Пример #1
0
 def __init__(self, w, b, **kwargs):
   Logger.__init__(self)
   self.layer     = retrieve_kw(kwargs, 'Layer'       ,0       )
   self.funcName  = retrieve_kw(kwargs, 'funcName'  ,None    )
   checkForUnusedVars(kwargs)
   self.W = np.matrix(w)
   self.b = np.transpose( np.matrix(b) )
Пример #2
0
  def __init__(self, rawDict, logger=None):
    
    Logger.__init__(self, logger=logger)
    self._u = 0.0
    try: #Retrieve nodes information
      self._etbin = rawDict['configuration']['etBin']
      self._etabin= rawDict['configuration']['etaBin']
      self._nodes = rawDict['discriminator']['nodes']
      w = rawDict['discriminator']['weights']
      b = rawDict['discriminator']['bias']
    except KeyError:
      self._logger.fatal("Not be able to retrieve the params from the dictionary")    

    self._nLayers = len(self._nodes)-1
    self._layers  = list()

    for layer in range(self._nLayers):
      W=[]; B=[]
      for count in range(self._nodes[layer]*self._nodes[layer+1]):
         W.append(w.pop(0))
      W=np.array(W).reshape(self._nodes[layer+1], self._nodes[layer]).tolist()
      for count in range(self._nodes[layer+1]):
        B.append(b.pop(0))
      # Create hidden layers
      self._layers.append( Layer(W,B,Layer=layer,funcName='tansig') )
Пример #3
0
  def __init__( self, outputFile, **kw ):
    Logger.__init__(self,kw)
    if not outputFile.endswith('.root'):
      outputFile += '.root'
    # Use this property to rebuild the storegate from a root file
    self._restoreStoreGate=retrieve_kw(kw,'restoreStoreGate',False)
    filterDirs=retrieve_kw(kw,'filterDirs', None)
    #Create TFile object to hold everything
    from ROOT import TFile
    outputFile = expandPath( outputFile )
    if self._restoreStoreGate:
      import os.path
      if not os.path.exists( outputFile ):
        raise ValueError("File '%s' does not exist" % outputFile)
      self._file = TFile( outputFile, "read")
    else:
      self._file = TFile( outputFile, "recreate")
    
    self._currentDir = ""
    self._objects    = dict()
    self._dirs       = list()
    import os
    self._outputFile = os.path.abspath(outputFile)

    if self._restoreStoreGate:
      retrievedObjs = self.__restore(self._file, filterDirs=filterDirs)
      for name, obj in retrievedObjs:
        self._dirs.append(name)
        self._objects[name]=obj
Пример #4
0
 def __init__( self, logger = None ):
   """
     Load TuningTools C++ library and set logger
   """
   # Retrieve python logger
   Logger.__init__( self, logger = logger)
   self._store = None
Пример #5
0
    def __init__(self, fileList, logger=None):

        Logger.__init__(self, logger=logger)
        from RingerCore import StoreGate
        for f in fileList:
            self._store.append(StoreGate(f, restoreStoreGate=True))
            paths = self._store[-1].getDirs()

            #TODO: this shold be a property
            # Only for egamma trigger staff
            def check_egamma_paths(p):
                paths = []
                for s in p:
                    if 'Egamma' in s:
                        if not 'icalomedium' in s:
                            paths.append(s)
                return paths

