Пример #1
0
def main(argv):

    clock = TStopwatch()

    argc = len(argv)

    if (argc != 5):
        return usage()

    fileName = argv[1]
    the_type = argv[2]
    requireTree = argv[3]
    verbosity = argv[4]

    if the_type != "event" and the_type != "basket":
        return usage()

    if requireTree != "true" and requireTree != "false":
        return usage()

    if verbosity == "on":
        msg.setLevel(logging.DEBUG)
    elif verbosity == "off":
        msg.setLevel(logging.INFO)
    else:
        return usage()

    rc = checkFile(fileName, the_type, requireTree)
    msg.debug('Returning %s' % rc)

    clock.Stop()
    clock.Print()

    return rc
Пример #2
0
def main(argv):

    import logging
    msg = logging.getLogger(__name__)
    ch = logging.StreamHandler(sys.stdout)
    #    ch.setLevel(logging.DEBUG)
    formatter = logging.Formatter(
        '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    ch.setFormatter(formatter)
    msg.addHandler(ch)

    clock = TStopwatch()

    argc = len(argv)

    if (argc != 5):
        return usage()

    fileName = argv[1]
    type = argv[2]
    tree = argv[3]
    verbosity = argv[4]

    if type != "event" and type != "basket":
        return usage()

    if tree == "true":
        requireTree = True
    elif tree == "false":
        requireTree = False
    else:
        return usage()

    if verbosity == "on":
        msg.setLevel(logging.DEBUG)
    elif verbosity == "off":
        msg.setLevel(logging.INFO)
    else:
        return usage()

    rc = checkFile(fileName, type, requireTree, msg)
    msg.debug('Returning %s' % rc)

    clock.Stop()
    clock.Print()

    return rc
Пример #3
0
def main():

    try:
        # Retrive command line options
        shortopts = "m:i:t:o:vh?"
        longopts = [
            "methods=", "inputfile=", "inputtrees=", "outputfile=", "verbose",
            "help", "usage"
        ]
        opts, args = getopt.getopt(sys.argv[1:], shortopts, longopts)

    except getopt.GetoptError:
        # Print help information and exit:
        print "ERROR: unknown options in argument %s" % sys.argv[1:]
        usage()
        sys.exit(1)

    infname = DEFAULT_INFNAME
    treeNameSig = DEFAULT_TREESIG
    treeNameBkg = DEFAULT_TREEBKG
    outfname = DEFAULT_OUTFNAME
    methods = DEFAULT_METHODS
    verbose = False
    for o, a in opts:
        if o in ("-?", "-h", "--help", "--usage"):
            usage()
            sys.exit(0)
        elif o in ("-m", "--methods"):
            methods = a
        elif o in ("-i", "--inputfile"):
            infname = a
        elif o in ("-o", "--outputfile"):
            outfname = a
        elif o in ("-t", "--inputtrees"):
            a.strip()
            trees = a.rsplit(' ')
            trees.sort()
            trees.reverse()
            if len(trees) - trees.count('') != 2:
                print "ERROR: need to give two trees (each one for signal and background)"
                print trees
                sys.exit(1)

            treeNameSig = trees[0]
            treeNameBkg = trees[1]
        elif o in ("-v", "--verbose"):
            verbose = True

    # Print methods
    mlist = methods.replace(' ', ',').split(',')
    print "=== TMVApplication: use method(s)..."
    for m in mlist:
        if m.strip() != '':
            print "=== - <%s>" % m.strip()

    # Import ROOT classes
    from ROOT import gSystem, gROOT, gApplication, TFile, TTree, TCut, TH1F, TStopwatch

    # check ROOT version, give alarm if 5.18
    if gROOT.GetVersionCode() >= 332288 and gROOT.GetVersionCode() < 332544:
        print "*** You are running ROOT version 5.18, which has problems in PyROOT such that TMVA"
        print "*** does not run properly (function calls with enums in the argument are ignored)."
        print "*** Solution: either use CINT or a C++ compiled version (see TMVA/macros or TMVA/examples),"
        print "*** or use another ROOT version (e.g., ROOT 5.19)."
        sys.exit(1)

    # Logon not automatically loaded through PyROOT (logon loads TMVA library) load also GUI
    gROOT.SetMacroPath("../macros/")
    gROOT.Macro("../macros/TMVAlogon.C")

    # Import TMVA classes from ROOT
    from ROOT import TMVA

    # Create the Reader object
    reader = TMVA.Reader("!Color")

    # Create a set of variables and declare them to the reader
    # - the variable names must corresponds in name and type to
    # those given in the weight file(s) that you use

    # what to do ???
    var1 = array('f', [0])
    var2 = array('f', [0])
    var3 = array('f', [0])
    var4 = array('f', [0])
    reader.AddVariable("var1+var2", var1)
    reader.AddVariable("var1-var2", var2)
    reader.AddVariable("var3", var3)
    reader.AddVariable("var4", var4)

