jet_ip3_c',
        'ip3_cu': 'jet_ip3_cu',
        'sv1_ntkv': 'jet_sv1_ntrkv',
        'sv1_mass': 'jet_sv1_m',
        'sv1_efrc': 'jet_sv1_efc',
        'sv1_n2t': 'jet_sv1_n2t',
        'sv1_Lxy': 'jet_sv1_Lxy',
        'sv1_L3d': 'jet_sv1_L3d',
        'sv1_sig3': 'jet_sv1_sig3d',
        'sv1_dR': 'jet_sv1_dR',
        'jf_n2tv': 'jet_jf_n2t',
        'jf_ntrkv': 'jet_jf_ntrkAtVx',
        'jf_nvtx': 'jet_jf_nvtx',
        'jf_nvtx1t': 'jet_jf_nvtx1t',
        'jf_mass': 'jet_jf_m',
        'jf_efrc': 'jet_jf_efc',
        'jf_dR': 'jet_jf_dR',
        'jf_sig3': 'jet_jf_sig3d'
    }

    print 'Initializing TMVA...'
    # -- TMVA: Initialize reader, add empty variables and weights from training
    reader = TMVA.Reader()
    for n in range(n_vars):
        reader.AddVariable(var_list[n], array('f', [0]))
    reader.BookMVA('BDTG akt2', weights)

    print 'Creating feature matrix...'
    # -- Get features for each event and store them in X_test
    X_buf = []
    for event in df[[names_mapping[var] for var in var_list]].values:
        X_buf.extend(
            np.array([normalize_type(jet) for jet in event]).T.tolist())
    X_test = np.array(X_buf)

    print 'Evaluating!'
    # -- TMVA: Evaluate!
    twoclass_output = evaluate_reader(reader, 'BDTG akt2', X_test)

    # -- Reshape the MV2 output into event-jet format
    reorganized = match_shape(twoclass_output, df['jet_pt'])

    import cPickle
    print 'Saving new MV2 weights in {}'.format(picklename)
    cPickle.dump(reorganized, open(picklename, 'wb'))

    # -- Write the new branch to the tree (currently de-activated)
    #add_branch(reorganized, filename, treename, 'jet_mv2c20_new')

    print 'Done. Success!'
    return 0
Пример #23
0
def main():

    usage = 'usage: %prog [options]'
    parser = optparse.OptionParser(usage)
    parser.add_option(
        '-s',
        '--suffix',
        dest='input_suffix',
        help='suffix used to identify inputs from network training',
        default=None,
        type='string')
    parser.add_option('-j',
                      '--json',
                      dest='json',
                      help='json file with list of variables',
                      default=None,
                      type='string')
    parser.add_option('-i',
                      '--input',
                      dest='input_file',
                      help='input file',
                      default=None,
                      type='string')

    (opt, args) = parser.parse_args()
    jsonFile = open(opt.json, 'r')

    if opt.json == None:
        print 'input variable .json not defined!'
        sys.exit(1)
    if opt.input_suffix == None:
        print 'Input files suffix not defined!'
        sys.exit(1)
    if opt.input_file == None:
        print 'Input file not defined!'
        sys.exit(1)

    new_variable_list = json.load(jsonFile, encoding="utf-8").items()
    n_input_vars = 0
    for key, value in new_variable_list:
        n_input_vars = n_input_vars + 1

    input_file = opt.input_file

    classifier_suffix = opt.input_suffix
    classifier_parent_dir = '/afs/cern.ch/work/j/jthomasw/private/IHEP/ttHML/github/ttH_multilepton/DNN/Evaluation/V7-DNN_%s' % (
        classifier_suffix)

    # Setup TMVA
    TMVA.Tools.Instance()
    TMVA.PyMethodBase.PyInitialize()
    reader = TMVA.Reader("Color:!Silent")

    # Check files exist
    if not isfile(input_file):
        print 'No such input file: %s' % input_file

    # Open files and load ttrees
    data_file = TFile.Open(input_file)
    data_tree = data_file.Get("syncTree")

    branches_tree = {}
    integer_branches_tree = {}
    for key, value in new_variable_list:
        if 'hadTop_BDT' in key:
            branches_tree[key] = array('f', [-999])
            keyname = 'hadTop_BDT'
            data_tree.SetBranchAddress(str(keyname), branches_tree[key])
        elif 'Hj1_BDT' in key:
            branches_tree[key] = array('f', [-999])
            keyname = 'Hj1_BDT'
            data_tree.SetBranchAddress(str(keyname), branches_tree[key])
        elif ('n_fakeablesel_mu' in key) or ('n_fakeablesel_ele'
                                             in key) or ('Jet_numLoose'
                                                         in key):
            integer_branches_tree[key] = array('I', [9999])
            data_tree.SetBranchAddress(str(key), integer_branches_tree[key])
        else:
            branches_tree[key] = array('f', [-999])
            data_tree.SetBranchAddress(str(key), branches_tree[key])

    branches_reader = {}
    # Register names of inputs with reader. Together with the name give the address of the local variable that carries the updated input variables during event loop.
    for key, value in new_variable_list:
        print 'Add variable name %s: ' % key
        branches_reader[key] = array('f', [-999])
        reader.AddVariable(str(key), branches_reader[key])

    event_number = array('f', [-999])

    reader.AddSpectator('nEvent', event_number)

    # Book methods
    # First argument is user defined name. Doesn not have to be same as training name.
    # True type of method and full configuration are read from the weights file specified in the second argument.
    mva_weights_dir = '%s/weights/Factory_V7-DNN_%s_DNN.weights.xml' % (
        classifier_parent_dir, classifier_suffix)
    print 'using weights file: ', mva_weights_dir
    reader.BookMVA('DNN', TString(mva_weights_dir))

    if '/2L/' in input_file:
        analysis_region = '2L'
    elif '/ttWctrl/' in input_file:
        analysis_region = 'ttWctrl'
    elif '/JESDownttWctrl/' in input_file:
        analysis_region = 'JESDownttWctrl'
    elif '/JESUpttWctrl/' in input_file:
        analysis_region = 'JESUpttWctrl'
    elif '/ClosTTWctrl/' in input_file:
        analysis_region = 'ClosTTWctrl'
    elif '/ttZctrl/' in input_file:
        analysis_region = 'ttZctrl'
    elif '/Clos2LSS/' in input_file:
        analysis_region = 'Closure'
    elif '/JESDown2L/' in input_file:
        analysis_region = 'JESDown2L'
    elif '/JESUp2L/' in input_file:
        analysis_region = 'JESUp2L'

    time_suffix = str(datetime.now(pytz.utc)).split(' ')
    print time_suffix[0]
    #classifier_samples_dir = classifier_parent_dir+"/outputs"
    classifier_samples_dir = classifier_parent_dir + "/outputs-newbinning"
    #classifier_plots_dir = classifier_parent_dir+"/plots"
    classifier_plots_dir = classifier_parent_dir + "/plots-newbinning"
    if not os.path.exists(classifier_plots_dir):
        os.makedirs(classifier_plots_dir)
    if not os.path.exists(classifier_samples_dir):
        os.makedirs(classifier_samples_dir)

    analysis_region_samples_dir = '%s/%s' % (classifier_samples_dir,
                                             analysis_region)

    analysis_region_plots_dir = '%s/%s' % (classifier_plots_dir,
                                           analysis_region)
    if not os.path.exists(analysis_region_plots_dir):
        os.makedirs(analysis_region_plots_dir)
    if not os.path.exists(analysis_region_samples_dir):
        os.makedirs(analysis_region_samples_dir)

    output_suffix = input_file[input_file.rindex('/') + 1:]
    print 'output_suffix: ', output_suffix
    # Define outputs: files to store histograms/ttree with results from application of classifiers and any histos/trees themselves.
    output_file_name = '%s/Evaluated_%s_%s' % (
        analysis_region_samples_dir, classifier_suffix, output_suffix)
    output_file = TFile.Open(output_file_name, 'RECREATE')
    output_tree = data_tree.CopyTree("")
    output_tree.SetName("output_tree")
    nEvents_check = output_tree.BuildIndex("nEvent", "run")
    print 'Copied %s events from original tree' % (nEvents_check)

    sample_nickname = ''

    if 'THQ_htt_2L' in input_file:
        sample_nickname = 'THQ_htt_2L'
    if 'THQ_hzz_2L' in input_file:
        sample_nickname = 'THQ_hzz_2L'
    if 'THW_hww_2L' in input_file:
        sample_nickname = 'THW_hww_2L'
    if 'TTH_hmm_2L' in input_file:
        sample_nickname = 'TTH_hmm_2L'
    if 'TTH_htt_2L' in input_file:
        sample_nickname = 'TTH_htt_2L'
    if 'TTH_hzz_2L' in input_file:
        sample_nickname = 'TTH_hzz_2L'
    if 'THQ_hww_2L' in input_file:
        sample_nickname = 'THQ_hww_2L'
    if 'THW_htt_2L' in input_file:
        sample_nickname = 'THW_htt_2L'
    if 'THW_hzz_2L' in input_file:
        sample_nickname = 'THW_hzz_2L'
    if 'TTH_hot_2L' in input_file:
        sample_nickname = 'TTH_hot_2L'
    if 'TTH_hww_2L' in input_file:
        sample_nickname = 'TTH_hww_2L'
    if 'TTWW_2L' in input_file:
        sample_nickname = 'TTWW_2L'
    if 'TTW_2L' in input_file:
        sample_nickname = 'TTW_2L'
    if 'TTZ_2L' in input_file:
        sample_nickname = 'TTZ_2L'
    if 'Conv_2L' in input_file:
        sample_nickname = 'Conv_2L'
    if 'EWK_2L' in input_file:
        sample_nickname = 'EWK_2L'
    if 'Fakes_2L' in input_file:
        sample_nickname = 'Fakes_2L'
    if 'Flips_2L' in input_file:
        sample_nickname = 'Flips_2L'
    if 'Rares_2L' in input_file:
        sample_nickname = 'Rares_2L'
    if 'TT_Clos' in input_file:
        sample_nickname = 'TT_Clos'
    if 'Data' in input_file:
        sample_nickname = 'Data'