            # filter egamma only
            paths = check_egamma_paths(paths)

            resume1 = self.resume(paths, 'Efficiency')
            try:
                resume2 = self.resume(paths, 'Emulation')
            except:
                resume2 = None
                self._logger.warning(
                    'There is no emulation dirname in this file.')
            # hold the resume paths
            self._resume.append({'Efficiency': resume1, 'Emulation': resume2})
        # display all chains
        self._effReader = Efficiency()
Пример #6
0
 def __init__(self):
   Logger.__init__(self)
   try:# Check if rucio was set
     import os
     os.system('rucio --version')
   except RuntimeError:
     self._fatal('Rucio was not set! please setup this!')
     raise RuntimeError('Rucio command not found!')
Пример #7
0
 def __init__(self, w, b, **kw):
     Logger.__init__(self, kw)
     self.layer = kw.pop("Layer", 0)
     self.func = kw.pop("Func", "tansig")
     checkForUnusedVars(kw, self._logger.warning)
     del kw
     self.W = np.matrix(w)
     self.b = np.transpose(np.matrix(b))
Пример #8
0
 def __init__(self):
   Logger.__init__(self)
   try:# Check if rucio was set
     import os
     os.system('rucio --version')
   except RuntimeError:
     self._logger.fatal('Rucio was not set! please setup this!')
     raise RuntimeError('Rucio command not found!')
Пример #9
0
 def __init__( self, **kw ):
   Logger.__init__( self, kw )
   self.references = ReferenceBenchmarkCollection( [] )
   self.doPerf                = retrieve_kw( kw, 'doPerf',                True                   )
   self.batchMethod           = BatchSizeMethod.retrieve(
                              retrieve_kw( kw, 'batchMethod', BatchSizeMethod.MinClassSize \
       if not 'batchSize' in kw or kw['batchSize'] is NotSet else BatchSizeMethod.Manual         ) 
                                )
   self.batchSize             = retrieve_kw( kw, 'batchSize',             NotSet                 )
   epochs                     = retrieve_kw( kw, 'epochs',                10000                  )
   maxFail                    = retrieve_kw( kw, 'maxFail',               50                     )
   self.useTstEfficiencyAsRef = retrieve_kw( kw, 'useTstEfficiencyAsRef', False                  )
   self._core, self._coreEnum = retrieve_core()
   self.sortIdx = None
   if self._coreEnum is TuningToolCores.ExMachina:
     self.trainOptions = dict()
     self.trainOptions['algorithmName'] = retrieve_kw( kw, 'algorithmName', 'rprop'       )
     self.trainOptions['print']         = retrieve_kw( kw, 'showEvo',       True          )
     self.trainOptions['networkArch']   = retrieve_kw( kw, 'networkArch',   'feedforward' )
     self.trainOptions['costFunction']  = retrieve_kw( kw, 'costFunction',  'sp'          )
     self.trainOptions['shuffle']       = retrieve_kw( kw, 'shuffle',       True          )
     self.trainOptions['nEpochs']       = epochs
     self.trainOptions['nFails']        = maxFail
     self.doMultiStop                   = False
   elif self._coreEnum is TuningToolCores.FastNet:
     seed = retrieve_kw( kw, 'seed', None )
     self._core = self._core( level = LoggingLevel.toC(self.level), seed = seed )
     self._core.trainFcn    = retrieve_kw( kw, 'algorithmName', 'trainrp' )
     self._core.showEvo     = retrieve_kw( kw, 'showEvo',       50        )
     self._core.multiStop   = retrieve_kw( kw, 'doMultiStop',   True      )
     self._core.epochs      = epochs
     self._core.maxFail     = maxFail
   else:
     self._logger.fatal("TuningWrapper not implemented for %s" % TuningToolCores.tostring(self._coreEnum))
   checkForUnusedVars(kw, self._logger.debug )
   del kw
   # Set default empty values:
   if self._coreEnum is TuningToolCores.ExMachina:
     self._emptyData  = npCurrent.fp_array([])
   elif self._coreEnum is TuningToolCores.FastNet:
     self._emptyData = list()
   self._emptyHandler = None
   if self._coreEnum is TuningToolCores.ExMachina:
     self._emptyTarget = npCurrent.fp_array([[]]).reshape( 
             npCurrent.access( pidx=1,
                               oidx=0 ) )
   elif self._coreEnum is TuningToolCores.FastNet:
     self._emptyTarget = None
   # Set holders:
   self._trnData    = self._emptyData
   self._valData    = self._emptyData
   self._tstData    = self._emptyData
   self._trnHandler = self._emptyHandler
   self._valHandler = self._emptyHandler
   self._tstHandler = self._emptyHandler
   self._trnTarget  = self._emptyTarget
   self._valTarget  = self._emptyTarget
   self._tstTarget  = self._emptyTarget
Пример #10
0
 def __init__(self, name):
     Logger.__init__(self)
     self._name = name
     self._basepath = str()
     self._wtd = StatusWatchDog.DISABLE
     self._status = StatusTool.ENABLE
     self._initialized = StatusTool.NOT_INITIALIZED
     self._finalized = StatusTool.NOT_FINALIZED
     self._ids = []
Пример #11
0
 def __init__(self, outputDS):
     Logger.__init__(self)
     from ROOT import TFile
     # Check if the type is correct
     if not '.root' in outputDS: outputDS += '.root'
     self._file = TFile(outputDS, 'recreate')
     self._outputDS = outputDS
     self._logger.info( ('Create root file with name: %s') \
                         %(outputDS) )
Пример #12
0
 def __init__(self, **kw):
     #Retrive python logger
     logger = kw.pop('logger', None)
     self._label = kw.pop('label', '')
     Logger.__init__(self, logger=logger)
     self._obj = []
     self._idxCorr = None
     self.best = 0
     self.worst = 0
Пример #13
0
 def __init__(self, outputDS):
   Logger.__init__(self)
   from ROOT import TFile
   # Check if the type is correct
   if not '.root' in outputDS:  outputDS+='.root'
   self._file = TFile( outputDS, 'recreate' )
   self._outputDS=outputDS
   self._logger.info( ('Create root file with name: %s') \
                       %(outputDS) )
Пример #14
0
 def __init__( self, data, target, batch_size=32, secondaryPP=None, shuffle=True, **kw):
   
   super(Sequence, self).__init__()
   Logger.__init__(self,**kw)
   self._data = data
   self._target = target
   self.batch_size = batch_size
   self._secondaryPP=secondaryPP
   self.shuffle = shuffle
   self.on_epoch_end()
Пример #15
0
  def __init__(self, crossvalFileName, monFileName, **kw):
    
    from ROOT import TFile, gROOT
    gROOT.ProcessLine("gErrorIgnoreLevel = kFatal;");
    #Set all global setting from ROOT style plot!
    SetTuningStyle()
    Logger.__init__(self, kw)
    #Hold all information abount the monitoring root file
    self._infoObjs = list()
    try:#Protection
      self._logger.info('Reading monRootFile (%s)',monFileName)
      self._rootObj = TFile(monFileName, 'read')
    except RuntimeError:
      self._logger.fatal('Could not open root monitoring file.')
    from RingerCore import load
    try:#Protection
      self._logger.info('Reading crossvalFile (%s)',crossvalFileName)
      crossvalObj = load(crossvalFileName)
    except RuntimeError:
      self._logger.fatal('Could not open pickle summary file.')
    #Loop over benchmarks


    for benchmarkName in crossvalObj.keys():
      #Must skip if ppchain collector
      if benchmarkName == 'infoPPChain':  continue
      #Add summary information into MonTuningInfo helper class
      self._infoObjs.append( TuningMonitoringInfo( benchmarkName, crossvalObj[benchmarkName] ) ) 
      self._logger.info('Creating MonTuningInfo for %s and the iterator object [et=%d, eta=%d]',
                         benchmarkName,self._infoObjs[-1].etbin(), self._infoObjs[-1].etabin())
    #Loop over all benchmarks

    #Always be the same bin for all infoObjs  
    etabin = self._infoObjs[0].etabin()
    etbin = self._infoObjs[0].etbin()
    #Reading the data rings from path or object
    refFile = kw.pop('refFile', None)
    if refFile:
      from TuningTools import TuningDataArchieve
      TDArchieve = TuningDataArchieve(refFile)
      self._logger.info(('Reading perf file with name %s')%(refFile))
      try:
        with TDArchieve as data:
          self._data = (data['signal_patterns'][etbin][etabin], data['background_patterns'][etbin][etabin])
      except RuntimeError:
        self._logger.fatal('Could not open the patterns data file.')
        raise RuntimeError('Could not open the patterns data file.')
    else:
      patterns = kw.pop('patterns', None)
      if patterns:
        self._data = (patterns['signal_patterns'][etbin][etabin], patterns['background_patterns'][etbin][etabin])
      else:
        raise RuntimeError('You must pass the ref file as parameter. abort!')
Пример #16
0
 def __init__(self, filePath = None, **kw):
   """
   Either specify the file path where the file should be read or the data
   which should be appended to it
   with SubsetGeneratorArchieve("/path/to/file") as data:
     BLOCK
   SubsetGeneratorArchieve( "file/path", subsetCol= SubsetGeneratorPatternCollection([...]) )
   """
   Logger.__init__(self, kw)
   self._filePath = filePath
   self._subsetCol = kw.pop( 'subsetCol', None )
   checkForUnusedVars( kw, self._warning )
Пример #17
0
    def __init__(self, **kw):

        Logger.__init__(self, **kw)

        self._maxPileupLinearCorrectionValue = retrieve_kw(
            kw, 'maxPileupLinearCorrectionValue', 100)
        self._removeOutputTansigTF = retrieve_kw(kw, 'removeOutputTansigTF',
                                                 True)
        self._useEtaVar = retrieve_kw(kw, 'useEtaVar', False)
        self._useLumiVar = retrieve_kw(kw, 'useLumiVar', False)
        self._toPython = retrieve_kw(kw, 'toPython', True)
        self._doPileupCorrection = retrieve_kw(kw, 'doPileupCorrection', True)
Пример #18
0
    def __init__(self, crossvalFileName, monFileName, **kw):

        from ROOT import TFile, gROOT
        gROOT.ProcessLine("gErrorIgnoreLevel = kFatal;")
        #Set all global setting from ROOT style plot!
        SetTuningStyle()
        Logger.__init__(self, kw)
        #Hold all information abount the monitoring root file
        self._infoObjs = list()
        try:  #Protection
            self._logger.info('Reading monRootFile (%s)', monFileName)
            self._rootObj = TFile(monFileName, 'read')
        except RuntimeError:
            self._logger.fatal('Could not open root monitoring file.')
        from RingerCore import load
        try:  #Protection
            self._logger.info('Reading crossvalFile (%s)', crossvalFileName)
            crossvalObj = load(crossvalFileName)
        except RuntimeError:
            self._logger.fatal('Could not open pickle summary file.')
        #Loop over benchmarks

        for benchmarkName in crossvalObj.keys():
            #Must skip if ppchain collector
            if benchmarkName == 'infoPPChain': continue
            #Add summary information into MonTuningInfo helper class
            self._infoObjs.append(
                TuningMonitoringInfo(benchmarkName,
                                     crossvalObj[benchmarkName]))
            self._logger.info(
                'Creating MonTuningInfo for %s and the iterator object [et=%d, eta=%d]',
                benchmarkName, self._infoObjs[-1].etbinidx(),
                self._infoObjs[-1].etabinidx())
        #Loop over all benchmarks

        #Always be the same bin for all infoObjs
        etabinidx = self._infoObjs[0].etabinidx()
        etbinidx = self._infoObjs[0].etbinidx()
        #Reading the data rings from path or object
        dataPath = kw.pop('dataPath', None)
        if dataPath:
            from TuningTools import TuningDataArchieve
            self._logger.info(
                ('Reading data tuning file with name %s') % (dataPath))
            TDArchieve = TuningDataArchieve.load(dataPath,
                                                 etBinIdx=etbinidx,
                                                 etaBinIdx=etabinidx,
                                                 loadEfficiencies=False)
            self._data = (TDArchieve.signalPatterns,
                          TDArchieve.backgroundPatterns)
        else:
            self._logger.fatal(
                'You must pass the ref file as parameter. abort!')
Пример #19
0
    def __init__(self, filePath=None, **kw):
        """
    Either specify the file path where the file should be read or the data
    which should be appended to it

    with CrosValidArchieve("/path/to/file") as data:
      BLOCK

    CrosValidArchieve( "file/path", crossValid = CrossValid() )
    """
        Logger.__init__(self, kw)
        self._filePath = filePath
        self.crossValid = kw.pop('crossValid', None)
        checkForUnusedVars(kw, self._warning)
Пример #20
0
  def __init__(self, filePath = None, **kw):
    """
    Either specify the file path where the file should be read or the data
    which should be appended to it

    with CrosValidArchieve("/path/to/file") as data:
      BLOCK

    CrosValidArchieve( "file/path", crossValid = CrossValid() )
    """
    Logger.__init__(self, kw)
    self._filePath = filePath
    self.crossValid = kw.pop( 'crossValid', None )
    checkForUnusedVars( kw, self._logger.warning )
Пример #21
0
    def __init__(self, rawFile, benchmark, neuron, sort, init, etBinIdx,
                 etaBinIdx, **kw):