    # book the MVA methods
    dir = "weights/"
    prefix = "TMVAnalysis_"

    for m in mlist:
        reader.BookMVA(m + " method", dir + prefix + m + ".weights.txt")

    #######################################################################
    # For an example how to apply your own plugin method, please see
    # TMVA/macros/TMVApplication.C
    #######################################################################

    # Book output histograms
    nbin = 80

    histList = []
    for m in mlist:
        histList.append(TH1F(m, m, nbin, -3, 3))

    # Book example histogram for probability (the other methods would be done similarly)
    if "Fisher" in mlist:
        probHistFi = TH1F("PROBA_MVA_Fisher", "PROBA_MVA_Fisher", nbin, 0, 1)
        rarityHistFi = TH1F("RARITY_MVA_Fisher", "RARITY_MVA_Fisher", nbin, 0,
                            1)

    # Prepare input tree (this must be replaced by your data source)
    # in this example, there is a toy tree with signal and one with background events
    # we'll later on use only the "signal" events for the test in this example.
    #
    fname = "./tmva_example.root"
    print "--- Accessing data file: %s" % fname
    input = TFile.Open(fname)
    if not input:
        print "ERROR: could not open data file: %s" % fname
        sys.exit(1)

    #
    # Prepare the analysis tree
    # - here the variable names have to corresponds to your tree
    # - you can use the same variables as above which is slightly faster,
    #   but of course you can use different ones and copy the values inside the event loop
    #
    print "--- Select signal sample"
    theTree = input.Get("TreeS")
    userVar1 = array('f', [0])
    userVar2 = array('f', [0])
    theTree.SetBranchAddress("var1", userVar1)
    theTree.SetBranchAddress("var2", userVar2)
    theTree.SetBranchAddress("var3", var3)
    theTree.SetBranchAddress("var4", var4)

    # Efficiency calculator for cut method
    nSelCuts = 0
    effS = 0.7

    # Process the events
    print "--- Processing: %i events" % theTree.GetEntries()
    sw = TStopwatch()
    sw.Start()
    for ievt in range(theTree.GetEntries()):

        if ievt % 1000 == 0:
            print "--- ... Processing event: %i" % ievt

        # Fill event in memory
        theTree.GetEntry(ievt)

        # Compute MVA input variables
        var1[0] = userVar1[0] + userVar2[0]
        var2[0] = userVar1[0] - userVar2[0]

        # Return the MVAs and fill to histograms
        if "CutsGA" in mlist:
            passed = reader.EvaluateMVA("CutsGA method", effS)
            if passed:
                nSelCuts = nSelCuts + 1

        # Fill histograms with MVA outputs
        for h in histList:
            h.Fill(reader.EvaluateMVA(h.GetName() + " method"))

        # Retrieve probability instead of MVA output
        if "Fisher" in mlist:
            probHistFi.Fill(reader.GetProba("Fisher method"))
            rarityHistFi.Fill(reader.GetRarity("Fisher method"))

    # Get elapsed time
    sw.Stop()
    print "--- End of event loop: %s" % sw.Print()

    # Return computed efficeincies
    if "CutsGA" in mlist:
        eff = float(nSelCuts) / theTree.GetEntries()
        deff = math.sqrt(eff * (1.0 - eff) / theTree.GetEntries())
        print "--- Signal efficiency for Cuts method : %.5g +- %.5g (required was: %.5g)" % (
            eff, deff, effS)

        # Test: retrieve cuts for particular signal efficiency
        mcuts = reader.FindMVA("CutsGA method")
        cutsMin = array('d', [0, 0, 0, 0])
        cutsMax = array('d', [0, 0, 0, 0])
        mcuts.GetCuts(0.7, cutsMin, cutsMax)
        print "--- -------------------------------------------------------------"
        print "--- Retrieve cut values for signal efficiency of 0.7 from Reader"
        for ivar in range(4):
            print "... Cut: %.5g < %s <= %.5g" % (
                cutsMin[ivar], reader.GetVarName(ivar), cutsMax[ivar])

        print "--- -------------------------------------------------------------"

    #
    # write histograms
    #
    target = TFile("TMVApp.root", "RECREATE")
    for h in histList:
        h.Write()

    # Write also probability hists
    if "Fisher" in mlist:
        probHistFi.Write()
        rarityHistFi.Write()

    target.Close()

    print "--- Created root file: \"TMVApp.root\" containing the MVA output histograms"
    print "==> TMVApplication is done!"
Пример #4
0
def inv1(x, b1): return tan(3*x*b1 + atan(a))
def inv2(x, b2): return rt*(-a*exp(x*b2/d) - a - rt*exp(x*b2/d) + rt)/(-a*exp(x*b2/d) + a - rt*exp(x*b2/d) -rt)

print('Inv1: ', inv1(0, b1))
print('Inv2: ', inv2(0, b2))