    # Evaluate network and use max node response to categorise event. Only maximum node response will be plotted per event meaning each event will only contribute in the maximum nodes response histogram.
    network_evaluation(data_tree, new_variable_list, sample_nickname,
                       branches_tree, integer_branches_tree, branches_reader,
                       reader, True, output_tree)

    output_file.Write()
    gDirectory.Delete("syncTree;*")
    output_file.Close()
    print 'Job complete. Exiting.'
    sys.exit(0)
def main():

    usage = 'usage: %prog [options]'
    parser = optparse.OptionParser(usage)
    parser.add_option(
        '-s',
        '--suffix',
        dest='input_suffix',
        help='suffix used to identify inputs from network training',
        default=None,
        type='string')
    parser.add_option('-j',
                      '--json',
                      dest='json',
                      help='json file with list of variables',
                      default=None,
                      type='string')

    (opt, args) = parser.parse_args()
    jsonFile = open(opt.json, 'r')

    if opt.json == None:
        print 'input variable .json not defined!'
        sys.exit(1)
    if opt.input_suffix == None:
        print 'Input files suffix not defined!'
        sys.exit(1)

    new_variable_list = json.load(jsonFile, encoding='utf-8').items()

    # Setup TMVA
    TMVA.Tools.Instance()
    TMVA.PyMethodBase.PyInitialize()
    reader = TMVA.Reader("Color:!Silent")

    input_file_ttH = 'samples/2017_updated_MC/2LSS/TTH_2LSS.root'
    input_file_ttV = 'samples/2017_updated_MC/2LSS/ttV.root'
    #input_file_ttJets = 'samples/2017_updated_MC/2LSS/TTJets.root'
    input_file_ttJets = 'samples/2017_updated_MC/2LSS/Fakes_2LSS.root'

    # Check files exist
    if not isfile(input_file_ttH):
        print 'No such input file: %s' % input_file_ttH
    if not isfile(input_file_ttJets):
        print 'No such input file: %s' % input_file_ttJets
    if not isfile(input_file_ttV):
        print 'No such input file: %s' % input_file_ttV

    # Open files and load ttrees
    data_ttH = TFile.Open(input_file_ttH)
    data_ttV = TFile.Open(input_file_ttV)
    data_ttJets = TFile.Open(input_file_ttJets)
    data_ttH_tree = data_ttH.Get('syncTree')
    data_ttV_tree = data_ttV.Get('syncTree')
    data_ttJets_tree = data_ttJets.Get('syncTree')

    branches_tree = {}
    integer_branches_tree = {}
    for key, value in new_variable_list:
        #branches_tree[key] = array('d', [-999])
        branches_tree[key] = array('f', [-999])
        if 'hadTop_BDT' in key:
            keyname = 'hadTop_BDT'
            data_ttH_tree.SetBranchAddress(str(keyname), branches_tree[key])
            data_ttV_tree.SetBranchAddress(str(keyname), branches_tree[key])
            data_ttJets_tree.SetBranchAddress(str(keyname), branches_tree[key])
        elif 'Hj1_BDT' in key:
            keyname = 'Hj1_BDT'
            data_ttH_tree.SetBranchAddress(str(keyname), branches_tree[key])
            data_ttV_tree.SetBranchAddress(str(keyname), branches_tree[key])
            data_ttJets_tree.SetBranchAddress(str(keyname), branches_tree[key])
        elif ('n_fakeablesel_mu' in key) or ('n_fakeablesel_ele'
                                             in key) or ('Jet_numLoose'
                                                         in key):
            integer_branches_tree[key] = array('I', [9999])
            data_ttH_tree.SetBranchAddress(str(key),
                                           integer_branches_tree[key])
            data_ttH_tree.SetBranchAddress(str(key),
                                           integer_branches_tree[key])
            data_ttJets_tree.SetBranchAddress(str(key),
                                              integer_branches_tree[key])
        else:
            data_ttH_tree.SetBranchAddress(str(key), branches_tree[key])
            data_ttV_tree.SetBranchAddress(str(key), branches_tree[key])
            data_ttJets_tree.SetBranchAddress(str(key), branches_tree[key])

    branches_reader = {}
    # Register names of inputs with reader. Together with the name give the address of the local variable that carries the updated input variables during event loop.
    for key, value in new_variable_list:
        print 'Add variable name %s: ' % key
        branches_reader[key] = array('f', [-999])
        reader.AddVariable(str(key), branches_reader[key])

    event_number = array('f', [-999])
    reader.AddSpectator('nEvent', event_number)

    num_inputs = 0
    for key, value in new_variable_list:
        num_inputs = num_inputs + 1

    classifier_suffix = opt.input_suffix

    # Book methods
    # First argument is user defined name. Doesn not have to be same as training name.
    # True type of method and full configuration are read from the weights file specified in the second argument.
    mva_weights_dir = 'MultiClass_DNN_%sVars_%s/weights/Factory_MultiClass_DNN_%sVars_%s_DNN.weights.xml' % (
        str(num_inputs), classifier_suffix, str(num_inputs), classifier_suffix)
    print 'using weights file: ', mva_weights_dir
    reader.BookMVA('DNN', TString(mva_weights_dir))

    classifier_samples_dir = 'MultiClass_DNN_%sVars_%s/outputs' % (
        str(num_inputs), classifier_suffix)
    classifier_plots_dir = 'MultiClass_DNN_%sVars_%s/plots' % (
        str(num_inputs), classifier_suffix)
    if not os.path.exists(classifier_plots_dir):
        os.makedirs(classifier_plots_dir)
    if not os.path.exists(classifier_samples_dir):
        os.makedirs(classifier_samples_dir)

    # Define outputs: files to store histograms/ttree with results from application of classifiers and any histos/trees themselves.
    output_file_name = '%s/Applied_MultiClass_DNN_%sVars_%s.root' % (
        classifier_samples_dir, str(num_inputs), classifier_suffix)
    output_file = TFile.Open(output_file_name, 'RECREATE')

    # Evaluate network and make plots of the response on each of the nodes to each of the simulated samples.
    #network_evaluation(data_ttH_tree, new_variable_list, 'ttH', branches_tree, branches_reader, reader, False)
    #network_evaluation(data_ttV_tree, new_variable_list, 'ttV', branches_tree, branches_reader, reader, False)
    #network_evaluation(data_ttJets_tree, new_variable_list, 'ttJets', branches_tree, branches_reader, reader, False)

    # Evaluate network and use max node response to categorise event. Only maximum node response will be plotted per event meaning each event will only contribute in the maximum nodes response histogram.
    network_evaluation(data_ttH_tree, new_variable_list, 'ttH', branches_tree,
                       integer_branches_tree, branches_reader, reader, True)
    network_evaluation(data_ttV_tree, new_variable_list, 'ttV', branches_tree,
                       integer_branches_tree, branches_reader, reader, True)
    network_evaluation(data_ttJets_tree, new_variable_list, 'ttJets',
                       branches_tree, integer_branches_tree, branches_reader,
                       reader, True)

    output_file.Close()
Пример #25
0
def main():

    Muon1_cLP = array('f', [-1.0])
    Muon1_cLM = array('f', [-1.0])
    Muon1_staRelChi2 = array('f', [-1.0])
    Muon1_trkRelChi2 = array('f', [-1.0])
    Muon1_glbdEP = array('f', [-1.0])
    Muon1_trkKink = array('f', [-1.0])
    Muon1_glbKink = array('f', [-1.0])
    Muon1_glbTrkP = array('f', [-1.0])
    Muon1_nTVH = array('f', [-1.0])
    Muon1_nVPH = array('f', [-1.0])
    Muon1_vMHC = array('f', [-1.0])
    Muon1_nMS = array('f', [-1.0])
    Muon1_segComp = array('f', [-1.0])
    Muon1_tIpOnOut = array('f', [-1.0])
    Muon1_glbNChi2 = array('f', [-1.0])
    Muon1_inner_nChi2 = array('f', [-1.0])
    Muon1_outer_nChi2 = array('f', [-1.0])
    Muon1_innner_VF = array('f', [-1.0])

    mu1_eta = array('f', [-1.0])
    mu1_pt = array('f', [-1.0])
    mu1_phi = array('f', [-1.0])
    mu1_SoftMVA = array('f', [-1.0])

    Muon2_cLP = array('f', [-1.0])
    Muon2_cLM = array('f', [-1.0])
    Muon2_staRelChi2 = array('f', [-1.0])
    Muon2_trkRelChi2 = array('f', [-1.0])
    Muon2_glbdEP = array('f', [-1.0])
    Muon2_trkKink = array('f', [-1.0])
    Muon2_glbKink = array('f', [-1.0])
    Muon2_glbTrkP = array('f', [-1.0])
    Muon2_nTVH = array('f', [-1.0])
    Muon2_nVPH = array('f', [-1.0])
    Muon2_vMHC = array('f', [-1.0])
    Muon2_nMS = array('f', [-1.0])
    Muon2_segComp = array('f', [-1.0])
    Muon2_tIpOnOut = array('f', [-1.0])
    Muon2_glbNChi2 = array('f', [-1.0])
    Muon2_inner_nChi2 = array('f', [-1.0])
    Muon2_outer_nChi2 = array('f', [-1.0])
    Muon2_innner_VF = array('f', [-1.0])

    mu2_eta = array('f', [-1.0])
    mu2_pt = array('f', [-1.0])
    mu2_phi = array('f', [-1.0])
    mu2_SoftMVA = array('f', [-1.0])

    Muon3_cLP = array('f', [-1.0])
    Muon3_cLM = array('f', [-1.0])
    Muon3_staRelChi2 = array('f', [-1.0])
    Muon3_trkRelChi2 = array('f', [-1.0])
    Muon3_glbdEP = array('f', [-1.0])
    Muon3_trkKink = array('f', [-1.0])
    Muon3_glbKink = array('f', [-1.0])
    Muon3_glbTrkP = array('f', [-1.0])
    Muon3_nTVH = array('f', [-1.0])
    Muon3_nVPH = array('f', [-1.0])
    Muon3_vMHC = array('f', [-1.0])
    Muon3_nMS = array('f', [-1.0])
    Muon3_segComp = array('f', [-1.0])
    Muon3_tIpOnOut = array('f', [-1.0])
    Muon3_glbNChi2 = array('f', [-1.0])
    Muon3_inner_nChi2 = array('f', [-1.0])
    Muon3_outer_nChi2 = array('f', [-1.0])
    Muon3_innner_VF = array('f', [-1.0])

    mu3_eta = array('f', [-1.0])
    mu3_pt = array('f', [-1.0])
    mu3_phi = array('f', [-1.0])
    mu3_SoftMVA = array('f', [-1.0])

    var_dnnSegCompMuMin = array('f', [-1.0])

    # Muon Id 1
    reader_Muon1Id_barrel = TMVA.Reader("!Color:!Silent")
    reader_Muon1Id_barrel.AddVariable(
        "mu_combinedQuality_chi2LocalMomentum>250?250:mu_combinedQuality_chi2LocalMomentum",
        Muon1_cLM)
    reader_Muon1Id_barrel.AddVariable(
        "mu_combinedQuality_chi2LocalPosition>50?50:mu_combinedQuality_chi2LocalPosition",
        Muon1_cLP)
    reader_Muon1Id_barrel.AddVariable(
        "mu_combinedQuality_staRelChi2>50?50:mu_combinedQuality_staRelChi2",
        Muon1_staRelChi2)
    reader_Muon1Id_barrel.AddVariable(
        "mu_combinedQuality_trkRelChi2>50?50:mu_combinedQuality_trkRelChi2",
        Muon1_trkRelChi2)
    reader_Muon1Id_barrel.AddVariable("mu_combinedQuality_globalDeltaEtaPhi",
                                      Muon1_glbdEP)
    reader_Muon1Id_barrel.AddVariable("log(mu_combinedQuality_trkKink)",
                                      Muon1_trkKink)
    reader_Muon1Id_barrel.AddVariable("log(mu_combinedQuality_glbKink)",
                                      Muon1_glbKink)
    reader_Muon1Id_barrel.AddVariable(
        "mu_combinedQuality_glbTrackProbability>150?150:mu_combinedQuality_glbTrackProbability",
        Muon1_glbTrkP)
    reader_Muon1Id_barrel.AddVariable("mu_Numberofvalidpixelhits", Muon1_nVPH)
    reader_Muon1Id_barrel.AddVariable("mu_trackerLayersWithMeasurement",
                                      Muon1_nTVH)
    reader_Muon1Id_barrel.AddVariable("mu_validMuonHitComb", Muon1_vMHC)
    reader_Muon1Id_barrel.AddVariable("mu_numberOfMatchedStations", Muon1_nMS)
    reader_Muon1Id_barrel.AddVariable("mu_segmentCompatibility", Muon1_segComp)
    reader_Muon1Id_barrel.AddVariable("mu_timeAtIpInOutErr", Muon1_tIpOnOut)
    reader_Muon1Id_barrel.AddVariable("mu_GLnormChi2>50?50:mu_GLnormChi2",
                                      Muon1_glbNChi2)
    reader_Muon1Id_barrel.AddVariable(
        "mu_innerTrack_normalizedChi2>50?50:mu_innerTrack_normalizedChi2",
        Muon1_inner_nChi2)
    reader_Muon1Id_barrel.AddVariable(
        "mu_outerTrack_normalizedChi2>80?80:mu_outerTrack_normalizedChi2",
        Muon1_outer_nChi2)
    reader_Muon1Id_barrel.AddVariable("mu_innerTrack_validFraction",
                                      Muon1_innner_VF)
    reader_Muon1Id_barrel.AddSpectator("mu_eta", mu1_eta)
    reader_Muon1Id_barrel.AddSpectator("mu_pt", mu1_pt)
    reader_Muon1Id_barrel.AddSpectator("mu_phi", mu1_phi)
    reader_Muon1Id_barrel.AddSpectator("mu_SoftMVA", mu1_SoftMVA)
    reader_Muon1Id_barrel.BookMVA(
        "BDT", basedir + "weights/weights_barrel/TMVA_new_BDT.weights.xml")
    # weights weights.xml file after training, place it to CommonFiles

    reader_Muon1Id_endcap = TMVA.Reader("!Color:!Silent")
    reader_Muon1Id_endcap.AddVariable(
        "mu_combinedQuality_chi2LocalMomentum>250?250:mu_combinedQuality_chi2LocalMomentum",
        Muon1_cLM)
    reader_Muon1Id_endcap.AddVariable(
        "mu_combinedQuality_chi2LocalPosition>50?50:mu_combinedQuality_chi2LocalPosition",
        Muon1_cLP)
    reader_Muon1Id_endcap.AddVariable(
        "mu_combinedQuality_staRelChi2>50?50:mu_combinedQuality_staRelChi2",
        Muon1_staRelChi2)
    reader_Muon1Id_endcap.AddVariable(
        "mu_combinedQuality_trkRelChi2>50?50:mu_combinedQuality_trkRelChi2",
        Muon1_trkRelChi2)
    reader_Muon1Id_endcap.AddVariable("mu_combinedQuality_globalDeltaEtaPhi",
                                      Muon1_glbdEP)
    reader_Muon1Id_endcap.AddVariable("log(mu_combinedQuality_trkKink)",
                                      Muon1_trkKink)
    reader_Muon1Id_endcap.AddVariable("log(mu_combinedQuality_glbKink)",
                                      Muon1_glbKink)
    reader_Muon1Id_endcap.AddVariable(
        "mu_combinedQuality_glbTrackProbability>150?150:mu_combinedQuality_glbTrackProbability",
        Muon1_glbTrkP)
    reader_Muon1Id_endcap.AddVariable("mu_Numberofvalidpixelhits", Muon1_nVPH)
    reader_Muon1Id_endcap.AddVariable("mu_trackerLayersWithMeasurement",
                                      Muon1_nTVH)
    reader_Muon1Id_endcap.AddVariable("mu_validMuonHitComb", Muon1_vMHC)
    reader_Muon1Id_endcap.AddVariable("mu_numberOfMatchedStations", Muon1_nMS)
    reader_Muon1Id_endcap.AddVariable("mu_segmentCompatibility", Muon1_segComp)
    reader_Muon1Id_endcap.AddVariable("mu_timeAtIpInOutErr", Muon1_tIpOnOut)
    reader_Muon1Id_endcap.AddVariable("mu_GLnormChi2>50?50:mu_GLnormChi2",
                                      Muon1_glbNChi2)
    reader_Muon1Id_endcap.AddVariable(
        "mu_innerTrack_normalizedChi2>50?50:mu_innerTrack_normalizedChi2",
        Muon1_inner_nChi2)
    reader_Muon1Id_endcap.AddVariable(
        "mu_outerTrack_normalizedChi2>80?80:mu_outerTrack_normalizedChi2",
        Muon1_outer_nChi2)
    reader_Muon1Id_endcap.AddVariable("mu_innerTrack_validFraction",
                                      Muon1_innner_VF)
    reader_Muon1Id_endcap.AddSpectator("mu_eta", mu1_eta)
    reader_Muon1Id_endcap.AddSpectator("mu_pt", mu1_pt)
    reader_Muon1Id_endcap.AddSpectator("mu_phi", mu1_phi)
    reader_Muon1Id_endcap.AddSpectator("mu_SoftMVA", mu1_SoftMVA)
    reader_Muon1Id_endcap.BookMVA(
        "BDT", basedir + "weights/weights_endcap/TMVA_new_BDT.weights.xml")
    # weights weights.xml file after training, place it to CommonFiles

    # (MuonId 2)
    reader_Muon2Id_barrel = TMVA.Reader("!Color:!Silent")
    reader_Muon2Id_barrel.AddVariable(
        "mu_combinedQuality_chi2LocalMomentum>250?250:mu_combinedQuality_chi2LocalMomentum",
        Muon2_cLM)
    reader_Muon2Id_barrel.AddVariable(
        "mu_combinedQuality_chi2LocalPosition>50?50:mu_combinedQuality_chi2LocalPosition",
        Muon2_cLP)
    reader_Muon2Id_barrel.AddVariable(
        "mu_combinedQuality_staRelChi2>50?50:mu_combinedQuality_staRelChi2",
        Muon2_staRelChi2)
    reader_Muon2Id_barrel.AddVariable(
        "mu_combinedQuality_trkRelChi2>50?50:mu_combinedQuality_trkRelChi2",
        Muon2_trkRelChi2)
    reader_Muon2Id_barrel.AddVariable("mu_combinedQuality_globalDeltaEtaPhi",
                                      Muon2_glbdEP)
    reader_Muon2Id_barrel.AddVariable("log(mu_combinedQuality_trkKink)",
                                      Muon2_trkKink)
    reader_Muon2Id_barrel.AddVariable("log(mu_combinedQuality_glbKink)",
                                      Muon2_glbKink)
    reader_Muon2Id_barrel.AddVariable(
        "mu_combinedQuality_glbTrackProbability>150?150:mu_combinedQuality_glbTrackProbability",
        Muon2_glbTrkP)
    reader_Muon2Id_barrel.AddVariable("mu_Numberofvalidpixelhits", Muon2_nVPH)
    reader_Muon2Id_barrel.AddVariable("mu_trackerLayersWithMeasurement",
                                      Muon2_nTVH)
    reader_Muon2Id_barrel.AddVariable("mu_validMuonHitComb", Muon2_vMHC)
    reader_Muon2Id_barrel.AddVariable("mu_numberOfMatchedStations", Muon2_nMS)
    reader_Muon2Id_barrel.AddVariable("mu_segmentCompatibility", Muon2_segComp)
    reader_Muon2Id_barrel.AddVariable("mu_timeAtIpInOutErr", Muon2_tIpOnOut)
    reader_Muon2Id_barrel.AddVariable("mu_GLnormChi2>50?50:mu_GLnormChi2",
                                      Muon2_glbNChi2)
    reader_Muon2Id_barrel.AddVariable(
        "mu_innerTrack_normalizedChi2>50?50:mu_innerTrack_normalizedChi2",
        Muon2_inner_nChi2)
    reader_Muon2Id_barrel.AddVariable(
        "mu_outerTrack_normalizedChi2>80?80:mu_outerTrack_normalizedChi2",
        Muon2_outer_nChi2)
    reader_Muon2Id_barrel.AddVariable("mu_innerTrack_validFraction",
                                      Muon2_innner_VF)
    reader_Muon2Id_barrel.AddSpectator("mu_eta", mu2_eta)
    reader_Muon2Id_barrel.AddSpectator("mu_pt", mu2_pt)
    reader_Muon2Id_barrel.AddSpectator("mu_phi", mu2_phi)
    reader_Muon2Id_barrel.AddSpectator("mu_SoftMVA", mu2_SoftMVA)
    reader_Muon2Id_barrel.BookMVA(
        "BDT", basedir + "/weights/weights_barrel/TMVA_new_BDT.weights.xml")
    # weights weights.xml file after training, place it to CommonFiles

    reader_Muon2Id_endcap = TMVA.Reader("!Color:!Silent")
    reader_Muon2Id_endcap.AddVariable(
        "mu_combinedQuality_chi2LocalMomentum>250?250:mu_combinedQuality_chi2LocalMomentum",
        Muon2_cLM)
    reader_Muon2Id_endcap.AddVariable(
        "mu_combinedQuality_chi2LocalPosition>50?50:mu_combinedQuality_chi2LocalPosition",
        Muon2_cLP)
    reader_Muon2Id_endcap.AddVariable(
        "mu_combinedQuality_staRelChi2>50?50:mu_combinedQuality_staRelChi2",
        Muon2_staRelChi2)
    reader_Muon2Id_endcap.AddVariable(
        "mu_combinedQuality_trkRelChi2>50?50:mu_combinedQuality_trkRelChi2",
        Muon2_trkRelChi2)
    reader_Muon2Id_endcap.AddVariable("mu_combinedQuality_globalDeltaEtaPhi",
                                      Muon2_glbdEP)
    reader_Muon2Id_endcap.AddVariable("log(mu_combinedQuality_trkKink)",
                                      Muon2_trkKink)
    reader_Muon2Id_endcap.AddVariable("log(mu_combinedQuality_glbKink)",
                                      Muon2_glbKink)
    reader_Muon2Id_endcap.AddVariable(
        "mu_combinedQuality_glbTrackProbability>150?150:mu_combinedQuality_glbTrackProbability",
        Muon2_glbTrkP)
    reader_Muon2Id_endcap.AddVariable("mu_Numberofvalidpixelhits", Muon2_nVPH)
    reader_Muon2Id_endcap.AddVariable("mu_trackerLayersWithMeasurement",
                                      Muon2_nTVH)
    reader_Muon2Id_endcap.AddVariable("mu_validMuonHitComb", Muon2_vMHC)
    reader_Muon2Id_endcap.AddVariable("mu_numberOfMatchedStations", Muon2_nMS)
    reader_Muon2Id_endcap.AddVariable("mu_segmentCompatibility", Muon2_segComp)
    reader_Muon2Id_endcap.AddVariable("mu_timeAtIpInOutErr", Muon2_tIpOnOut)
    reader_Muon2Id_endcap.AddVariable("mu_GLnormChi2>50?50:mu_GLnormChi2",
                                      Muon2_glbNChi2)
    reader_Muon2Id_endcap.AddVariable(
        "mu_innerTrack_normalizedChi2>50?50:mu_innerTrack_normalizedChi2",
        Muon2_inner_nChi2)
    reader_Muon2Id_endcap.AddVariable(
        "mu_outerTrack_normalizedChi2>80?80:mu_outerTrack_normalizedChi2",
        Muon2_outer_nChi2)
    reader_Muon2Id_endcap.AddVariable("mu_innerTrack_validFraction",
                                      Muon2_innner_VF)
    reader_Muon2Id_endcap.AddSpectator("mu_eta", mu2_eta)
    reader_Muon2Id_endcap.AddSpectator("mu_pt", mu2_pt)
    reader_Muon2Id_endcap.AddSpectator("mu_phi", mu2_phi)
    reader_Muon2Id_endcap.AddSpectator("mu_SoftMVA", mu2_SoftMVA)
    reader_Muon2Id_endcap.BookMVA(
        "BDT", basedir + "/weights/weights_endcap/TMVA_new_BDT.weights.xml")
    # weights weights.xml file after training, place it to CommonFiles

    # (MuonId 3)
    reader_Muon3Id_barrel = TMVA.Reader("!Color:!Silent")
    reader_Muon3Id_barrel.AddVariable(
        "mu_combinedQuality_chi2LocalMomentum>250?250:mu_combinedQuality_chi2LocalMomentum",
        Muon3_cLM)
    reader_Muon3Id_barrel.AddVariable(
        "mu_combinedQuality_chi2LocalPosition>50?50:mu_combinedQuality_chi2LocalPosition",
        Muon3_cLP)
    reader_Muon3Id_barrel.AddVariable(
        "mu_combinedQuality_staRelChi2>50?50:mu_combinedQuality_staRelChi2",
        Muon3_staRelChi2)
    reader_Muon3Id_barrel.AddVariable(
        "mu_combinedQuality_trkRelChi2>50?50:mu_combinedQuality_trkRelChi2",
        Muon3_trkRelChi2)
    reader_Muon3Id_barrel.AddVariable("mu_combinedQuality_globalDeltaEtaPhi",
                                      Muon3_glbdEP)
    reader_Muon3Id_barrel.AddVariable("log(mu_combinedQuality_trkKink)",
                                      Muon3_trkKink)
    reader_Muon3Id_barrel.AddVariable("log(mu_combinedQuality_glbKink)",
                                      Muon3_glbKink)
    reader_Muon3Id_barrel.AddVariable(
        "mu_combinedQuality_glbTrackProbability>150?150:mu_combinedQuality_glbTrackProbability",
        Muon3_glbTrkP)
    reader_Muon3Id_barrel.AddVariable("mu_Numberofvalidpixelhits", Muon3_nVPH)
    reader_Muon3Id_barrel.AddVariable("mu_trackerLayersWithMeasurement",
                                      Muon3_nTVH)
    reader_Muon3Id_barrel.AddVariable("mu_validMuonHitComb", Muon3_vMHC)
    reader_Muon3Id_barrel.AddVariable("mu_numberOfMatchedStations", Muon3_nMS)
    reader_Muon3Id_barrel.AddVariable("mu_segmentCompatibility", Muon3_segComp)
    reader_Muon3Id_barrel.AddVariable("mu_timeAtIpInOutErr", Muon3_tIpOnOut)
    reader_Muon3Id_barrel.AddVariable("mu_GLnormChi2>50?50:mu_GLnormChi2",
                                      Muon3_glbNChi2)
    reader_Muon3Id_barrel.AddVariable(
        "mu_innerTrack_normalizedChi2>50?50:mu_innerTrack_normalizedChi2",
        Muon3_inner_nChi2)
    reader_Muon3Id_barrel.AddVariable(
        "mu_outerTrack_normalizedChi2>80?80:mu_outerTrack_normalizedChi2",
        Muon3_outer_nChi2)
    reader_Muon3Id_barrel.AddVariable("mu_innerTrack_validFraction",
                                      Muon3_innner_VF)
    reader_Muon3Id_barrel.AddSpectator("mu_eta", mu2_eta)
    reader_Muon3Id_barrel.AddSpectator("mu_pt", mu2_pt)
    reader_Muon3Id_barrel.AddSpectator("mu_phi", mu2_phi)
    reader_Muon3Id_barrel.AddSpectator("mu_SoftMVA", mu2_SoftMVA)
    reader_Muon3Id_barrel.BookMVA(
        "BDT", basedir + "/weights/weights_barrel/TMVA_new_BDT.weights.xml")
    # weights weights.xml file after training, place it to CommonFiles

    reader_Muon3Id_endcap = TMVA.Reader("!Color:!Silent")
    reader_Muon3Id_endcap.AddVariable(
        "mu_combinedQuality_chi2LocalMomentum>250?250:mu_combinedQuality_chi2LocalMomentum",
        Muon3_cLM)
    reader_Muon3Id_endcap.AddVariable(
        "mu_combinedQuality_chi2LocalPosition>50?50:mu_combinedQuality_chi2LocalPosition",
        Muon3_cLP)
    reader_Muon3Id_endcap.AddVariable(
        "mu_combinedQuality_staRelChi2>50?50:mu_combinedQuality_staRelChi2",
        Muon3_staRelChi2)
    reader_Muon3Id_endcap.AddVariable(
        "mu_combinedQuality_trkRelChi2>50?50:mu_combinedQuality_trkRelChi2",
        Muon3_trkRelChi2)
    reader_Muon3Id_endcap.AddVariable("mu_combinedQuality_globalDeltaEtaPhi",
                                      Muon3_glbdEP)
    reader_Muon3Id_endcap.AddVariable("log(mu_combinedQuality_trkKink)",
                                      Muon3_trkKink)
    reader_Muon3Id_endcap.AddVariable("log(mu_combinedQuality_glbKink)",
                                      Muon3_glbKink)
    reader_Muon3Id_endcap.AddVariable(
        "mu_combinedQuality_glbTrackProbability>150?150:mu_combinedQuality_glbTrackProbability",
        Muon3_glbTrkP)
    reader_Muon3Id_endcap.AddVariable("mu_Numberofvalidpixelhits", Muon3_nVPH)
    reader_Muon3Id_endcap.AddVariable("mu_trackerLayersWithMeasurement",
                                      Muon3_nTVH)
    reader_Muon3Id_endcap.AddVariable("mu_validMuonHitComb", Muon3_vMHC)
    reader_Muon3Id_endcap.AddVariable("mu_numberOfMatchedStations", Muon3_nMS)
    reader_Muon3Id_endcap.AddVariable("mu_segmentCompatibility", Muon3_segComp)
    reader_Muon3Id_endcap.AddVariable("mu_timeAtIpInOutErr", Muon3_tIpOnOut)
    reader_Muon3Id_endcap.AddVariable("mu_GLnormChi2>50?50:mu_GLnormChi2",
                                      Muon3_glbNChi2)
    reader_Muon3Id_endcap.AddVariable(
        "mu_innerTrack_normalizedChi2>50?50:mu_innerTrack_normalizedChi2",
        Muon3_inner_nChi2)
    reader_Muon3Id_endcap.AddVariable(
        "mu_outerTrack_normalizedChi2>80?80:mu_outerTrack_normalizedChi2",
        Muon3_outer_nChi2)
    reader_Muon3Id_endcap.AddVariable("mu_innerTrack_validFraction",
                                      Muon3_innner_VF)
    reader_Muon3Id_endcap.AddSpectator("mu_eta", mu3_eta)
    reader_Muon3Id_endcap.AddSpectator("mu_pt", mu3_pt)
    reader_Muon3Id_endcap.AddSpectator("mu_phi", mu3_phi)
    reader_Muon3Id_endcap.AddSpectator("mu_SoftMVA", mu3_SoftMVA)
    reader_Muon3Id_endcap.BookMVA(
        "BDT", basedir + "/weights/weights_endcap/TMVA_new_BDT.weights.xml")
    # weights weights.xml file after training, place it to CommonFiles
    file_ = ROOT.TFile(
        "/eos/user/b/bjoshi/RunIITau23Mu/AnalysisTrees/T3MSelectionTreeInput_combined_with_keras_scores.root",
        "READ")

    old_tree_bkg = file_.Get('TreeB')
    old_tree_ds = file_.Get('TreeS_Ds')
    old_tree_bu = file_.Get('TreeS_Bu')
    old_tree_bd = file_.Get('TreeS_Bd')

    new_file = ROOT.TFile(
        "/eos/user/b/bjoshi/RunIITau23Mu/AnalysisTrees/T3MSelectionTreeInput_combined_globalMuonId.root",
        "RECREATE")

    new_tree_bkg = old_tree_bkg.CloneTree(0)
    new_tree_ds = old_tree_ds.CloneTree(0)
    new_tree_bu = old_tree_bu.CloneTree(0)
    new_tree_bd = old_tree_bd.CloneTree(0)

    old_tree_list = [old_tree_bkg, old_tree_ds, old_tree_bu, old_tree_bd]
    new_tree_list = [new_tree_bkg, new_tree_ds, new_tree_bu, new_tree_bd]
    globalMuon1Id = [
        array('f', [-99.]),
        array('f', [-99.]),
        array('f', [-99.]),
        array('f', [-99.])
    ]
    globalMuon2Id = [
        array('f', [-99.]),
        array('f', [-99.]),
        array('f', [-99.]),
        array('f', [-99.])
    ]
    globalMuon3Id = [
        array('f', [-99.]),
        array('f', [-99.]),
        array('f', [-99.]),
        array('f', [-99.])
    ]
    var_dnnSegCompMuMin = [
        array('f', [-99.]),
        array('f', [-99.]),
        array('f', [-99.]),
        array('f', [-99.])
    ]

    for i in xrange(4):
        new_tree_list[i].Branch("globalMuon1Id", globalMuon1Id[i],
                                "globalMuon1Id/F")
        new_tree_list[i].Branch("globalMuon2Id", globalMuon2Id[i],
                                "globalMuon2Id/F")
        new_tree_list[i].Branch("globalMuon3Id", globalMuon3Id[i],
                                "globalMuon3Id/F")
        new_tree_list[i].Branch("var_dnnSegCompMuMin", var_dnnSegCompMuMin[i],
                                "var_dnnSegCompMuMin/F")

    for i, tree in enumerate(old_tree_list):
        nentries = tree.GetEntriesFast()
        print tree.GetName()
        for j in xrange(nentries):
            if (j % 1000 == 0): print "Processing ", j, "/", nentries, " ..."
            tree.GetEntry(j)
            muon1_score = -99.0
            muon2_score = -99.0
            muon3_score = -99.0
            Muon1_cLP[0] = tree.Muon1_combinedQuality_chi2LocalPosition
            Muon1_cLM[0] = tree.Muon1_combinedQuality_chi2LocalMomentum
            Muon1_staRelChi2[0] = tree.Muon1_combinedQuality_staRelChi2
            Muon1_trkRelChi2[0] = tree.Muon1_combinedQuality_trkRelChi2
            Muon1_glbdEP[0] = tree.Muon1_combinedQuality_globalDeltaEtaPhi
            Muon1_trkKink[0] = np.log(0.01 +
                                      tree.Muon1_combinedQuality_trkKink)
            Muon1_glbKink[0] = np.log(0.01 +
                                      tree.Muon1_combinedQuality_glbKink)
            Muon1_glbTrkP[0] = tree.Muon1_combinedQuality_glbTrackProbability
            Muon1_nTVH[0] = tree.Muon1_trackerLayersWithMeasurement
            Muon1_nVPH[0] = tree.Muon1_numberofValidPixelHits
            Muon1_vMHC[0] = tree.Muon1_vmuonhitcomb_reco
            Muon1_nMS[0] = tree.Muon1_numberOfMatchedStations
            Muon1_segComp[0] = tree.Muon1_segmentCompatibility
            Muon1_tIpOnOut[0] = tree.var_Muon1_timeAtIpInOutErr
            Muon1_glbNChi2[0] = tree.Muon1_normChi2
            Muon1_inner_nChi2[0] = tree.Muon1_innerTrack_normalizedChi2
            Muon1_outer_nChi2[0] = tree.Muon1_outerTrack_normalizedChi2
            Muon1_innner_VF[0] = tree.Muon1_innerTrack_validFraction

            Muon2_cLM[0] = tree.Muon2_combinedQuality_chi2LocalMomentum
            Muon2_cLP[0] = tree.Muon2_combinedQuality_chi2LocalPosition
            Muon2_staRelChi2[0] = tree.Muon2_combinedQuality_staRelChi2
            Muon2_trkRelChi2[0] = tree.Muon2_combinedQuality_trkRelChi2
            Muon2_glbdEP[0] = tree.Muon2_combinedQuality_globalDeltaEtaPhi
            Muon2_trkKink[0] = np.log(0.01 +
                                      tree.Muon2_combinedQuality_trkKink)
            Muon2_glbKink[0] = np.log(0.01 +
                                      tree.Muon2_combinedQuality_glbKink)
            Muon2_glbTrkP[0] = tree.Muon2_combinedQuality_glbTrackProbability
            Muon2_nTVH[0] = tree.Muon2_trackerLayersWithMeasurement
            Muon2_nVPH[0] = tree.Muon2_numberofValidPixelHits
            Muon2_vMHC[0] = tree.Muon2_vmuonhitcomb_reco
            Muon2_nMS[0] = tree.Muon2_numberOfMatchedStations
            Muon2_segComp[0] = tree.Muon2_segmentCompatibility
            Muon2_tIpOnOut[0] = tree.var_Muon2_timeAtIpInOutErr
            Muon2_glbNChi2[0] = tree.Muon2_normChi2
            Muon2_inner_nChi2[0] = tree.Muon2_innerTrack_normalizedChi2
            Muon2_outer_nChi2[0] = tree.Muon2_outerTrack_normalizedChi2
            Muon2_innner_VF[0] = tree.Muon2_innerTrack_validFraction

            Muon3_cLM[0] = tree.Muon3_combinedQuality_chi2LocalMomentum
            Muon3_cLP[0] = tree.Muon3_combinedQuality_chi2LocalPosition
            Muon3_staRelChi2[0] = tree.Muon3_combinedQuality_staRelChi2
            Muon3_trkRelChi2[0] = tree.Muon3_combinedQuality_trkRelChi2
            Muon3_glbdEP[0] = tree.Muon3_combinedQuality_globalDeltaEtaPhi
            Muon3_trkKink[0] = np.log(0.01 +
                                      tree.Muon3_combinedQuality_trkKink)
            Muon3_glbKink[0] = np.log(0.01 +
                                      tree.Muon3_combinedQuality_glbKink)
            Muon3_glbTrkP[0] = tree.Muon3_combinedQuality_glbTrackProbability
            Muon3_nTVH[0] = tree.Muon3_trackerLayersWithMeasurement
            Muon3_nVPH[0] = tree.Muon3_numberofValidPixelHits
            Muon3_vMHC[0] = tree.Muon3_vmuonhitcomb_reco
            Muon3_nMS[0] = tree.Muon3_numberOfMatchedStations
            Muon3_segComp[0] = tree.Muon3_segmentCompatibility
            Muon3_tIpOnOut[0] = tree.var_Muon3_timeAtIpInOutErr
            Muon3_glbNChi2[0] = tree.Muon3_normChi2
            Muon3_inner_nChi2[0] = tree.Muon3_innerTrack_normalizedChi2
            Muon3_outer_nChi2[0] = tree.Muon3_outerTrack_normalizedChi2
            Muon3_innner_VF[0] = tree.Muon3_innerTrack_validFraction

            if (abs(tree.var_Muon1_Eta) < 1.2):
                muon1_score = reader_Muon1Id_barrel.EvaluateMVA("BDT")
            else:
                muon1_score = reader_Muon1Id_endcap.EvaluateMVA("BDT")

            if (abs(tree.var_Muon2_Eta) < 1.2):
                muon2_score = reader_Muon2Id_barrel.EvaluateMVA("BDT")
            else:
                muon2_score = reader_Muon2Id_endcap.EvaluateMVA("BDT")

            if (abs(tree.var_Muon3_Eta) < 1.2):
                muon3_score = reader_Muon3Id_barrel.EvaluateMVA("BDT")
            else:
                muon3_score = reader_Muon3Id_endcap.EvaluateMVA("BDT")

            globalMuon1Id[i][0] = muon1_score
            globalMuon2Id[i][0] = muon2_score
            if (tree.threeGlobal == 1): globalMuon3Id[i][0] = muon3_score
            else: globalMuon3Id[i][0] = -99.0
            var_dnnSegCompMuMin[i][0] = min(tree.muon1_seg_comp_dnn,
                                            tree.muon2_seg_comp_dnn,
                                            tree.muon3_seg_comp_dnn)
            new_tree_list[i].Fill()

    new_file.cd()
    new_tree_bkg.Write()
    new_tree_ds.Write()
    new_tree_bu.Write()
    new_tree_bd.Write()
    new_file.Close()
    file_.Close()
Пример #26
0
    def FillBDTscore(self):
        phVals = ["EE", "EB"]
        path = "/home/jcordero/CMS/JYCMCMS/SMP_ZG/python/Corrections/"
        file = {}
        for ph in phVals:
            file[ph] = "TMVAnalysis_BDT_" + ph + ".weights.xml"
            reader[ph] = TMVA.Reader()

        ###########################################
        ##
        ## Adding the variables to the MVA object
        ## &
        ## Fill in the variables from the Data
        ##
        phVar = {}
        varName = {
            "recoPhi": ["photonOnePhi"],
            "r9": ["photonOneR9"],
            "sieieFull5x5": ["photonOneSieie"],
            "sieipFull5x5": ["photonOneSieip"],
            "e2x2Full5x5/e5x5Full5x5": ["photonOneE2x2", "photonOneE5x5"],
            "recoSCEta": ["photonOneEta"],
            "rawE": ["photonOneScRawE"],
            "scEtaWidth": ["photonOneScEtaWidth"],
            "scPhiWidth": ["photonOneScPhiWidth"],
            "esEn/rawE": ["photonOnePreShowerE", "photonOneScRawE"],
            "esRR": ["photonOneSrr"],
            "rho": ["Rho"],
        }
        var = {}
        for ph in ["EE", "EB"]:
            var[ph] = {}
            for vn in varName.keys():
                var[ph][vn] = array.array('f', [0])
                reader[ph].AddVariable(vn, var[ph][vn])

                if ph == "EE":  # this is just to fill in once
                    if len(varName[vn]) > 1:
                        phVar[vn] = ZG.GetWithCuts(
                            varName[vn][0]) / ZG.GetWithCuts(varName[vn][1])
                    else:
                        phVar[vn] = ZG.GetWithCuts(varName[vn][0])

            reader[ph].BookMVA("BDT", path + file[ph])

        #######################
        ##
        ## Fill the BDT
        ##
        ShowerShapeBDT = []

        for i in range(len(self.GetWithCuts('cuts'))):
            if np.abs(phVar["recoSCEta"][i]) > 1.48:
                ph = "EE"
            else:
                ph = "EB"

            for vn in varName:
                var[ph][vn] = phVar[vn]

            ShowerShapeBDT.append(reader[ph].EvaluateMVA("BDT"))

        #######################################
        ##
        ## Add the BDT score to the DataFrame
        ##
        sefl.df["ShowerShapeBDT"] = ShowerShapeBDT
Пример #27
0
def main():

    try:
        # Retrive command line options
        shortopts = "m:i:o:d:vh?"
        longopts = [
            "methods=", "inputfile=", "outputfile=", "datatype=", "verbose",
            "help", "usage"
        ]
        opts, args = getopt.getopt(sys.argv[1:], shortopts, longopts)

    except getopt.GetoptError:
        # Print help information and exit:
        print "ERROR: unknown options in argument %s" % sys.argv[1:]
        usage()
        sys.exit(1)

    treeNameSig = DEFAULT_TREESIG
    treeNameBkg = DEFAULT_TREEBKG
    methods = DEFAULT_METHODS
    directory = DEFAULT_DATA
    verbose = False

    for o, a in opts:
        if o in ("-?", "-h", "--help", "--usage"):
            usage()
            sys.exit(0)
        elif o in ("-m", "--methods"):
            methods = a
        elif o in ("-d", "--datatype"):
            directory = a

        elif o in ("-v", "--verbose"):
            verbose = True

    # Print methods
    #take leading and trailing white space out
    methods = methods.strip(" ")
    mlist = methods.replace(' ', ',').split(',')
    print "=== TMVApplication: use method(s)..."
    for m in mlist:
        if m.strip() != '':
            print "=== - <%s>" % m.strip()

    # Import ROOT classes
    from ROOT import gSystem, gROOT, gApplication, TFile, TTree, TCut, TH1F, TStopwatch
    print("ROOT classes successfully imported!\n")  # DCS 17/06/2016
    # check ROOT version, give alarm if 5.18
    if gROOT.GetVersionCode() >= 332288 and gROOT.GetVersionCode() < 332544:
        print "*** You are running ROOT version 5.18, which has problems in PyROOT such that TMVA"
        print "*** does not run properly (function calls with enums in the argument are ignored)."
        print "*** Solution: either use CINT or a C++ compiled version (see TMVA/macros or TMVA/examples),"
        print "*** or use another ROOT version (e.g., ROOT 5.19)."
        sys.exit(1)

    # Logon not automatically loaded through PyROOT (logon loads TMVA library) load also GUI
    tmvadir = "/home/dean/software/tmva/TMVA-v4.2.0/test"
    macro = os.path.join(tmvadir, "TMVAlogon.C")
    loadmacro = os.path.join(tmvadir, "TMVAGui.C")
    gROOT.SetMacroPath(tmvadir)
    gROOT.Macro(macro)
    gROOT.LoadMacro(loadmacro)
    print("ROOT macro path loaded correctly!\n")

    # Import TMVA classes from ROOT
    from ROOT import TMVA

    # Create the Reader object
    reader = TMVA.Reader("!Color")
    var1 = array('f', [0])
    var2 = array('f', [0])
    var3 = array('f', [0])
    var4 = array('f', [0])
    var5 = array('f', [0])
    var6 = array('f', [0])
    var7 = array('f', [0])
    var8 = array('f', [0])
    var9 = array('f', [0])
    var10 = array('f', [0])
    variables = [var1, var2, var3, var4, var5, var6, var7, var8, var9, var10]
    var_names = [
        'peaks', 'mean_peaks', 'integral', 'integral_over_peaks', 'max',
        'mean', 'max_over_mean', 'std_dev_peaks', 'entropy', 'ps_integral'
    ]
    #variables = [var1, var2, var3, var4]
    #var_names = ['var1', 'var2', 'var3', 'var4']
    for name, var in zip(var_names, variables):
        reader.AddVariable(name, var)
    print("Variables successfully loaded!\n")
    #reader.AddVariable("Nclusters.value", var1)
    #reader.AddVariable("(TMath::Log10(eventinfo_ALLOfflinePulseSeriesReco.tot_charge))*1000/eventinfo_ALLOfflinePulseSeriesReco.length" ,var2)
    #reader.AddVariable("MDCOGLaunches.value*1000./eventinfo_ALLOfflinePulseSeriesReco.length",var3)
    #reader.AddVariable("Nclusters.value*1000./eventinfo_ALLOfflinePulseSeriesReco.length" ,var4)
    #reader.AddVariable("NSMT8TRIGGER.value/eventinfo_ALLOfflinePulseSeriesReco.nstrings",var5)
    #reader.AddVariable("MedianCluster.value",var6)

    # book the MVA methods
    #dir    = "weights/"
    #prefix = "TMVAClassification_"
    #
    #for m in mlist:
    #    print( m + " method", dir + prefix + m + ".weights.xml")
    #    reader.BookMVA( m + " method", dir + prefix + m + ".weights.xml" )

    weight_dir = "/home/dean/capstone/TMVA-classifier/weights/"
    weights = [f for f in os.listdir(weight_dir) if ".xml" in f]
    for i, f in enumerate(weights):
        reader.BookMVA("BDT_{}".format(i),
                       os.path.join(weight_dir, f))  #only care about BDT


#    reader.BookMVA("BDT","weights/TMVAClassification_BDT.weights.xml")

#######################################################################
# For an example how to apply your own plugin method, please see
# TMVA/macros/TMVApplication.C
#######################################################################

# Book output histograms
    nbin = 100

    histList = []
    for m in mlist:
        histList.append(TH1F(m, m, nbin, -3, 3))

    for h in histList:
        h.Fill(reader.EvaluateMVA(h.GetName() + " method"))

    # Book example histogram for probability (the other methods would be done similarly)
    if "Fisher" in mlist:
        probHistFi = TH1F("PROBA_MVA_Fisher", "PROBA_MVA_Fisher", nbin, 0, 1)
        rarityHistFi = TH1F("RARITY_MVA_Fisher", "RARITY_MVA_Fisher", nbin, 0,
                            1)

    filelist = glob(directory + "/" + "Level4b*.hdf")
    print 30 * "#"
    print "the filelist, ", filelist
    print 30 * "--"
    for file in filelist:

        try:
            startfile = tables.openFile(file, "a")
            #DELETE BDTs if they exist

            for var in startfile.root._v_children.keys():
                if re.match("BDT_", var):
                    startfile.removeNode("/", var)
                    startfile.removeNode("/__I3Index__", var)
            #NOW CLONE THE NODE

            for name in histList:
                startfile.copyNode("/__I3Index__/StdDCOGLaunches",
                                   "/__I3Index__", str(name.GetName()))
                startfile.copyNode("/StdDCOGLaunches", "/",
                                   str(name.GetName()))

            startfile.close()

            h5 = tables.openFile(file, 'r')
            mcog_over_t          = numpy.divide(h5.root.MDCOGLaunches.cols.value[:],\
                                                    h5.root.eventinfo_ALLOfflinePulseSeriesReco.cols.length[:]/1000.)
            q_over_t             = numpy.divide(numpy.log10(h5.root.eventinfo_ALLOfflinePulseSeriesReco.cols.tot_charge[:]),\
                                                    h5.root.eventinfo_ALLOfflinePulseSeriesReco.cols.length[:]/1000.)

            ncluster_over_t      = numpy.divide(h5.root.Nclusters.cols.value[:],\
                                             h5.root.eventinfo_ALLOfflinePulseSeriesReco.cols.length[:]/1000.)
            nsmt8_over_string    = numpy.divide(h5.root.NSMT8TRIGGER.cols.value[:],\
                                                    h5.root.eventinfo_ALLOfflinePulseSeriesReco.cols.nstrings[:])

            s1 = array('f', h5.root.Nclusters.cols.value[:])
            s2 = array('f', q_over_t)
            s3 = array('f', mcog_over_t[:])
            s4 = array('f', ncluster_over_t[:])
            s5 = array('f', nsmt8_over_string[:])
            s6 = array('f', h5.root.MedianCluster.cols.value[:])

            h5.close()

            result = numpy.zeros((len(histList), len(s1)),
                                 numpy.dtype([('Classifier', numpy.double)]))

            for ievt in range(len(s1)):
                #if ievt%1000 == 0:
                #    print "--- ... Processing event: %i" % ievt
                # Fill event in memory

                # Compute MVA input variables
                var1[0] = s1[ievt]
                var2[0] = s2[ievt]
                var3[0] = s3[ievt]
                var4[0] = s4[ievt]
                var5[0] = s5[ievt]
                var6[0] = s6[ievt]

                # Fill histograms with MVA outputs

                for j, h in enumerate(histList):
                    h.Fill(reader.EvaluateMVA(h.GetName() + " method"))
                    result[j][ievt]["Classifier"] = reader.EvaluateMVA(
                        h.GetName() + " method")

                endfile = tables.openFile(file, 'a')
                for k, name in enumerate(histList):
                    modifiedNode = endfile.getNode("/", str(name.GetName()))
                    modifiedNode.cols.value[ievt] = result[k][ievt][
                        "Classifier"]

                endfile.close()

            print time.strftime('Elapsed time - %H:%M:%S',
                                time.gmtime(time.clock()))
            #sanity check of the mva values writen in the hdf files