        Logger.__init__(self, **kw)
        self._rawFile = rawFile
        self._benchmark = benchmark
        self._reference = benchmark.split('_')[-1]
        self._neuron = neuron
        self._sort = sort
        self._init = init
        self._etBinIdx = etBinIdx
        self._etaBinIdx = etaBinIdx
        ### Hold all ROOT objects
        self._obj = {}
        ### Current frame version
        self._version = 2
Пример #22
0
 def __init__(self):
     Logger.__init__(self)
     # Do not change this if you dont know what are you doing
     # standard vortex configuration approach
     self._form = [
         [72, 73, 74, 75, 76, 77, 78, 79, 80, 81],
         [71, 42, 43, 44, 45, 46, 47, 48, 49, 82],
         [70, 41, 20, 21, 22, 23, 24, 25, 50, 83],
         [69, 40, 19, 6, 7, 8, 9, 26, 51, 84],
         [68, 39, 18, 5, 0, 1, 10, 27, 52, 85],
         [67, 38, 17, 4, 3, 2, 11, 28, 53, 86],
         [66, 37, 16, 15, 14, 13, 12, 29, 54, 87],
         [65, 36, 35, 34, 33, 32, 31, 30, 55, 88],
         [64, 63, 62, 61, 60, 59, 58, 57, 56, 89],
         [99, 98, 97, 96, 95, 94, 93, 92, 91, 90],
     ]
     self._shape = (10, 10)
Пример #23
0
  def __init__(self, filePath = None, **kw):
    """
    Either specify the file path where the file should be read or the data
    which should be appended to it:

    with TuningJobConfigArchieve("/path/to/file") as data:
      BLOCK

    TuningJobConfigArchieve( "file/path", neuronBounds = ...,
                                          sortBounds = ...,
                                          initBounds = ... )
    """
    Logger.__init__(self, kw)
    self._filePath = filePath
    self.neuronBounds = kw.pop('neuronBounds', None)
    self._sortBounds = kw.pop('sortBounds', None)
    self._initBounds = kw.pop('initBounds', None)
    checkForUnusedVars( kw, self._logger.warning )
Пример #24
0
 def __init__(self,
              model=None,
              trnData=None,
              valData=None,
              tstData=None,
              references=None,
              display=None):
     callbacks.History.__init__(self)
     Logger.__init__(self)
     self.model = model
     self.trnData = trnData
     self.valData = valData
     self.tstData = tstData
     self.trnRoc = Roc()
     self.valRoc = Roc()
     self.tstRoc = Roc()
     self.references = references
     self.display = display
Пример #25
0
  def __init__(self, filePath = None, **kw):
    """
    Either specify the file path where the file should be read or the data
    which should be appended to it:

    with TuningJobConfigArchieve("/path/to/file") as data:
      BLOCK

    TuningJobConfigArchieve( "file/path", neuronBounds = ...,
                                          sortBounds = ...,
                                          initBounds = ... )
    """
    Logger.__init__(self, kw)
    self._filePath = filePath
    self.neuronBounds = kw.pop('neuronBounds', None)
    self._sortBounds = kw.pop('sortBounds', None)
    self._initBounds = kw.pop('initBounds', None)
    checkForUnusedVars( kw, self._warning )
Пример #26
0
    def __init__(self, net, **kw):
        Logger.__init__(self, kw)

        train = kw.pop("train", None)
        checkForUnusedVars(kw, self._logger.warning)
        del kw

        # Extract the information from c++ wrapper code
        self.nNodes = []
        self.numberOfLayers = net.getNumLayers()

        self.dataTrain = None
        # Hold the train evolution information
        if train:
            self.dataTrain = DataTrainEvolution(train)
        self.layers = self.__retrieve(net)

        self._logger.debug("The Neural object was created.")
Пример #27
0
 def __init__( self, discriminator = None, dataCurator = None, pileupRef = None
             , limits = None, maxCorr = None, frMargin = None ):
   Logger.__init__( self )
   self._discr            = discriminator
   self._dataCurator      = dataCurator
   self._baseLabel        = ''
   # Decision making parameters: 
   self.pileupRef         = PileupReference.retrieve( pileupRef )
   self.limits            = limits
   self.maxCorr           = maxCorr
   if frMargin is not None: self.frMargin = [1.] + frMargin if frMargin[0] != 1. else frMargin
   self._pileupLabel      = PileupReference.label( self.pileupRef )
   self._pileupShortLabel = PileupReference.shortlabel( self.pileupRef )
   self.subset            = None
   if self.pileupRef is PileupReference.avgmu:
     #limits = [0,26,60]
     self.limits = [15,37.5,60] if limits is None else limits
   elif self.pileupRef is PileupReference.nvtx:
     self.limits = [0,13,30] if limits is None else limits
   # Other transient attributes:
   self.sgnOut          = None
   self.bkgOut          = None
   self.sgnHist         = None
   self.bkgHist         = None
   self.sgnCorrData     = None
   self.bkgCorrDataList = None
   self._effSubset      = None
   self._effOutput      = None
   self._ol              = 12. if self._discr.removeOutputTansigTF else 1.
   # Decision taking parameters: 
   self.intercept       = None
   self.slope           = None
   self.slopeRange      = None
   # Thresholds:
   self.thres           = None
   self.rawThres        = None
   # Performance:
   self.perf            = None
   self.rawPerf         = None
   # Bin information:
   self.etBinIdx        = self._dataCurator.etBinIdx
   self.etaBinIdx       = self._dataCurator.etaBinIdx
   self.etBin           = self._dataCurator.etBin.tolist()   
   self.etaBin          = self._dataCurator.etaBin.tolist()  
Пример #28
0
    def __init__(self,
                 display=1,
                 doMultiStop=False,
                 patience=25,
                 save_the_best=True,
                 val_generator=None,
                 **kw):

        # initialize all base objects
        super(Callback, self).__init__()
        Logger.__init__(self, **kw)
        # number of max fails
        self._patience = {'max': patience, 'score': 0, 'loss': 0}
        self._display = display
        self._save_the_best = save_the_best
        # used to hold the best configs
        self._best_weights = None
        # used to hold the SP value
        self._current_score = 0.0
        self._val_generator = val_generator
Пример #29
0
 def __init__(self, filename, **kw):
   Logger.__init__(self,kw)
   self._title = kw.pop('title', 'Tuning Report')
   self._institute = kw.pop('institute', 'Universidade Federal do Rio de Janeiro (UFRJ)')
   checkForUnusedVars( kw, self._logger.warning )
   import socket
   self._machine = socket.gethostname()
   import getpass
   self._author = getpass.getuser()
   from time import gmtime, strftime
   self._data = strftime("%Y-%m-%d %H:%M:%S", gmtime())
   #Create output file
   self._pfile = open(filename+'.tex','w')
   # Import soma beamer contants
   from BeamerTemplates import BeamerConstants as bconst
   self._pfile.write( bconst.beginDocument )
   pname = self._author+'$@$'+self._machine
   self._pfile.write( (bconst.beginHeader) % \
             (self._title, self._title, pname, self._institute) )
   self._pfile.write( bconst.beginTitlePage )
Пример #30
0
 def __init__( self, dataCurator, d, **kw ):
   Logger.__init__( self, kw )
   d.update( kw ); del kw
   # Define discriminator type (for now we only have one discriminator type):
   # FIXME This chould be configured using coreDef
   try:
     try:
       from libTuningTools import DiscriminatorPyWrapper
     except ImportError:
       from libTuningToolsLib import DiscriminatorPyWrapper
   except ImportError:
     self._fatal("Cannot use FastNet DiscriminatorPyWrapper: library is not available!")
   self.dataCurator    = dataCurator
   # Discriminator parameters:
   self.DiscrClass           = DiscriminatorPyWrapper
   self.removeOutputTansigTF = retrieve_kw(d, 'removeOutputTansigTF', True )
   # Decision making parameters:
   self.thresEtBins       = retrieve_kw( d, 'thresEtBins',  None)
   self.thresEtaBins      = retrieve_kw( d, 'thresEtaBins', None)
   # TODO There is no need to require this from user
   self.method         = DecisionMakingMethod.retrieve( retrieve_kw(d, 'decisionMakingMethod', DecisionMakingMethod.LHLinearApproach ) )
   # Pileup limits specification
   self.pileupRef = None
   self.pileupLimits   = retrieve_kw( d, 'pileupLimits', None)
   self.maxCorr        = retrieve_kw( d, 'maxCorr', None)
   self.frMargin       = retrieve_kw( d, 'frMargin', [1.05, 1.1, 1.15, 1.25, 1.5, 2.0])
   if self.method is DecisionMakingMethod.LHLinearApproach:
     self._info("Using limits: %r", self.pileupLimits)
     if not 'pileupRef' in d:
       self._fatal("pileupRef must specified in order to correctly label the xaxis.")
   if 'pileupRef' in d:
     self.pileupRef      = PileupReference.retrieve( retrieve_kw( d, 'pileupRef' ) )
   # Linear LH Threshold Correction methods
   #self.maxFRMultipler = retrieve_kw( d, 'maxFRMultipler', None)
   #checkForUnusedVars( d )
   # TODO: Add fix fraction allowing to load a module and a table of values
   if self.method is DecisionMakingMethod.LHLinearApproach:
     try:
       import ElectronIDDevelopment
     except ImportError:
       self._warning("Using a standalone version of the pile-up fitting version which may not be the latest.")
Пример #31
0
  def __init__(self, filename, **kw):
    Logger.__init__(self,kw)
    self._title = kw.pop('title', 'Tuning Report')
    self._institute = kw.pop('institute', 'Universidade Federal do Rio de Janeiro (UFRJ)')

    checkForUnusedVars( kw, self._logger.warning )

    import socket
    self._machine = socket.gethostname()
    import getpass
    self._author = getpass.getuser()
    from time import gmtime, strftime
    self._data = strftime("%Y-%m-%d %H:%M:%S", gmtime())
    #Create output file
    self._pfile = open(filename+'.tex','w')

    from BeamerTemplates import BeamerConstants as bconst
    self._pfile.write( bconst.beginDocument )
    pname = self._author+'$@$'+self._machine
    self._pfile.write( (bconst.beginHeader) % \
              (self._title, self._title, pname, self._institute) )

    self._pfile.write( bconst.beginTitlePage )
Пример #32
0
    def __init__(self, **kw):