def fncomposition(a, b, a1, a2, b1, b2):
    while (True):
        nr = gRandom.Uniform(0,1)
        nk = gRandom.Uniform(0,1)
        if nk < a1:
            return inv1(nr, b1)
        else:
            return inv2(nr, b2)
        
c2 = ROOT.TCanvas("myCanvasName2","The Canvas Title", 1200, 500)    
h2 = TH1F("h2", "composition method", 50, -1, 1)
sw = TStopwatch()
sw.Start()
for i in range(0, 10000):
    r = fncomposition(a, b, a1, a2, b1, b2)
    h2.Fill(r)
sw.Stop()
sw.Print()
h2.Draw()
h2.Fit(ff)
c2.Draw()

print('First moment: ', h2.GetMean())
print('Mean square: ', h2.GetStdDev())
Пример #5
0
        event.getByLabel(muon_L, muon_H)
        muons = muon_H.product()

        print('muons size = ', muPt.size(), ', good muon size = ', muId.size(),
              'good muon collection size = ', len(muons))

        for imu in range(0, muPt.size()):
            print('muon pt in b2g muon collection =', muPt.at(imu))
        for imu in muons:
            print('muon pt', imu.getP4().Pt())
            #print ('muon charge', imu.getCharge())

        #Lets just get the good muons:
        #goodMuIso

# Done processing the events!
# Stop our timer
timer.Stop()

# Print out our timing information
rtime = timer.RealTime()
# Real time (or "wall time")
ctime = timer.CpuTime()
# CPU time
print("Analyzed events: {0:6d}".format(nEventsAnalyzed))
print("RealTime={0:6.2f} seconds, CpuTime={1:6.2f} seconds".format(
    rtime, ctime))
print("{0:4.2f} events / RealTime second .".format(nEventsAnalyzed / rtime))
print("{0:4.2f} events / CpuTime second .".format(nEventsAnalyzed / ctime))
subprocess.call(["ps aux | grep skhalil | cat > memory.txt", ""], shell=True)
Пример #6
0
old_integration_value = 0.0
first_time_flag = 0

for x in range(minnumberofsteps, maxnumberofsteps + 1):
    timer_1.Start()
    Integ_Midpoint.SetBinContent(x, MidPointIntegral(
        a, b, x,
        func))  # Set the value of the integral as a function of the steps x
    y = old_integration_value - 1.0 * MidPointIntegral(
        a, b, x, func)  # Calculate Delta I
    y = 1.0 * abs(y) / MidPointIntegral(a, b, x, func)  # Calculate Delta I/I
    Integ_Err_Midpoint.SetBinContent(
        x, y)  # Set the Error histogram equal to Delta I / I
    old_integration_value = MidPointIntegral(
        a, b, x, func)  # Store the "old" integration value
    timer_1.Stop()

    timer_Cpu_Midpoint = timer_Cpu_Midpoint + timer_1.CpuTime()
    #timer_Real_Midpoint = timer_Real_Midpoint + timer_1.RealTime()
    timer_Midpoint.SetBinContent(x, timer_Cpu_Midpoint)

    if y < trsh and first_time_flag == 0:
        first_time_flag = 1
        Midpoint_stops_at_n = x
        print "Midpoint Done at: ", x
        print " Integral value MidPoint: ", MidPointIntegral(a, b, x, func)
        print " Error value MidPoint: ", y

timer_2 = TStopwatch()
timer_Cpu_Trapezoid = 0.0
Trapezoid_stops_at_n = 0.0
Пример #7
0
    for dataset in split_datasets:
        if BNTreeUseScript:
            chainName = "OSUAnalysis/" + BNTreeChannel + "/BNTree_" + BNTreeChannel
            command = "root -l -b -q '" + BNTreeScript + "+(\"" + condor_dir + "\",\"" + dataset + "\",\"" + chainName + "\"," + str(
                arguments.condorProcessNum) + ")'"
            print "About to execute command:  " + command
            os.system(command)
        else:
            for hist in input_histograms:
                #chain trees together
                ch = TChain("OSUAnalysis/" + hist['channel'] + "/BNTree_" +
                            hist['channel'])
                ch.Add(condor_dir + "/" + dataset + "/hist_*.root")
                print("Looping over chain with # entries = %f; split time = " %
                      ch.GetEntries()),
                watch1.Stop()
                watch1.Print()
                watch1.Start()

                outputFile = TFile(condor_dir + "/" + dataset + ".root",
                                   "UPDATE")
                if not outputFile or outputFile.IsZombie():
                    print "Could not open file: %s/%s.root" % (condor_dir,
                                                               dataset)
                outputFile.cd("OSUAnalysis/" + hist['channel'])

                deleteString = hist[
                    'histName'] + ";*"  # delete all existing instances of the object
                currentDir = outputFile.GetDirectory("OSUAnalysis/" +
                                                     hist['channel'])
                if not currentDir: