def main(): # parse arguments args = parse_args() if args is None: exit() # open session with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: gan = SAGAN(sess, args) # build graph gan.build_model() # show network architecture show_all_variables() if args.phase == 'train': # launch the graph in a session gan.train() # visualize learned generator gan.visualize_results(args.epoch - 1) print(" [*] Training finished!") if args.phase == 'test': gan.test() print(" [*] Test finished!")
def main(): # parse arguments args = parse_args() if args is None: exit() # open session with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: gan = SAGAN(sess, args) # build graph gan.build_model() # show network architecture show_all_variables() if args.phase == 'train' : # launch the graph in a session gan.train() # visualize learned generator gan.visualize_results(args.epoch - 1) print(" [*] Training finished!") if args.phase == 'test' : gan.test() print(" [*] Test finished!")
def main(): args = parse_args() if args is None: exit() with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: gan = SAGAN(sess, args) gan.build_model() show_all_variables() if args.phase == 'train': gan.train() gan.visualize_results(args.epoch - 1) print(" [*] Training finished!") if args.phase == 'test': gan.test() print(" [*] Test finished!")
def main(): # parse arguments args = parse_args() if args is None: exit() # open session #tf.ConfigProto(allow_soft_placement=True):如果指定的设备不存在,允许tf自动分配设备。(我哪里来的GPU,sigh) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: #建立模型 gan = SAGAN(sess, args) gan.build_model() show_all_variables() #两个调用命令:train&&test if args.phase == 'train': gan.train() gan.visualize_results(args.epoch - 1) print(" [*] Training finished") if args.phase == 'test': gan.test() print(" [*] Test finished")
def main(): # parse arguments args = parse_args() if args is None: exit() # declare instance for GAN if args.gan_type == 'GAN': gan = GAN(args) elif args.gan_type == 'CGAN': gan = CGAN(args) elif args.gan_type == 'WGAN': gan = WGAN(args) elif args.gan_type == 'VAE': gan = VAE(args) elif args.gan_type == 'LSGAN': gan = LSGAN(args) elif args.gan_type == 'CVAE': gan = CVAE(args) elif args.gan_type == 'WGAN_GP': gan = WGAN_GP(args) elif args.gan_type == 'LSGAN': gan = LSGAN(args) elif args.gan_type == 'EBGAN': gan = EBGAN(args) elif args.gan_type == 'infoGAN': gan = infoGAN(args) elif args.gan_type == 'ACGAN': gan = ACGAN(args) elif args.gan_type == 'SAGAN': gan = SAGAN(args) else: raise Exception("[!] There is no option for " + args.gan_type) # launch the graph in a session gan.train() print(" [*] Training finished!") # visualize learned generator gan.visualize_results(args.epoch) print(" [*] Testing finished!")
def main(): # parse arguments args = parse_args() if args is None: exit() # open session with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: # declare instance for GAN if args.gan_type == 'GAN': gan = GAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'CGAN': gan = CGAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'ACGAN': gan = ACGAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'infoGAN': gan = infoGAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'EBGAN': gan = EBGAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'WGAN': gan = WGAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'WGAN_GP': gan = WGAN_GP(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'DRAGAN': gan = DRAGAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'LSGAN': gan = LSGAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'BEGAN': gan = BEGAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'VAE': gan = VAE(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'CVAE': gan = CVAE(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'VAE_GAN': gan = VAE_GAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) elif args.gan_type == 'SAGAN': gan = SAGAN(sess, epoch=args.epoch, batch_size=args.batch_size, z_dim=args.z_dim, dataset_name=args.dataset, checkpoint_dir=args.checkpoint_dir, result_dir=args.result_dir, log_dir=args.log_dir) else: raise Exception("[!] There is no option for " + args.gan_type) # build graph gan.build_model() # show network architecture show_all_variables() # launch the graph in a session gan.train() print(" [*] Training finished!") # visualize learned generator gan.visualize_results(args.epoch - 1) print(" [*] Testing finished!")
# -*- coding: utf-8 -*- from config import Config from SAGAN import SAGAN if __name__ == "__main__": config = Config() model = SAGAN(config) if config.RESUME_TRAIN: discriminator_path = "./result/181104_1905/weights/ramen_cam/discriminator245000.hdf5" generator_path = "./result/181104_1905/weights/ramen_cam/generator245000.hdf5" print("Training start at {} iterations".format(config.COUNTER)) model.resume_train(discriminator_path, generator_path, config.COUNTER) else: print("Training start") model.train()