        Logger.__init__(self, kw)
        # Retrieve all information needed
        self._fList = retrieve_kw(kw, 'inputFiles', NotSet)
        self._ofile = retrieve_kw(kw, 'outputFile', "histos.root")
        self._treePath = retrieve_kw(kw, 'treePath', NotSet)
        self._dataframe = retrieve_kw(kw, 'dataframe',
                                      DataframeEnum.SkimmedNtuple)
        self._nov = retrieve_kw(kw, 'nov', -1)
        self._fList = csvStr2List(self._fList)
        self._fList = expandFolders(self._fList)

        # Loading libraries
        if ROOT.gSystem.Load('libTuningTools') < 0:
            self._fatal("Could not load TuningTools library", ImportError)

        self._containersSvc = {}
        self._storegateSvc = NotSet
        import random
        import time
        random.seed(time.time())
        # return a random number
        self._id = random.randrange(100000)
Пример #33
0
  except:
    logger.warning('%sc not found',pypath)
  try:
    logger.info('PathResolver: %s',pypath)
    return obj__Module__
  except KeyError:
    logger.fatal('Key %s not found in this module. Abort')





from RingerCore import Logger, LoggingLevel
import argparse

mainLogger = Logger.getModuleLogger("ConvertToPickle")

parser = argparse.ArgumentParser(description = '', add_help = False)
parser = argparse.ArgumentParser()

parser.add_argument('-i','--inputFiles', action='store', 
    dest='inputFiles', required = True, nargs='+',
    help = "The input files that will be used to generate the pic")


import sys,os
if len(sys.argv)==1:
  parser.print_help()
  sys.exit(1)

args = parser.parse_args()
Пример #34
0
    dest = 'grid_outputs',
    help = argparse.SUPPRESS )
# Hide forceStaged and make it always be true
parser.add_argument('--forceStaged', action='store_const',
    required = False,  dest = 'grid_forceStaged', default = True, 
    const = True, help = argparse.SUPPRESS)
# Hide forceStagedSecondary and make it always be true
parser.add_argument('--forceStagedSecondary', action='store_const',
    required = False, dest = 'grid_forceStagedSecondary', default = True,
    const = True, help = argparse.SUPPRESS)
parser.add_argument('--mergeOutput', action='store_const',
    required = False, default = True, const = True, 
    dest = 'grid_mergeOutput',
    help = argparse.SUPPRESS)

mainLogger = Logger.getModuleLogger(__name__)

import sys
if len(sys.argv)==1:
  parser.print_help()
  sys.exit(1)

args = parser.parse_args( namespace = TuningToolGridNamespace('prun') )

mainLogger = Logger.getModuleLogger( __name__, args.output_level )
printArgs( args, mainLogger.debug )

args.grid_allowTaskDuplication = True

# Set primary dataset number of files:
import os.path
Пример #35
0
    def __init__(self, **kw):
        Logger.__init__(self, kw)
        printArgs(kw, self._debug)
        self._nSorts = None
        self._nBoxes = None
        self._nTrain = None
        self._nValid = None
        self._nTest = None
        self._seed = None
        self._method = CrossValidMethod.retrieve(
            retrieve_kw(kw, 'method', CrossValidMethod.Standard))

        if self._method is CrossValidMethod.Standard:
            self._nSorts = retrieve_kw(kw, 'nSorts', 50)
            self._nBoxes = retrieve_kw(kw, 'nBoxes', 10)
            self._nTrain = retrieve_kw(kw, 'nTrain', 6)
            self._nValid = retrieve_kw(kw, 'nValid', 4)
            self._nTest = retrieve_kw(
                kw, 'nTest', self._nBoxes - (self._nTrain + self._nValid))
            self._seed = retrieve_kw(kw, 'seed', None)
            checkForUnusedVars(kw, self._warning)
            # Check if variables are ok:
            if (not self._nTest is None) and self._nTest < 0:
                self._fatal("Number of test clusters is lesser than zero",
                            ValueError)
            totalSum = self._nTrain + self._nValid + (self._nTest) if self._nTest else \
                       self._nTrain + self._nValid
            if totalSum != self._nBoxes:
                self._fatal(
                    "Sum of train, validation and test boxes doesn't match.",
                    ValueError)

            np.random.seed(self._seed)