            #ifile=tables.openFile(file,'r')
            #   if len(ifile.root.BDT_400_20.cols.BDT) != len(ifile.root.MPEFit.cols.Zenith):
            #       ifile.close()
            #       print "Something wrong with file: ", k, j+1
            #exit()
            #os.system("rm "+"/data/icecube01/users/redlpete/IC59L2/TableIOL3/H5FilesIncludingScores/H5%0.2d%0.2d.hd5"%(k,j+1))
            #  ifile.close()
        except ImportError as exce:
            print "file does not exist", k, j + 1
            print exce

    exit()
    ifile = tables.openFile("test.h5", mode='a')

    class Score(IsDescription):
        score = Float64Col()

    group = ifile.createGroup("/", 'Background', 'Scoreinfo')

    table = ifile.createTable(group, 'score', Score, "Example")

    particle = table.row

    for n in range(len(result)):
        particle['score'] = result[n]
        particle.append()

    print "--- End of event loop: %s" % sw.Print()

    target = TFile("TMVApp1.root", "RECREATE")
    for h in histList:
        h.Write()

    target.Close()

    print "--- Created root file: \"TMVApp.root\" containing the MVA output histograms"
    print "==> TMVApplication is done!"
Пример #28
0
def ApplyAddCuts(InputFolder, OutputFolder, Campaign):

    ChannelList = ChannelList_MC16a

    if Campaign == "MC16d":
        ChannelList = ChannelList_MC16d
    if Campaign == "MC16e":
        ChannelList = ChannelList_MC16e

    TreeList = ["nominal"]

    if "SYSLJ" in InputFolder:
        TreeList = SystTreeList

    InputFiles = glob.glob(InputFolder + "/*root*")

    for InputFile in InputFiles:

        OutputFile = InputFile.replace(InputFolder, OutputFolder)

        if os.path.exists(OutputFile):
            continue

        fF = TFile(InputFile, "READ")

        fF_out = TFile(OutputFile, "RECREATE")

        # save sumWeights tree to new file
        fT_weight = fF.Get("sumWeights")
        fT_weight_out = fT_weight.CloneTree()

        fT_weight_out.Write()

        # save all bookkeeping histograms to new file
        for Channel in ChannelList:

            DIR = TDirectory()
            fF.GetObject(Channel, DIR)
            DIR.ReadAll()
            fF_out.mkdir(Channel)
            fF_out.cd(Channel)
            DIR_new = TDirectory()
            DIR.GetList().Write()
            DIR_new.Write()

            fF_out.cd()

        for TreeName in TreeList:

            print(
                "---------------------------------------------------------------------------> Running over tree = ",
                TreeName)

            if TreeName == "nominal_SYST":
                continue

            fT = fF.Get(TreeName)
            entries = fT.GetEntries()
            reader1 = TMVA.Reader()
            reader2 = TMVA.Reader()

            var_LL_1 = array('f', [0])
            reader1.AddVariable("klfitter_logLikelihood[0]", var_LL_1)
            var_EvtProb_1 = array('f', [0])
            reader1.AddVariable("klfitter_eventProbability[0]", var_EvtProb_1)
            var_WhadPt_1 = array('f', [0])
            reader1.AddVariable("klf_orig_Whad_pt", var_WhadPt_1)
            var_WlepPt_1 = array('f', [0])
            reader1.AddVariable("klf_orig_Wlep_pt", var_WlepPt_1)
            var_ThadPt_1 = array('f', [0])
            reader1.AddVariable("klf_orig_tophad_pt", var_ThadPt_1)
            var_TlepPt_1 = array('f', [0])
            reader1.AddVariable("klf_orig_toplep_pt", var_TlepPt_1)
            var_j_n_1 = array('f', [0])
            reader1.AddVariable("tma_njets", var_j_n_1)
            var_met_1 = array('f', [0])
            reader1.AddVariable("tma_met", var_met_1)
            var_TTbarPt_1 = array('f', [0])
            reader1.AddVariable("klf_orig_ttbar_pt", var_TTbarPt_1)
            var_mwt_1 = array('f', [0])
            reader1.AddVariable("tma_mtw", var_mwt_1)
            var_DRwjets_1 = array('f', [0])
            reader1.AddVariable("klf_orig_dR_qq_W", var_DRwjets_1)
            var_DRbjets_1 = array('f', [0])
            reader1.AddVariable("klf_orig_dR_bb", var_DRbjets_1)

            var_LL_2 = array('f', [0])
            reader2.AddVariable("klfitter_logLikelihood[0]", var_LL_2)
            var_EvtProb_2 = array('f', [0])
            reader2.AddVariable("klfitter_eventProbability[0]", var_EvtProb_2)
            var_WhadPt_2 = array('f', [0])
            reader2.AddVariable("klf_orig_Whad_pt", var_WhadPt_2)
            var_WlepPt_2 = array('f', [0])
            reader2.AddVariable("klf_orig_Wlep_pt", var_WlepPt_2)
            var_ThadPt_2 = array('f', [0])
            reader2.AddVariable("klf_orig_tophad_pt", var_ThadPt_2)
            var_TlepPt_2 = array('f', [0])
            reader2.AddVariable("klf_orig_toplep_pt", var_TlepPt_2)
            var_j_n_2 = array('f', [0])
            reader2.AddVariable("tma_njets", var_j_n_2)
            var_met_2 = array('f', [0])
            reader2.AddVariable("tma_met", var_met_2)
            var_TTbarPt_2 = array('f', [0])
            reader2.AddVariable("klf_orig_ttbar_pt", var_TTbarPt_2)
            var_mwt_2 = array('f', [0])
            reader2.AddVariable("tma_mtw", var_mwt_2)
            var_DRwjets_2 = array('f', [0])
            reader2.AddVariable("klf_orig_dR_qq_W", var_DRwjets_2)
            var_DRbjets_2 = array('f', [0])
            reader2.AddVariable("klf_orig_dR_bb", var_DRbjets_2)

            reader1.BookMVA(
                "BDT",
                "TrainingSteffenChristmas/weights_noWindowCuts/MassTraining_BDT.weights.xml"
            )
            reader2.BookMVA(
                "BDT",
                "TrainingSteffenChristmas/weights_withWindowCuts/MassTraining_BDT.weights.xml"
            )

            fT_out = fT.CloneTree(0)
            d_noWC = array('f', [0.])
            d_withWC = array('f', [0.])

            fT_out.Branch("bdtOutput_8TeVlike_noWC", d_noWC,
                          'bdtOutput_8TeVlike_noWC/F')
            fT_out.Branch("bdtOutput_8TeVlike_withWC", d_withWC,
                          'bdtOutput_8TeVlike_withWC/F')

            for i in range(0, entries):
                fT.GetEntry(i)

                var_LL_1[0] = fT.klfitter_logLikelihood[0]
                var_EvtProb_1[0] = fT.klfitter_eventProbability[0]
                var_WhadPt_1[0] = fT.klf_orig_Whad_pt
                var_WlepPt_1[0] = fT.klf_orig_Wlep_pt
                var_ThadPt_1[0] = fT.klf_orig_tophad_pt
                var_TlepPt_1[0] = fT.klf_orig_toplep_pt
                var_j_n_1[0] = fT.tma_njets
                var_met_1[0] = fT.tma_met
                var_TTbarPt_1[0] = fT.klf_orig_ttbar_pt
                var_mwt_1[0] = fT.tma_mtw
                var_DRwjets_1[0] = fT.klf_orig_dR_qq_W
                var_DRbjets_1[0] = fT.klf_orig_dR_bb

                var_LL_2[0] = fT.klfitter_logLikelihood[0]
                var_EvtProb_2[0] = fT.klfitter_eventProbability[0]
                var_WhadPt_2[0] = fT.klf_orig_Whad_pt
                var_WlepPt_2[0] = fT.klf_orig_Wlep_pt
                var_ThadPt_2[0] = fT.klf_orig_tophad_pt
                var_TlepPt_2[0] = fT.klf_orig_toplep_pt
                var_j_n_2[0] = fT.tma_njets
                var_met_2[0] = fT.tma_met
                var_TTbarPt_2[0] = fT.klf_orig_ttbar_pt
                var_mwt_2[0] = fT.tma_mtw
                var_DRwjets_2[0] = fT.klf_orig_dR_qq_W
                var_DRbjets_2[0] = fT.klf_orig_dR_bb

                d_noWC[0] = reader1.EvaluateMVA("BDT")
                d_withWC[0] = reader2.EvaluateMVA("BDT")

                #print d_noWC[0],"     ",d_withWC[0]

                fT_out.Fill()

            fT_out.Write()

        fF_out.Close()