            # Test number of possible combinations (N!/((N-K)!(K)!) is greater
            # than the required sorts. If number of sorts (greater than half of the
            # possible cases) is close to the number of combinations, generate all
            # possible combinations and then gather the number of needed sorts.
            # However, as calculating factorial can be heavy, we don't do this if the
            # number of boxes is large.
            self._sort_boxes_list = []
            useRandomCreation = True
            from math import factorial
            if self._nBoxes < 201:
                totalPossibilities = ( factorial( self._nBoxes ) ) / \
                    ( factorial( self._nTrain ) * \
                      factorial( self._nValid ) * \
                      factorial( self._nTest  ) )
                if self._nSorts > (totalPossibilities / 2):
                    useRandomCreation = False
            if useRandomCreation:
                count = 0
                while True:
                    random_boxes = np.random.permutation(self._nBoxes)
                    random_boxes = tuple(
                        chain(
                            sorted(random_boxes[0:self._nTrain]),
                            sorted(random_boxes[self._nTrain:self._nTrain +
                                                self._nValid]),
                            sorted(random_boxes[self._nTrain +
                                                self._nValid:])))
                    # Make sure we are not appending same sort again:
                    if not random_boxes in self._sort_boxes_list:
                        self._sort_boxes_list.append(random_boxes)
                        count += 1
                        if count == self._nSorts:
                            break
            else:
                self._sort_boxes_list = list(
                    combinations_taken_by_multiple_groups(
                        range(self._nBoxes),
                        (self._nTrain, self._nValid, self._nTest)))
                for i in range(totalPossibilities - self._nSorts):
                    self._sort_boxes_list.pop(
                        np.random.random_integers(0, totalPossibilities))
        elif self._method is CrossValidMethod.JackKnife:
            self._nBoxes = retrieve_kw(kw, 'nBoxes', 10)
            checkForUnusedVars(kw, self._warning)
            self._nSorts = self._nBoxes
            self._nTrain = self._nBoxes - 1
            self._nValid = 1
            self._nTest = 0
            self._sort_boxes_list = list(
                combinations_taken_by_multiple_groups(range(self._nBoxes), (
                    9,
                    1,
                )))
        elif self._method is CrossValidMethod.StratifiedKFold:
            self._nBoxes = retrieve_kw(kw, 'nBoxes', 10)
            self._shuffle = retrieve_kw(kw, 'shuffle', False)
            checkForUnusedVars(kw, self._logger.warning)
            self._nSorts = self._nBoxes
            self._nTrain = self._nBoxes - 1
            self._nValid = 1
            self._nTest = 0
Пример #36
0
 def __init__(self):
   Logger.__init__(self)
   self._eventStack = []
   self._toolStack = []
Пример #37
0
#!/usr/bin/env python

from rDev.Event import EventLooper
from rDev.dataframe import ElectronCandidate
from TuningTools.dataframe.EnumCollection import Dataframe as DataframeEnum
from RingerCore import LoggingLevel, Logger, csvStr2List, expandFolders

import argparse
mainLogger = Logger.getModuleLogger("job")
parser = argparse.ArgumentParser(description='', add_help=False)
parser = argparse.ArgumentParser()

parser.add_argument('-d',
                    '--data',
                    action='store',
                    dest='data',
                    required=True,
                    nargs='+',
                    help="The input tuning files.")

import sys, os
if len(sys.argv) == 1:
    parser.print_help()
    sys.exit(1)
args = parser.parse_args()

# Take all files
paths = csvStr2List(args.data)
paths = expandFolders(paths)

from RingerCore import load, save, appendToFileName
Пример #38
0
 def __init__(self, obj, **kw):
   from pprint import pprint
   Logger.__init__(self, kw)
Пример #39
0
  def __init__(self, **kw ):
    Logger.__init__( self, kw  )
    printArgs( kw, self._logger.debug  )
    self._nSorts = None
    self._nBoxes = None
    self._nTrain = None
    self._nValid = None
    self._nTest  = None
    self._seed   = None
    self._method = CrossValidMethod.retrieve( retrieve_kw( kw, 'method', CrossValidMethod.Standard ) )

    if self._method is CrossValidMethod.Standard:
      self._nSorts = retrieve_kw( kw, 'nSorts', 50 )
      self._nBoxes = retrieve_kw( kw, 'nBoxes', 10 )
      self._nTrain = retrieve_kw( kw, 'nTrain', 6  )
      self._nValid = retrieve_kw( kw, 'nValid', 4  )
      self._nTest  = retrieve_kw( kw, 'nTest',  self._nBoxes - ( self._nTrain + self._nValid ) )
      self._seed   = retrieve_kw( kw, 'seed',   None )
      checkForUnusedVars( kw, self._logger.warning )
      # Check if variables are ok:
      if (not self._nTest is None) and self._nTest < 0:
        self._logger.fatal("Number of test clusters is lesser than zero", ValueError)
      totalSum = self._nTrain + self._nValid + (self._nTest) if self._nTest else \
                 self._nTrain + self._nValid
      if totalSum != self._nBoxes:
        self._logger.fatal("Sum of train, validation and test boxes doesn't match.", ValueError)

      np.random.seed(self._seed)

      # Test number of possible combinations (N!/((N-K)!(K)!) is greater
      # than the required sorts. If number of sorts (greater than half of the
      # possible cases) is close to the number of combinations, generate all
      # possible combinations and then gather the number of needed sorts.
      # However, as calculating factorial can be heavy, we don't do this if the
      # number of boxes is large.
      self._sort_boxes_list = []
      useRandomCreation = True
      from math import factorial
      if self._nBoxes < 201:
        totalPossibilities = ( factorial( self._nBoxes ) ) / \
            ( factorial( self._nTrain ) * \
              factorial( self._nValid ) * \
              factorial( self._nTest  ) )
        if self._nSorts > (totalPossibilities / 2):
          useRandomCreation = False
      if useRandomCreation:
        count = 0
        while True:
          random_boxes = np.random.permutation(self._nBoxes)
          random_boxes = tuple(chain(sorted(random_boxes[0:self._nTrain]),
                          sorted(random_boxes[self._nTrain:self._nTrain+self._nValid]),
                          sorted(random_boxes[self._nTrain+self._nValid:])))
          # Make sure we are not appending same sort again:
          if not random_boxes in self._sort_boxes_list:
            self._sort_boxes_list.append( random_boxes )
            count += 1
            if count == self._nSorts:
              break
      else:
        self._sort_boxes_list = list(
            combinations_taken_by_multiple_groups(range(self._nBoxes),
                                                  (self._nTrain, 
                                                   self._nVal, 
                                                   self._nTest)))
        for i in range(totalPossibilities - self._nSorts):
          self._sort_boxes_list.pop( np.random_integers(0, totalPossibilities) )
    elif self._method is CrossValidMethod.JackKnife:
      self._nBoxes = retrieve_kw( kw, 'nBoxes', 10 )
      checkForUnusedVars( kw, self._logger.warning )
      self._nSorts = self._nBoxes
      self._nTrain = self._nBoxes - 1
      self._nValid = 1
      self._nTest  = 0
      self._sort_boxes_list = list(
          combinations_taken_by_multiple_groups(range(self._nBoxes), (9, 1,)) )
Пример #40
0
 def __init__(self, input_, output):
   Logger.__init__( self )
   self.f     = TFile.Open(output, 'recreate')
   self.input_ = input_
Пример #41
0
    #'e24_vloose_L1EM20VH',
    #'e5_loose_idperf',
    #'e5_lhloose_idperf',
    #'e5_tight_idperf',
    #'e5_lhtight_idperf',
    'e24_medium_idperf_L1EM20VH',
    'e24_lhmedium_idperf_L1EM20VH'
    ]
   
parser = argparse.ArgumentParser()
parser.add_argument('--inFolderList', nargs='+', required=True,
    help = "Input container to retrieve data")
parser.add_argument('--signalDS', action='store_true',
    help = "Whether the dataset contains TPNtuple")
parser.add_argument('--outfile', action='store', default="mergedOutput.root",
    help = "Name of the output file")
parser.add_argument('--triggerList', nargs='+', default=defaultTrigList,
    help = "Trigger list to keep on the filtered file.")
args=parser.parse_args()

mainLogger = Logger.getModuleLogger( __name__, LoggingLevel.INFO )

files = expandFolders( args.inFolderList )

rFile = RootFile( files, args.outfile )
rFile.dump('Offline/Egamma/Ntuple', ['electron'])
rFile.dump('Trigger/HLT/Egamma/Ntuple',  args.triggerList)
if args.signalDS:
  rFile.dump('Trigger/HLT/Egamma/TPNtuple', args.triggerList)
rFile.save()
Пример #42
0
 def __init__( self, logger = None ):
   Logger.__init__( self, logger = logger )
Пример #43
0
#!/usr/bin/env python

# TODO Improve skeleton documentation

from timeit import default_timer as timer

start = timer()

DatasetLocationInput = '/afs/cern.ch/work/j/jodafons/public/validate_tuningtool/mc14_13TeV.147406.129160.sgn.offLikelihood.bkg.truth.trig.e24_lhmedium_L1EM20VH_etBin_0_etaBin_0.npz'

#try:
from RingerCore import Logger, LoggingLevel
mainLogger = Logger.getModuleLogger(__name__)
mainLogger.info("Entering main job.")

from TuningTools import TuningJob
tuningJob = TuningJob()

from TuningTools.PreProc import *

basepath = '/afs/cern.ch/work/j/jodafons/public'

tuningJob( DatasetLocationInput, 
           neuronBoundsCol = [15, 15], 
           sortBoundsCol = [0, 1],
           initBoundsCol = 5, 
           #confFileList = basepath + '/user.wsfreund.config.nn5to20_sorts50_1by1_inits100_100by100/job.hn0015.s0040.il0000.iu0099.pic.gz',
           #ppFileList = basepath+'/user.wsfreund.Norm1/ppFile_pp_Norm1.pic.gz',
           #crossValidFile = basepath+'/user.wsfreund.CrossValid.50Sorts.seed_0/crossValid.pic.gz',
           epochs = 100,
           showEvo = 0,
parser = ArgumentParser(
    description=
    'Retrieve performance information from the Cross-Validation method on the GRID.',
    parents=[crossValStatsJobParser, parentParser, ioGridParser, loggerParser],
    conflict_handler='resolve')
parser.make_adjustments()

emptyArgumentsPrintHelp(parser)

# Retrieve parser args:
args = parser.parse_args(namespace=TuningToolGridNamespace('prun'))
args.setBExec(
    'source ./buildthis.sh --grid --with-scipy --no-color || source ./buildthis.sh --grid --with-scipy --no-color'
)
mainLogger = Logger.getModuleLogger(__name__, args.output_level)
printArgs(args, mainLogger.debug)

# Set primary dataset number of files:
try:
    # The input files can be send via a text file to avoid very large command lines?
    mainLogger.info(("Retrieving files on the data container to separate "
                     "the jobs accordingly to each tunned bin reagion."))
    from rucio.client import DIDClient
    from rucio.common.exception import DataIdentifierNotFound
    didClient = DIDClient()
    parsedDataDS = args.grid__inDS.split(':')
    did = parsedDataDS[-1]
    if len(parsedDataDS) > 1:
        scope = parsedDataDS
    else:
Пример #45
0
 def __init__(self, net, **kw):
     Logger.__init__(self, kw)